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COMPUTING NODE POLYNOMIALS FOR PLANE CURVES

Florian Block

Abstract. According to the Göttsche conjecture (now a theorem), the degree Nd,δ of

the Severi variety of plane curves of degree d with δ nodes is given by a polynomial
in d, provided d is large enough. These “node polynomials” Nδ(d) were determined
by Vainsencher and Kleiman–Piene for δ ≤ 6 and δ ≤ 8, respectively. Building on
ideas of Fomin and Mikhalkin, we develop an explicit algorithm for computing all node

polynomials, and use it to compute Nδ(d) for δ ≤ 14. Furthermore, we improve the
threshold of polynomiality and verify Göttsche’s conjecture on the optimal threshold up
to δ ≤ 14. We also determine the first nine coefficients of Nδ(d), for general δ, settling

and extending a 1994 conjecture of Di Francesco and Itzykson.

1. Introduction and main results

1.1. Node polynomials. Counting algebraic plane curves is a very old problem.
In 1848, J. Steiner determined that the number of curves of degree d with 1 node
through d(d+3)

2 − 1 generic points in the complex projective plane P
2 is 3(d − 1)2.

Much effort has since been put forth towards answering the following question:

How many (possibly reducible) degree d nodal curves with
δ nodes pass through d(d+3)

2 − δ generic points in P
2?

The answer to this question is the Severi degree Nd,δ, the degree of the corresponding
Severi variety. In 1994, Di Francesco and Itzykson [6] conjectured that Nd,δ is given
by a polynomial in d (assuming δ is fixed and d is sufficiently large). It is not hard
to see that, if such a polynomial exists, it has to be of degree 2δ.

Recently, Fomin and Mikhalkin [7, Theorem 5.1] established the polynomiality of
Nd,δ using tropical geometry and floor decompositions. More precisely, they showed
that there exists, for every δ ≥ 1, a node polynomial Nδ(d) which satisfies Nd,δ =
Nδ(d) for all d ≥ 2δ. (The δ = 0 case is trivial as Nd,0 = 1 for all d ≥ 1.)

For δ = 1, 2, 3, the polynomiality of the Severi degrees and the formulas for Nδ(d)
were determined in the 19th century. For δ = 4, 5, 6, this was only achieved by
Vainsencher [13] in 1995. In 2001, Kleiman and Piene [9] settled the cases δ = 7, 8.
Earlier, Göttsche [8] conjectured a more detailed (still not entirely explicit) description
of these polynomials for counting nodal curves on smooth projective algebraic surfaces.

1.2. Main results. In this paper we develop, building on ideas of Fomin and Mik-
halkin [7], an explicit algorithm (see Algorithm 1) for computing the node polynomials
Nδ(d) for arbitrary δ. This algorithm is used to calculate Nδ(d) for all δ ≤ 14.
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Theorem 1.1. The node polynomials Nδ(d), for δ ≤ 14, are as listed in Appendix A.

Di Francesco and Itzykson [6] conjectured the first seven terms of the node poly-
nomial Nδ(d), for arbitrary δ. We confirm and extend their assertion. The first two
terms already appeared in [9].

Theorem 1.2. The first nine coefficients of Nδ(d) are given by

Nδ(d) =
3δ

δ!

[
d
2δ − 2δd

2δ−1 − δ(δ − 4)

3
d
2δ−2

+
δ(δ − 1)(20δ − 13)

6
d
2δ−3

+

− δ(δ − 1)(69δ2 − 85δ + 92)

54
d
2δ−4 − δ(δ − 1)(δ − 2)(702δ2 − 629δ − 286)

270
d
2δ−5

+

+
δ(δ − 1)(δ − 2)(6028δ3 − 15476δ2 + 11701δ + 4425)

3240
d
2δ−6

+

+
δ(δ − 1)(δ − 2)(δ − 3)(13628δ3 − 6089δ2 − 29572δ − 24485)

11340
d
2δ−7

+

− δ(δ − 1)(δ − 2)(δ − 3)(282855δ4 − 931146δ3 + 417490δ2 + 425202δ + 1141616)

204120
d
2δ−8

+ · · ·
]

.

Let d∗(δ) denote the polynomiality threshold for Severi degrees, i.e., the smallest
positive integer d∗ = d∗(δ) such that Nδ(d) = Nd,δ for d ≥ d∗. As mentioned above
Fomin and Mikhalkin showed that d∗ ≤ 2δ. We improve this as follows:

Theorem 1.3. For δ ≥ 1, we have d∗(δ) ≤ δ.

In other words, Nd,δ = Nδ(d) provided d ≥ δ ≥ 1. Göttsche [8, Conjecture 4.1]
conjectured that d∗ ≤ ⌈ δ

2

⌉
+ 1 for δ ≥ 1. This was verified for δ ≤ 8 by Kleiman and

Piene [9]. By direct computation we can push it further.

Proposition 1.4. For 3 ≤ δ ≤ 14, we have d∗(δ) =
⌈

δ
2

⌉
+ 1.

That is, Göttsche’s threshold is correct and sharp for 3 ≤ δ ≤ 14. For δ = 1, 2 it is
easy to see that d∗(1) = 1 and d∗(2) = 1.

Di Francesco and Itzykson [6] hypothesized that d∗(δ) ≤
⌈

3
2 +
√

2δ + 1
4

⌉
(which is

equivalent to δ ≤ (d∗−1)(d∗−2)
2 ). However, our computations show that this fails for

δ = 13 as d∗(13) = 8.
The main techniques of this paper are combinatorial. By the celebrated Corre-

spondence Theorem of Mikhalkin [11, Theorem 1] one can replace the algebraic curve
count by an enumeration of certain tropical curves. Brugallé and Mikhalkin [3, 4]
introduced some purely combinatorial gadgets, called (marked) labeled floor diagrams
(see Section 2), which, if counted correctly, are equinumerous to these tropical curves.
Recently, Fomin and Mikhalkin [7] enhanced Brugallé and Mikhalkin’s definition and
introduced a template decomposition of labeled floor diagrams which is crucial in the
proofs of all results in this paper, as is the reformulation of algebraic plane curve
counts in terms of labeled floor diagrams (see Theorem 2.5).

This paper is organized as follows: In Section 2 we review labeled floor dia-
grams, their markings, and their relationship with the enumeration of plane alge-
braic curves. The proofs of Theorems 1.1 and 1.2 are algorithmic in nature and
involve a computer computation. We describe both algorithms in detail in Sections 3
and 5, respectively. The first algorithm computes the node polynomials Nδ(d) for
arbitrary δ, the second determines a prescribed number of leading terms of Nδ(d).
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The latter algorithm relies on the polynomiality of solutions of certain polynomial
difference equations: This polynomiality has been verified for pertinent values of δ
(see Section 5). Proposition 1.4 is proved in Section 3 by comparison of the numerical
values of Nδ(d) and Nd,δ for various d and δ (see Appendices A and B). Theorem 1.3
is proved in Section 4.

1.3. Competing approaches: floor diagrams vs. Caporaso–Harris recur-
sion. An alternative approach to computing the node polynomials Nδ(d) combines
polynomial interpolation with the Caporaso–Harris recursion [5]. Once a polynomial-
ity threshold d0(δ) has been established (i.e., once we have proved that Nδ(d) = Nd,δ

for d ≥ d0(δ)), we can use the recursion to determine a sufficient number of Severi
degrees Nd,δ for d ≥ d0(δ), from which we then interpolate.

This approach was first used by Göttsche [8, Remark 4.1(1)]. He conjectured [8,
Conjecture 4.1] the polynomiality threshold d0(δ) = � δ

2�+1, and combined it with the
“Göttsche–Yau–Zaslow formula” [8, Conjecture 2.4] (now a theorem of Tzeng [12])
to calculate the putative node polynomials Nδ(d) for δ ≤ 28. The Göttsche–Yau–
Zaslow formula is a stronger version of polynomiality that allows one to compute
each next node polynomial by calculating only two additional Severi degrees Nd0(δ),δ

and Nd0(δ)+1,δ, which is done via the Caporaso–Harris formula. Since Göttsche’s
threshold d0(δ) = � δ

2� + 1 remains open as of this writing, the algorithm he used to
compute the node polynomials is still awaiting a rigorous justification.

The first polynomiality threshold d0(δ) = 2δ was established by Fomin and Mikhal-
kin [7, Theorem 5.1]. Using this result, one can compute Nδ(d) for δ ≤ 9 but hardly
any further1. With the threshold d0(δ) = δ established in Theorem 1.3, it should be
possible to compute Nδ(d) for δ ≤ 16 or perhaps δ ≤ 17.

By contrast, our Algorithm 1 does not involve interpolation nor does it require an
a priori knowledge of a polynomiality threshold. Our computations verify the results
of Göttsche’s calculations for δ ≤ 14. In our implementations, Algorithm 1 is roughly
as efficient as the interpolation method discussed above. (We repeat that the latter
method depends on the threshold obtained using floor diagrams.)

1.4. Gromov–Witten invariants. The Gromov–Witten invariant Nd,g enumer-
ates irreducible plane curves of degree d and genus g through 3d+g−1 generic points
in P

2. Algorithm 1 (with minor adjustments, cf. Theorem 2.5(2)) can be used to
directly compute Nd,g, without resorting to a recursion involving relative Gromov–
Witten invariants à la Caporaso–Harris [5].

1.5. Follow-up work. By extending ideas of Fomin and Mikhalkin [7] and of the
present paper, we can obtain polynomiality results for relative Severi degrees, the
degrees of generalized Severi varieties (see [5, 14]). This is discussed in the separate
paper [1]; see Remark 3.9.

Gathmann, Markwig and the author [2] defined Psi-floor diagrams which enumerate
plane curves satisfying point and tangency conditions as well as conditions given
by Psi-classes. We prove a Caporaso–Harris type recursion for Psi-floor diagrams,
and show that relative descendant Gromov–Witten invariants equal their tropical
counterparts.

1We used an efficient C implementation of the Caporaso–Harris recursion by A. Gathmann.
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2. Labeled floor diagrams

Labeled floor diagrams are combinatorial gadgets which, if counted correctly, enumer-
ate plane curves with certain prescribed properties. Brugallé and Mikhalkin intro-
duced them in [3] (in slightly different notation) and studied them further in [4]. To
keep this paper self-contained and to fix notation we review them and their markings
following [7] where the framework that best suits our purposes was introduced.

Definition 2.1. A labeled floor diagram D on a vertex set {1, . . . , d} is a directed
graph (possibly with multiple edges) with positive integer edge weights w(e) satisfying:

(1) The edge directions respect the order of the vertices, i.e., for each edge i→ j
of D we have i < j.

(2) (Divergence condition) For each vertex j of D, we have

div(j) def=
∑

edges e

j
e→ k

w(e)−
∑

edges e

i
e→ j

w(e) ≤ 1.

This means that at every vertex of D the total weight of the outgoing edges is larger
by at most 1 than the total weight of the incoming edges.

The degree of a labeled floor diagram D is the number of its vertices. It is connected
if its underlying graph is. Note that in [7] labeled floor diagrams are required to be
connected. If D is connected its genus is the genus of the underlying graph (or the first
Betti number of the underlying topological space). The cogenus of a connected labeled
floor diagram D of degree d and genus g is given by δ(D) = (d−1)(d−2)

2 − g. If D is
not connected, let d1, d2, . . . and δ1, δ2, . . . be the degrees and cogenera, respectively,
of its connected components. Then the cogenus of D is

∑
j δj +

∑
j<j′ djdj′ . Via

the correspondence between algebraic curves and labeled floor diagrams [7, Theorem
3.9] these notions correspond literally to the respective analogues for algebraic curves.
Connectedness corresponds to irreducibility. Lastly, a labeled floor diagram D has
multiplicity2

μ(D) =
∏

edges e

w(e)2.

We draw labeled floor diagrams using the convention that vertices in increasing
order are arranged left to right. Edge weights of 1 are omitted.

Example 2.2. An example of a labeled floor diagram of degree d = 4, genus g = 1,
cogenus δ = 2, divergences 1, 1, 0,−2, and multiplicity μ = 4 is drawn below.

� � � �2� � �
�

To enumerate algebraic curves via labeled floor diagrams we need the notion of
markings of such diagrams.

2If floor diagrams are viewed as floor contractions of tropical plane curves this corresponds to the

notion of multiplicity of tropical plane curves.
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Definition 2.3. A marking of a labeled floor diagram D is defined by the following
three-step process which we illustrate in the case of Example 2.2.

Step 1. For each vertex j of D create 1 − div(j) many new vertices and connect
them to j with new edges directed away from j.

� � � �2� � �
������

�
��
����
������
�����
���	

� � �

Step 2. Subdivide each edge of the original labeled floor diagram D into two
directed edges by introducing a new vertex for each edge. The new edges inherit their
weights and orientations. Call the resulting graph D̃.

� � � �
2 2� � � � �

�
�
�

� �
�

������ ��
����
������
�����
���	

� � � �

Step 3. Linearly order the vertices of D̃ extending the order of the vertices of the
original labeled floor diagram D such that, as before, each edge is directed from a
smaller vertex to a larger vertex.

2 2
� � � �� � � � �� � �� � � � �

�

�

�
� �

�
�

The extended graph D̃ together with the linear order on its vertices is called a
marked floor diagram, or a marking of the original labeled floor diagram D.

We want to count marked floor diagrams up to equivalence. Two markings D̃1,
D̃2 of a labeled floor diagram D are equivalent if there exists an automorphism of
weighted graphs which preserves the vertices of D and maps D̃1 to D̃2. The number
of markings ν(D) is the number of marked floor diagrams D̃ up to equivalence.

Example 2.4. The labeled floor diagram D of Example 2.2 has ν(D) = 7 markings
(up to equivalence): In step 3 the extra 1-valent vertex connected to the third white
vertex from the left can be inserted in three ways between the third and fourth white
vertex (up to equivalence) and in four ways right of the fourth white vertex (again
up to equivalence).

Now we can make precise how to compute Severi degrees Nd,δ and Gromov–Witten
invariants Nd,g in terms of combinatorics of labeled floor diagrams, thereby reformu-
lating the initial question of this paper. Part 2.5 is not needed in the sequel and only
included for completeness. It first appeared in [3, Theorem 1].

Theorem 2.5. ([7, Corollary 1.9, Theorem 1.6]).
(1) The Severi degree Nd,δ, i.e., the number of possibly reducible nodal curves in

P
2 of degree d with δ nodes through d(d+3)

2 − δ generic points, is equal to

Nd,δ =
∑
D

μ(D)ν(D),

where D runs over all possibly disconnected labeled floor diagrams of degree d
and cogenus δ.
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(2) The Gromov-Witten invariant Nd,g, i.e., the number of irreducible curves in
P

2 of degree d and genus g through 3d + g − 1 generic points, is equal to

Nd,g =
∑
D

μ(D)ν(D),

where D runs over all connected labeled floor diagrams of degree d and genus g.

3. Computing node polynomials

In this section we give an explicit algorithm that symbolically computes the node
polynomials Nδ(d), for given δ ≥ 1. (As Nd,0 = 1 for d ≥ 1, we put N0(d) = 1.) An
implementation of this algorithm was used to prove Theorem 1.1 and Proposition 1.4.
We mostly follow the notation in [7, Section 5]. First, we rephrase Theorem 1.1 in
more compact notation. For δ ≤ 8 one recovers [9, Theorem 3.1]. For δ ≤ 14 this
coincides with the conjectural formulas of [8, Remark 2.5].

Theorem 3.1. The node polynomials Nδ(d), for δ ≤ 14, are given by the generating
function

∑
δ≥0 Nδ(d)xδ via the transformation

∑
δ≥0

Nδ(d)xδ = exp
(∑

δ≥1

Qδ(d)xδ

)
,

where
Q1(d) = 3(d − 1)2,

Q2(d) = −3
2

(d − 1)(14d − 25),

Q3(d) = 1
3
(690d2 − 2364d + 1899),

Q4(d) = 1
4
(−12060d2 + 47835d − 45207),

Q5(d) = 1
5
(217728d2 − 965646d + 1031823),

Q6(d) = 1
6
(−4010328d2 + 19451628d − 22907925),

Q7(d) = 1
7
(74884932d2 − 391230216d + 499072374),

Q8(d) = 1
8
(−1412380980d2 + 7860785643d − 10727554959),

Q9(d) = 1
9
(26842726680d2 − 157836614730d + 228307435911),

Q10(d) = 1
10

(−513240952752d2 + 3167809665372d − 4822190211285),

Q11(d) = 1
11

(9861407170992d2 − 63560584231524d + 101248067530602),

Q12(d) = 1
12

(−190244562607008d2 + 1275088266948600d − 2115732543025293),

Q13(d) = 1
13

(3682665360521280d2 − 25576895657724768d + 44039919476860362),

Q14(d) = 1
14

(−71494333556133600d2 + 513017995615177680d − 913759995239314452).

In particular, all Qδ(d), for 1 ≤ δ ≤ 14, are quadratic in d.

Göttsche [8] conjectured that all Qδ(d) are quadratic. This theorem proves his
conjecture for δ ≤ 14.

The basic idea of the algorithm (see [7, Section 5]) is to decompose labeled floor
diagrams into smaller building blocks. These gadgets will be crucial in the proofs of
all theorems in this paper.
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Definition 3.2. A template Γ is a directed graph (with possibly multiple edges) on
vertices {0, . . . , l}, for l ≥ 1, and edge weights w(e) ∈ Z>0, satisfying:

(1) if i→ j is an edge then i < j;
(2) every edge i

e→ i + 1 has weight w(e) ≥ 2 (No “short edges.”);
(3) for each vertex j, 1 ≤ j ≤ l − 1, there is an edge “covering” it, i.e., there

exists an edge i→ k with i < j < k.

Every template Γ comes with some numerical data associated with it. Its length
l(Γ) is the number of vertices minus 1. The product of squares of the edge weights is
its multiplicity μ(Γ). Its cogenus δ(Γ) is

δ(Γ) =
∑
i

e→j

[
(j − i)w(e)− 1

]
.

For 1 ≤ j ≤ l(Γ) let κj = κj(Γ) denote the sum of the weights of edges i→ k with
i < j ≤ k and define

kmin(Γ) = max
1≤j≤l

(κj − j + 1).

This makes kmin(Γ) the smallest positive integer k such that Γ can appear in a floor
diagram on {1, 2, . . . } with left-most vertex k. Lastly, set

ε(Γ) =
{

1 if all edges arriving at l have weight 1,
0 otherwise.

Figure 1 (Figure 10 taken from [7]) lists all templates Γ with δ(Γ) ≤ 2.
A labeled floor diagram D with d vertices decomposes into an ordered collection

(Γ1, . . . ,Γm) of templates as follows: First, add an additional vertex d+1 (> d) to D
along with, for every vertex j of D, 1−div(j) new edges of weight 1 from j to the new
vertex d + 1. The resulting floor diagram D′ has divergence 1 at every vertex coming
from D. Now remove all short edges from D′, that is, all edges of weight 1 between
consecutive vertices. The result is an ordered collection of templates (Γ1, . . . ,Γm),

Figure 1. The templates with δ(Γ) ≤ 2.
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listed left to right, and it is not hard to see that
∑

δ(Γi) = δ(D). This process is
reversible once we record the smallest vertex ki of each template Γi (see Example 3.3).

Example 3.3. An example of the decomposition of a labeled floor diagram into
templates is illustrated below. Here, k1 = 2 and k2 = 4.

� � � � �2� � ��
�

3�

�
D =

� � � � � �2� � ��
�

3� �
�

�
�

�
D′ =

� � � � � �
( ) 2� 3�

�

(Γ1, Γ2) =

To each template Γ we associate a polynomial that records the number of “markings
of Γ:” For k ∈ Z>0 let Γ(k) denote the graph obtained from Γ by first adding k + i−
1− κi short edges connecting i− 1 to i, for 1 ≤ i ≤ l(Γ), and then subdividing each
edge of the resulting graph by introducing one new vertex for each edge. By Fomin
and Mikhalkin [7, Lemma 5.6] the number of linear extensions (up to equivalence) of
the vertex poset of the graph Γ(k) extending the vertex order of Γ is a polynomial in
k, if k ≥ kmin(Γ), which we denote by P (Γ, k) (see Figure 1). The number of markings
of a labeled floor diagram D decomposing into templates (Γ1, . . . ,Γm) is then

ν(D) =
m∏

i=1

P (Γi, ki),

where ki is the smallest vertex of Γi in D. The algorithm is based on

Theorem 3.4. ([7, (5.13)]). The Severi degree Nd,δ, for d, δ ≥ 1, is given by the
template decomposition formula

(3.1)
∑

(Γ1,...,Γm)

m∏
i=1

μ(Γi)
d−l(Γm)+ε(Γm)∑
km=kmin(Γm)

P (Γm, km) · · ·
k2−l(Γ1)∑

k1=kmin(Γ1)

P (Γ1, k1),

where the first sum is over all ordered collections of templates (Γ1, . . . ,Γm), for all
m ≥ 1, with

∑m
i=1 δ(Γi) = δ, and the sums indexed by ki, for 1 ≤ i < m, are over

kmin(Γi) ≤ ki ≤ ki+1 − l(Γi),

Expression (3.1) can be evaluated symbolically, using the following two lemmata.
The first is Faulhaber’s formula [10] from 1631 for discrete integration of polyno-
mials. The second treats lower limits of iterated discrete integrals and its proof is
straightforward. Here Bj denotes the jth Bernoulli number with the convention that
B1 = +1

2 .

Lemma 3.5 ([10]). Let f(k) =
∑d

i=0 cik
i be a polynomial in k. Then, for n ≥ 0,

(3.2) F (n)
def
=

n∑
k=0

f(k) =
d∑

s=0

cs

s + 1

s∑
j=0

(
s + 1

j

)
Bjn

s+1−j .
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Data: The cogenus δ.
Result: The node polynomial Nδ(d).
begin

Generate all templates Γ with δ(Γ) ≤ δ;
Nδ(d)← 0;
forall the ordered collections of templates Γ̃ = (Γ1, . . . ,Γm) with∑m

i=1 δ(Γi) = δ do
i← 1;
Q1 ← 1;
while i ≤ m do

ai ← max
(
kmin(Γi), kmin(Γi−1) + l(Γi−1), . . . , kmin(Γ1) + l(Γ1) + · · ·+

l(Γi−1)
)
;

end
while i ≤ m− 1 do

Qi+1(ki+1)←
∑ki+1−l(Γi)

ki=ai
P (Γi, ki)Qi(ki);

i← i + 1;
end

QΓ̃(d)←∑d−l(Γm)+ε(Γm)
km=am

P (Γm, km)Qm(km);
QΓ̃(d)←∏m

i=1 μ(Γi) ·QΓ̃(d);
Nδ(d)← Nδ(d) + QΓ̃(d);

end
end

Algorithm 1: Algorithm to compute node polynomials.

In particular, deg(F ) = deg(f) + 1.

Lemma 3.6. Let f(k1) and g(k2) be polynomials in k1 and k2, respectively, and
let a1, b1, a2, b2 ∈ Z≥0. Furthermore, let F (k2) =

∑k2−b1
k1=a1

f(k1) be a discrete anti-
derivative of f(k1), where k2 ≥ a1 + b1. Then, for n ≥ max(a1 + b1 + b2, a2 + b2),

n−b2∑
k2=a2

g(k2)
k2−b1∑
k1=a1

f(k1) =
n−b2∑

k2=max(a1+b1,a2)

g(k2)F (k2).

Example 3.7. An illustration of Lemma 3.6 is the following iterated discrete integral:
n∑

k2=1

k2−2∑
k1=1

1 =
n∑

k2=1

{
k2 − 2 if k2 ≥ 2
0 if k2 = 1

}
=

n∑
k2=3

(
k2 − 2

)
.

Using these results Algorithm 1 computes node polynomials Nδ(d) for an arbitrary
number of nodes δ. The first step, the template generation, is explained later in this
section.

Proof of Correctness of Algorithm 1. This algorithm is a direct implementation of
Theorem 3.4. The m-fold discrete integral is evaluated symbolically, one sum at
a time, using Faulhaber’s formula (Lemma 3.5). The lower limit ai of the ith sum is
given by an iterated application of Lemma 3.6. �
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Figure 2. The number of templates with cogenus δ ≤ 14.

As Algorithm 1 is stated its termination in reasonable time is hopeless for δ ≥ 8
or 9. The novelty of this section, together with an explicit formulation, is how to
implement the algorithm efficiently. This is explained in Remark 3.8.

Remark 3.8. The running time of the algorithm can be improved vastly as follows:
As the limits of summation in (3.1) only depend on kmin(Γi), l(Γi) and ε(Γm), we can
replace the template polynomials P (Γi, ki) by

∑
P (Γi, ki), where the sum is over all

templates Γi with prescribed (kmin, l, ε). After this transformation the first sum in
(3.1) is over all combinations of those tuples. This reduces the computation drastically
as, for example, the 167885753 templates of cogenus 14 make up only 343 equivalence
classes. Also, in (3.1) we can distribute the template multiplicities μ(Γi) and replace
P (Γi, ki) by μ(Γi)P (Γi, ki) and thereby eliminate

∏
μ(Γi). Another speed-up is to

compute all discrete integrals of monomials using Lemma 3.5 in advance.

The generation of the templates is the bottleneck of the algorithm. Their number
grows rapidly with δ as can be seen from Figure 2. However, their generation can be
parallelized easily (see below).

Algorithm 1 has been implemented in Maple. Computing N14(d) on a machine
with two quad-core Intel(R) Xeon(R) CPU L5420 @ 2.50 GHz, 6144 KB cache, and
24 GB RAM took about 70 days.

Remark 3.9. Using the combinatorial framework of floor diagrams one can show that
also relative Severi degrees (i.e., the degrees of generalized Severi varieties, see [5, 14])
are polynomial and given by “relative node polynomials” [1, Theorem 1.1]. This
suggests the existence of a generalization of Göttsche’s Conjecture [8, Conjecture 2.1]
and the Göttsche–Yau–Zaslow formula [8, Conjecture 2.1]. Thus, the combinatorics
of floor diagrams lead to new conjectures although the techniques and results seem
to be out of reach at this time.

Remark 3.10. We can use Algorithm 1 to compute the values of the Severi degrees
Nd,δ for prescribed values of d and δ. After we specify a degree d and a number of
nodes δ all sums in our algorithm become finite and can be evaluated numerically.
See Appendix B for all values of Nd,δ for 0 ≤ δ ≤ 14 and 1 ≤ d ≤ 13.

Proof of Proposition 1.4. For 1 ≤ δ ≤ 14 we observe, using the data in Appendices A
and B, that Nδ(d) = Nd,δ for all d0(δ) ≤ d < δ, where d0(δ) =

⌈
δ
2

⌉
+ 1 is Göttsche’s

threshold. Furthermore, Nδ(d0(δ)− 1) 
= Nd0(δ)−1,δ for all 3 ≤ δ ≤ 14. �

3.1. Template generation. To compute a list of all templates of a given cogenus
one can proceed as follows. First, we need some terminology and notation. An edge
i → j of a template is said to have length j − i. A template Γ is of type α = (αij),
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Data: A graph A with a distinguished edge e1.
Result: An infinite directed tree of graphs with root A.
begin

forall the edges e2 of A with e2 ≥ e1 (in the fixed order) do
B ← graph obtained from A by moving e2 to the next vertex;
if the natural partial order (from left to right) of the edges of B that are
of the same type as e2 is compatible with the fixed order then

Insert B as a child of A;
Execute this procedure with input (B, e2);

end
end

end
Algorithm 2: A recursion which can generates a tree containing all templates
of a given type.

i, j ∈ Z>0, if Γ has αij edges of length i and weight j. Every type α satisfies, by
definition of cogenus of a template,

(3.3)
∑

i,j≥1

αij(i · j − 1) = δ(Γ).

Note that α11 = 0 as short edges are not allowed in templates. The number of types
constituting a given cogenus δ is finite.

We can generate all templates of type α using a branch-and-bound algorithm which
slides edges in a suitable order. Let Γ0 be the unique template of type α with all edges
emerging from vertex 0. Fix a linear order on the set of edges of type α. For example,

if α =
[
0 1
2 0

]
, we could choose:

� �
2
� � � �

�
< � � �

�

< .

Algorithm 2 applied to the pair (Γ0, e0), where e0 is the smallest edge of Γ0, creates
an infinite directed tree with root Γ0 all of whose vertices correspond to different
graphs. Eliminate a branch if either

(1) no edge of the root of the branch starts at vertex 1, or
(2) condition (3) in Definition 3.2 is impossible to satisfy for graphs further down

the tree.

See Figure 3 for an illustration for α =
[
0 1
2 0

]
.

A complete, non-redundant list of all templates of type α is then given by all
remaining graphs which satisfy condition (3) of Definition 3.2 as every template can
be obtained in a unique way from Γ0 by shifting edges in an order that is compatible
with the order fixed earlier. Note that it can happen that a non-template graph
precedes a template within a branch. For an example see the graph in brackets in
Figure 3. Template generation for different types can be executed in parallel. The
number of templates, for δ ≤ 14, is given in Figure 2.
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Figure 3. Branch-and-bound tree for α =
[
0 1
2 0

]
.

4. Threshold values

Fomin and Mikhalkin [7, Theorem 5.1] proved polynomiality of the Severi degrees
Nd,δ in d, for fixed δ, provided d is sufficiently large. More precisely, they showed
that Nδ(d) = Nd,δ for d ≥ 2δ. In this section we show that their threshold can be
improved to d ≥ δ (Theorem 1.3).

We need the following elementary observation about robustness of discrete anti-
derivatives of polynomials whose continuous counterpart is the well-known fact that∫ a−s−1

a−1
f(x) dx = 0 if f(x) = 0 on the interval (a− s− 1, a− 1).

Lemma 4.1. For a polynomial f(k) and a ∈ Z>0 let F (n) =
∑n

k=a f(k) be the poly-
nomial in n uniquely determined by large enough values of n. (F (n) is a polynomial
by Lemma 3.5.) If we have f(a−1) = · · · = f(a−s) = 0 for some 0 ≤ s < a (this con-
dition is vacuous for s = 0) then it also holds that F (a− 1) = · · · = F (a− s− 1) = 0.
In particular,

∑n
k=a f(k) is a polynomial in n, for n ≥ a− s− 1.

Even for s = 0 the lemma is non-trivial as, in general, F (a− 2) 
= 0.

Proof. Let G(n) be the polynomial in n defined via G(n) =
∑n

k=0 f(k) for large n.
Then F (n) = G(n)−∑a−1

k=0 f(k) for all n ∈ Z≥0. In particular, for any 0 ≤ i ≤ s, we
have F (a− i− 1) = G(a− i− 1)−∑a−1

k=0 f(k) = G(a− i− 1)−∑a−i−1
k=0 f(k) = 0. �

Recall that for a template Γ, we defined kmin = kmin(Γ) to be the smallest k ≥ 1
such that k + j − 1 ≥ κj(Γ) for all 1 ≤ j ≤ l(Γ). Let j0 be the smallest j for which
equality is attained (it is easy to see that equality is attained for some j). Define s(Γ)
to be the number of edges of Γ from j0 − 1 to j0 (of any weight). See Figure 1 for
some examples. The following lemma shows that the template polynomials P (Γ, k)
satisfy the condition of Lemma 4.1.
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Lemma 4.2. With the notation from above it holds that

P (Γ, kmin − 1) = P (Γ, kmin − 2) = · · · = P (Γ, kmin − s(Γ)) = 0.

Proof. Recall from Section 3 that, for k ≥ kmin(Γ), the polynomial P (Γ, k) records the
number of linear extension (up to equivalence) of some poset Γ(k) which is obtained
from Γ by first adding k + j − 1 − κj(Γ) “short edges” connecting j − 1 to j, for
1 ≤ j ≤ l(Γ), and then subdividing each edge of the resulting graph by introducing a
new vertex for each edge.

Using the notation from the last paragraph notice that kmin + j0−1 = κj0(Γ), and
thus Γ(k) has k − kmin “short edges” between j0 − 1 and j0. Every linear extension
of Γ(k) can be obtained by first linearly ordering the midpoints of these k − kmin

“short edges” and the midpoints of the s(Γ) many edges of Γ connecting j0−1 and j0
before completing the linear order to all vertices of Γ(k). Therefore, the polynomial
(k − kmin + 1) · · · (k − kmin + s(Γ)) divides P (Γ, k). �

Before we can prove Theorem 1.3 we need a last technical lemma.

Lemma 4.3. Using the notation from above we have, for each template Γ,

kmin(Γ)− s(Γ) + l(Γ)− ε(Γ) ≤ δ(Γ) + 1.

Proof. As before, let j0 be the smallest j in {1, . . . , l(Γ)} with kmin + j − 1 = κj(Γ).
It suffices to show that κj0(Γ)− j0 − s(Γ) + l(Γ)− ε(Γ) ≤ δ(Γ).

Let Γ′ be the template obtained from Γ by removing all edges i → k with either
k < j0 or i ≥ j0. It is easy to see that l(Γ)−ε(Γ)−(l(Γ′)−ε(Γ′)) ≤ δ(Γ)−δ(Γ′). Thus,
we can assume without loss of generality that all edges i→ k of Γ satisfy i < j0 ≤ k.
Therefore, as κj0(Γ) =

∑
edges e of Γ wt(e) it suffices to show that

(4.1) l(Γ)− ε(Γ) ≤
∑

edges e of Γ

[
wt(e)(len(e)− 1)− 1

]
+ s(Γ) + j0,

where len(e) is the length of an edge e. The contribution of the s(Γ) edges of Γ
between j0 − 1 and j0 to the sum is −s(Γ), thus the right-hand side of (4.1) equals

(4.2)
∑[

wt(e)(len(e)− 1)− 1
]

+ j0

with the sum now running over all edges of Γ of length at least 2. If there are no such
edges, then l(Γ) = 1 and we are done. Otherwise, if ε(Γ) = 1, expression (4.2) equals∑

(len(e) − 2) + j0, which is ≥ l(Γ) − 2 + j0 or ≥ l(Γ) − 3 + j0 if j0 ∈ {1, l(Γ)} or
1 < j0 < l(Γ), respectively (by considering only edges adjacent to vertices 0 and l(Γ)
of Γ). In either case the result follows.

If ε(Γ) = 0 then expression (4.2) is ≥ l(Γ) + (l(Γ) − 3 + j0) or ≥ l(Γ) − 2 + j0 if
j0 ∈ {1, l(Γ)} or 1 < j0 < l(Γ), respectively. This completes the proof. �
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Proof of Theorem 1.3. By Lemma 3.6 and repeated application of Lemmata 4.1
and 4.2 it suffices to show that d ≥ δ simultaneously implies

d ≥ l(Γm)− ε(Γm) + kmin(Γm)− s(Γm)− 1,

d ≥ l(Γm)− ε(Γm) + l(Γm−1) + kmin(Γm−1)− s(Γm−1)− 2,

...

d ≥ l(Γm)− ε(Γm) + l(Γm−1) + · · ·+ l(Γ1) + kmin(Γ1)− s(Γ1)−m,

(4.3)

for all collections of templates (Γ1, . . . ,Γm) with
∑m

i=1 δ(Γi) = δ.
The first inequality is a direct consequence of Lemma 4.3. For the other inequalities,

notice that l(Γ)− ε(Γ) ≤ δ(Γ) for all templates Γ, hence

l(Γm)− ε(Γm)− 1 ≤ δ(Γm)− 1

and
l(Γi)− 1 ≤ δ(Γi), for 2 ≤ i ≤ m− 1.

By Lemma 4.3 we have

l(Γ1) + kmin(Γ1)− s(Γ1)− 1 ≤ δ(Γ1) + 1

as ε(Γ1) ≤ 1, and the right-hand-side of the last inequality of (4.3) is ≤∑m
i=1 δ(Γi) =

δ ≤ d. The proof of the other inequalities is very similar. �

5. Coefficients of node polynomials

The goal of this section is to present an algorithm for the computation of the coeffi-
cients of Nδ(d), for general δ. The algorithm can be used to prove Theorem 1.2 and
thereby confirm and extend a conjecture of Di Francesco and Itzykson in [6] where
they conjectured the seven terms of Nδ(d) of largest degree.

Our algorithm should be able to find formulas for arbitrarily many coefficients of
Nδ(d). We prove correctness of our algorithm in this section. The algorithm rests on
the polynomiality of solutions of certain polynomial difference equations (see (5.7)).

First, we fix some notation building on terminology of Section 3. By Remark 3.8
we can replace the polynomials P (Γ, k) in (3.1) by the product μ(Γ)P (Γ, k), thereby
removing the product

∏
μ(Γi) of the template multiplicities. In this section we write

P ∗(Γ, k) for μ(Γ)P (Γ, k). For integers i ≥ 0 and a ≥ 0 let Mi(a) denote the matrix
of the linear map

(5.1) f(k) �→
∑

Γ:δ(Γ)=i

n−l(Γ)∑
k=kmin(Γ)

P ∗(Γ, k) · f(k),

where f(k) = c0k
a + c1k

a−1 + · · · , a polynomial of degree a, is mapped to the poly-
nomial Mi(a)(f(k)) = d0n

a+i+1 + d1n
a+i + · · · in n. (By Lemma 3.5 and the proof

of Lemma 5.1 the image has degree a + i + 1.) Hence Mi(a)c = d. Similarly, define
M end

i (a) to be the matrix of the linear map

(5.2) f(k) �→
∑

Γ:δ(Γ)=i

n−l(Γ)+ε(Γ)∑
k=kmin(Γ)

P ∗(Γ, k) · f(k).
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Later we will consider square sub-matrices of Mi(a) and M end
i (a) by restriction

to the first few rows and columns which will be denoted Mi(a) and M end
i (a) as well.

Note that Mi(a) and M end
i (a) are lower triangular. For example, for a large enough,

M1(a) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6
a + 2

0 0 0 0 · · ·

−5a + 8
a + 1

6
a + 1

0 0 0 · · ·
5
2
a + 3 −5a + 3

a

6
a

0 0 · · ·

−1
4
(4a + 1)a

5
2
a +

1
2

−5a− 2
a− 1

6
a− 1

0 · · ·
1
40

(13a2 − 20a + 7)a −a2 +
7
4
a− 3

4
5
2
a− 2 −5a− 7

a− 2
6

a− 2
· · ·

...
...

...
...

...
. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The following observation is key to our algorithm.

Lemma 5.1. The first a+ i rows of Mi(a) and Mend
i (a) are independent of the lower

limits of summation in (5.1) and (5.2), respectively.

Proof. It is an easy consequence of the proof of [7, Lemma 5.7] that the polynomial
P ∗(Γ, k) associated with a template Γ has degree ≤ δ(Γ). Equality is attained by
the template Γ on vertices 0, 1, 2 with i edges connecting 0 and 2 (so δ(Γ) = i). As
discrete integration of a polynomial increases the degree by 1 the polynomial on the
right-hand side of (5.1) has degree 1 + i + a. �

The basic idea of the algorithm is that templates with higher cogenera do not
contribute to higher degree terms of the node polynomial. With this in mind we
define, for each finite collection (Γ1, . . . ,Γm) of templates, its type τ = (τ2, τ3, . . . ),
where τi is the number of templates in (Γ1, . . . ,Γm) with cogenus equal to i, for i ≥ 2.
Note that we do not record the number of templates with cogenus equal to 1.

To collect the contributions of all collections of templates with a given type τ ,
let τ = (τ2, τ3, . . . ) and fix δ ≥ ∑j≥2 τj (so that there exist template collections
(Γ1, . . . ,Γm) of type τ with

∑
δ(Γj) = δ). We define two (column) vectors Cτ (δ) and

Cend
τ (δ) as the coefficient vectors, listed in decreasing order, of the polynomials

(5.3)
∑

(Γ1,...,Γm)

n−l(Γm)∑
km=kmin(Γm)

P ∗(Γm, km) · · ·
k2−l(Γ1)∑

k1=kmin(Γ1)

P ∗(Γ1, k1)

and

(5.4)
∑

(Γ1,...,Γm)

n−l(Γm)+ε(Γ)∑
km=kmin(Γm)

P ∗(Γm, km)
km−l(Γm−1)∑

km−1=kmin(Γm−1)

· · ·
k2−l(Γ1)∑

k1=kmin(Γ1)

P ∗(Γ1, k1)

in the indeterminate n, where the respective first sums are over all ordered collections
of templates of type τ .
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It might look like Cτ (δ) is a product of some matrices Mi(a) applied to the poly-
nomial 1. However, this is not the case. For example, note that

C(0,0,... )(2) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

9

2
−34

88

−179

2
30

0
.
.
.

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

9

2
−34

88

−179

2
27

0
.
.
.

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= M1(2) ·M1(0) ·

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
0

0
0
0

0
.
.
.

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

This is because, when iterated discrete integrals are evaluated symbolically, the lower
limits of integration of the outer sums can change depending on the limits of the inner
sums (cf. Lemma 3.6). This observation makes it necessary to compute initial values
for recursions (described later) up to a large enough δ.

Before we can state the main recursion we need two more notations. For a type
τ = (τ2, τ3, . . . ) and i ≥ 2 with τi > 0 define a new type τ↓i via (τ↓i)i = τi − 1 and
(τ↓i)j = τj for j 
= i. Furthermore, let def(τ) =

∑
j≥2(j − 1)τj be the defect of τ .

The following lemma justifies this terminology.

Lemma 5.2. Polynomials (5.3) and (5.4) are of degree 2δ − def(τ).

Proof. Let (Γ1, . . . ,Γm) be a collection of templates with
∑m

i=1 δ(Γi) = δ and type τ .
Then, by applying the argument in the proof of Lemma 5.1 to each Γi, the polynomials
(5.3) and (5.4) have degree δ + m. The result follows as

δ − def(τ) =
m∑

i=1

δ(Γi)−
∑
j≥2

(j − 1)τj

=
m∑

i=1

δ(Γi)−
∑
j≥2

⎡
⎣
⎛
⎝ ∑

i:δ(Γi)=τj

δ(Γi)

⎞
⎠− τj

⎤
⎦

= #{i : δ(Γi) = 1}+
∑
j≥2

τj = m. �

The last lemma makes precise which collections of templates contribute to which
coefficients of Nδ(d). Namely, the first N coefficients of Nδ(d) of largest degree depend
only on collections of templates with types τ such that def(τ) < N . The following
recursion is the heart of the algorithm.

Proposition 5.3. For every type τ and integer δ large enough, it holds that

Cτ (δ) =
∑

i:τi �=0

Mi

(
2δ − i− 1− def(τ)

)
Cτ↓i(δ − i)

+ M1

(
2δ − 2− def(τ)

)
Cτ (δ − 1).

(5.5)
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More precisely, if we restrict all matrices Mi to be square of size N − def(τ) and all
Cτ to be vectors of length N − def(τ), then recursion (5.5) holds for

δ ≥ max

⎛
⎝
⌈

N + 1
2

⌉
,
∑
j≥2

jτj

⎞
⎠.

Proof. The coefficient vector Cτ (δ) is defined by a sum that runs over all collections
of templates (Γ1, . . . ,Γm) of type τ (see (5.3)). Partition the set of such collections
by putting δ(Γm) = 1, or δ(Γm) = 2, and so forth. This partitioning splits expression
(5.3) exactly as in (5.5).

A summand can be written as a product of some matrix Mi and some vector Cτ↓i

if δ is large enough, namely if Mi does not depend on the lower limits in (5.3). If we
can factor then the polynomials (5.3) defining Cτ↓i(δ− i) and Cτ (δ− 1) have degrees

2(δ − i)− def(τ↓i) = 2δ − 2i− def(τ) + (i− 1) = 2δ − i− 1− def(τ)

by Lemma 5.2 and, similarly, 2δ − 2 − def(τ), respectively. By Lemma 5.1, if the
matrix Mi(2δ − i− 1− def(τ)) is of size N − def(τ), then it does not depend on the
lower limits if and only if δ ≥ N+1

2 . In order for Cτ (δ) to be defined (and the above
identity to be meaningful) we need to impose δ ≥∑j≥2 jτj . �

Remark 5.4. Later, when we formulate the algorithm, we need to solve recursion
(5.5) together with an initial condition in order to obtain an explicit formula for the
first N − def(τ) entries of Cτ (δ). It suffices to take

(5.6) δ0(τ) def= max

⎛
⎝⌈N − 1

2

⌉
,
∑
j≥2

jτj

⎞
⎠

as for any δ > δ0(τ) the vector Cτ (δ) of length N − def(τ) can be written in terms of
matrices Mi and vectors Cτ ′(δ′) for various types τ ′ and integers δ′ < δ.

We propose Algorithm 3 for the computation of the coefficients of the node poly-
nomial Nδ(d). We explain how to solve recursion (5.5) below.

Proof of correctness of Algorithm 3. Proposition 5.3 guarantees that recursion (5.3)
uniquely determines Cτ (δ). By a similar argument as in the proof of Proposition 5.3
we see that Cend

τ (δ) is given by the formula in Algorithm 3. By Lemma 5.2 all
contributions of template collections of type τ to the node polynomial Nδ(d) are in
degree 2δ − def(τ) or less. Hence, after shifting Cend

τ (δ) by def(τ), their sum is the
coefficient vector of Nδ(d). �

To solve recursion (5.5) for a type τ we make use of the following (conjectural)
structure about Cτ (δ) which has been verified for all types τ with def(τ) ≤ 8. This
refines an observation of Göttsche [8, Remark 4.2 (2)] about the first 28 (conjectural)
coefficients of the node polynomial Nδ(d).

Conjecture 5.5. All entries of Cτ (δ) are of the form 3δ

δ! times a polynomial in δ.
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Now, to solve recursion (5.5), we first extend the natural partial order on the types
τ given by |τ | = ∑j≥2 τj to a linear order with smallest element τ = (0, 0, . . . ). For
example, for N = 4, we could take

(0, 0, 0) < (1, 0, 0) < (0, 1, 0) < (0, 0, 1) < (1, 1, 0) < (2, 0, 0) < (3, 0, 0).

Then solve recursion (5.5) for each τ , in increasing order, using the lowertriangularity
of the matrices Mi. For example, to compute the second entry 3δ

δ! p(δ) of C1,1(δ)
(assuming Conjecture 5.5), where p(δ) is a polynomial in δ, we need to solve

C1,1(δ) = M1(2δ − 5)C1,1(δ − 1) + M2(2δ − 6)C0,1(δ − 2) + M3(2δ − 7)C1,0(δ − 3),

or, explicitly,⎡
⎢⎣

∗
3δ

δ!
p(δ)

.

.

.

⎤
⎥⎦ =

⎡
⎣
∗ 0 0
∗ ∗ 0
.
.
.

.

.

.
. . .

⎤
⎦
⎡
⎢⎢⎣

∗
3δ−1

(δ − 1)!
p(δ − 1)

.

.

.

⎤
⎥⎥⎦+

⎡
⎣
∗ 0 0
∗ ∗ 0
.
.
.

.

.

.
. . .

⎤
⎦
⎡
⎣
∗
∗
.
.
.

⎤
⎦+

⎡
⎣
∗ 0 0
∗ ∗ 0
.
.
.

.

.

.
. . .

⎤
⎦
⎡
⎣
∗
∗
.
.
.

⎤
⎦.

The ∗-entries in the vectors C0,1 and C1,0 are known by a previous computation. The
∗-entries in M1, M2 and M3 are given by (5.3). The proof of Lemma 5.1 implies that
all denominators of Mi(a) in row j are a+i−j+2 or 1 (after cancellation). To compute
p(δ), or, more generally, the jth entry in Cτ (δ), we first clear all denominators and
then solve the polynomial difference equation with initial conditions

(2δ − def(τ)− j + 1)3p(δ) = p(δ − 1) + q(δ),

p(δ0(τ)) = Cτ (δ0(τ)),
(5.7)

Data: A positive integer N .
Result: The coefficient vector C of the first N coefficients of Nδ(d).
begin

Compute all templates Γ with δ(Γ) ≤ N ;
forall the types τ with def(τ) < N do

Compute initial values Cτ (δ0(τ)) using (5.3), with δ0(τ) as in (5.6);
Solve recursion (5.5) for first N − def(τ) coordinates of Cτ (δ);
Set

Cend
τ (δ)←

∑
i:τi �=0

M end
i

(
2δ − i− 1− def(τ)

)
Cτ↓i(δ − i)

+ M end
1

(
2δ − 2− def(τ)

)
Cτ (δ − 1);

end
C ← 0;
forall the types τ with def(τ) < N do

Shift the entries of Cend
τ (δ) down by def(τ);

C ← C + shifted Cend
τ (δ);

end
end

Algorithm 3: Computation of the leading coefficients of the node polynomial.
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where q(δ) is a rather complicated polynomial depending on earlier calculations and
δ0(τ) is as in (5.6). One way to solve (5.7) is to bound the degree of the polynomial
p(δ) and solve the corresponding linear system.

Note that a difference equation of the form (5.7) need not have a polynomial
solution in general. Conjecture 5.5 is equivalent to all recursions (5.7) appearing in
Algorithm 3 to have a polynomial solution.

As in Section 3 (Remark 3.8), Algorithm 3 can be improved significantly by sum-
ming the template polynomials P (Γ, k) for templates Γ with fixed

(
kmin(Γ), l(Γ), ε(Γ)

)
in advance. Algorithm 3 has been implemented in Maple. Once the templates are
known the bottleneck of the algorithm is the initial value computation which, with
an improved implementation, should be faster than the template enumeration. Hence
we expect Algorithm 3 to compute the first 14 terms of Nδ(d) in reasonable time.

Appendix A. Node polynomials for δ ≤ 14

An explicit list of Nδ(d), for δ ≤ 14, is as below. These polynomials are given
implicitly in Theorem 3.1. For δ ≤ 8 this agrees with [9, Theorem 3.1]. For δ ≤ 14
this coincides with the conjectural (implicit) formulas of [8, Remark 2.5].

N0(d) = 1,

N1(d) = 3(d− 1)2,

N2(d) =
3
2
(d− 1)(d− 2)(3d2 − 3d− 11),

N3(d) =
9
2
d6 − 27d5 +

9
2
d4 +

423
2

d3 − 229d2 − 829
2

d + 525,

N4(d) =
27
8

d8 − 27d7 +
1809

4
d5 − 642d4 − 2529d3 +

37881
8

d2 +
18057

4
d− 8865,

N5(d) =
81
40

d10 − 81
4

d9 − 27
8

d8 +
2349

4
d7 − 1044d6 − 127071

20
d5 +

128859
8

d4

+
59097

2
d3 − 3528381

40
d2 − 946929

20
d + 153513,

N6(d) =
81
80

d12 − 243
20

d11 − 81
20

d10 +
8667
16

d9 − 9297
8

d8 − 47727
5

d7 +
2458629

80
d6

+
3243249

40
d5 − 6577679

20
d4 − 25387481

80
d3 +

6352577
4

d2

+
8290623

20
d− 2699706,

N7(d) =
243
560

d14 − 243
40

d13 − 243
80

d12 +
30861

80
d11 − 38853

40
d10 − 802143

80
d9

+
3140127

80
d8 +

18650493
140

d7 − 54903831
80

d6 − 72723369
80

d5 +
124680069

20
d4

+
213537633

80
d3 − 3949576431

140
d2 − 188754021

140
d + 48016791,

N8(d) =
729
4480

d16 − 729
280

d15 − 243
140

d14 +
35721
160

d13 − 25839
40

d12 − 320841
40

d11

+
11847087

320
d10 +

170823033
1120

d9 − 6685218
7

d8 − 1758652263
1120

d7
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+
1102682031

80
d6 +

59797545
8

d5 − 510928080111
4480

d4 − 3283674393
1120

d3

+
558215113803

1120
d2 − 3722027733

56
d− 861732459,

N9(d) =
243
4480

d18 − 2187
2240

d17 − 729
896

d16 +
121743
1120

d15 − 99549
280

d14 − 824823
160

d13

+
8776593

320
d12 +

74122857
560

d11 − 2188424421
2240

d10 − 132610923
70

d9

+
11404136871

560
d8 +

2852923401
224

d7 − 3523392270287
13440

d6 +
4109675615

448
d5

+
261844582229

128
d4 − 2156232149611

3360
d3 − 29528525065861

3360
d2

+
438722045999

168
d + 15580950065,

N10(d) =
729

44800
d20 − 729

2240
d19 − 729

2240
d18 +

408969
8960

d17 − 746253
4480

d16 − 1932579
700

d15

+
10649961

640
d14 +

205722099
2240

d13 − 4375229931
5600

d12 − 38815692777
22400

d11

+
30958937073

1400
d10 +

3413568339
224

d9 − 3624162885799
8960

d8 +
134470136581

2800
d7

+
27023302169081

5600
d6 − 22514488581251

8960
d5 − 811909836973903

22400
d4

+
253124357071961

11200
d3 +

867510616107447
5600

d2

− 2800250331071
40

d− 283516631436,

N11(d) =
2187

492800
d22 − 2187

22400
d21 − 729

6400
d20 +

150903
8960

d19 − 303993
4480

d18 − 56670273
44800

d17

+
47717667

5600
d16 +

295979589
5600

d15 − 11410430877
22400

d14 − 4051907631
3200

d13

+
52491198663

2800
d12 +

3418059518271
246400

d11 − 20587006282467
44800

d10

+
2236636275459

22400
d9 +

49175916627959
6400

d8 − 1464110674563
256

d7

− 1946239824069277
22400

d6 +
3767687640687823

44800
d5 +

14264414890838423
22400

d4

− 940418544772283
1600

d3 − 168280746183263029
61600

d2

+
5073050867636909

3080
d + 5187507215325,

N12(d) =
2187

1971200
d24 − 6561

246400
d23 − 2187

61600
d22 +

496449
89600

d21 − 136809
5600

d20

− 1618623
3200

d19 +
674946837

179200
d18 +

2321658693
89600

d17 − 893195181
3200

d16

− 34334301951
44800

d15 +
289702847403

22400
d14 +

1245724147341
123200

d13

− 803786361621603
1971200

d12 +
65497548165237

492800
d11 +

16192295343681
1792

d10
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− 792669234543351
89600

d9 − 9506773589164709
67200

d8 +
6296062244021929

33600
d7

+
11029935159768347

7168
d6 − 582428855393100577

268800
d5

− 5477484616918678589
492800

d4 +
10067756533588172119

739200
d3

+
4454424013895459501

92400
d2 − 111952943233924509

3080
d− 95376705265437,

N13(d) =
6561

25625600
d26 − 6561

985600
d25 − 19683

1971200
d24 +

1620567
985600

d23 − 88209
11200

d22

− 3212703
17920

d21 +
262066023

179200
d20 +

494726373
44800

d19 − 673360047
5120

d18

− 35350103511
89600

d17 +
20952637821

2800
d16 +

3013479294723
492800

d15

− 580214902388013
1971200

d14 +
1666286215401123

12812800
d13 +

16384163286402207
1971200

d12

− 909876952033137
89600

d11 − 7649416285706767
44800

d10 +
25855007471662161

89600
d9

+
65085797443981191

25600
d8 − 108443195356282427

22400
d7

− 52991400162927629917
1971200

d6 +
1976324604711031517

39424
d5

+
13580753080243105219

70400
d4 − 73274705967431063281

246400
d3

− 68173290776099374391
80080

d2 +
2813974748454890667

3640
d + 1761130218801033,

N14(d) =
19683

358758400
d28 − 19683

12812800
d27 − 6561

2562560
d26 +

1751787
3942400

d25 − 4529277
1971200

d24

− 562059
9856

d23 +
398785599

788480
d22 +

5214288411
1254400

d21 − 4860008991
89600

d20

− 63174295089
358400

d19 +
332872084467

89600
d18 +

3103879378581
985600

d17

− 4913807521304691
27596800

d16 +
899178800016807

8968960
d15 +

279086438050359453
44844800

d14

− 468967272863997483
51251200

d13 − 318443311640108577
1971200

d12

+
328351365725506869

985600
d11 +

1120586814080571923
358400

d10

− 9448861028448843949
1254400

d9 − 30880785216736406143
689920

d8

+
444525313669622586903

3942400
d7 +

11429038221675466251
24640

d6

− 269709254062572016617
246400

d5 − 74660630664748878665353
22422400

d4

+
140531359469510983018159

22422400
d3 +

16863931195154225977601
1121120

d2

− 64314454486825349085
4004

d− 32644422296329680.
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Appendix B. Small Severi degrees

Below we list the Severi degrees Nd,δ for 0 ≤ δ ≤ 14 and 1 ≤ d ≤ 13, which were
obtained by Algorithm 1 (also see Remark 3.10). Together with the node polynomials
of Appendix A, this is a full description of all Severi degrees Nd,δ for δ ≤ 14, see
Theorem 1.3. The solid line segments indicate the polynomial threshold d∗(δ) of
Nd,δ. The dashed line segments illustrate the threshold of our Theorem 1.3. The
Severi degrees Nd,δ in italic agree with the Gromov–Witten invariants N

d,
(d−1)(d−2)

2 −δ
,

as for d ≥ δ + 2, every plane degree d curve with δ nodes is irreducible.

d
=

1
2

3
4

5
6

7
8

9
N

d
,0

1
1

1
1

1
1

1
1

1
N

d
,1

0
3

12
27

48
75

10
8

14
7

19
2

N
d
,2

0
0

21
22

5
88

2
23

70
51

75
98

91
17

22
0

N
d
,3

0
0

15
67

5
79

15
41

31
0

14
53

83
40

41
85

95
91

15
N

d
,4

0
0

0
66

6
36

97
5

43
75

17
26

67
37

5
11

22
51

45
37

20
69

36
N

d
,5

0
0

0
37

8
90

02
7

29
31

83
1

33
72

03
54

22
47

10
11

9
10

68
79

79
61

N
d
,6

0
0

0
10

5
10

97
81

12
59

79
00

30
22

80
96

3
33

56
77

35
32

23
59

93
55

99
1

N
d
,7

0
0

0
0

65
94

9
34

60
27

05
19

50
17

99
22

38
23

26
04

47
3

41
04

53
32

06
98

N
d
,8

0
0

0
0

26
13

6
59

80
98

60
91

08
23

80
23

33
65

07
12

88
20

57
17

86
32

28
99

5
N

d
,9

0
0

0
0

69
30

63
33

88
81

30
77

75
42

45
0

23
07

15
63

26
49

0
64

54
11

25
39

33
37

N
d
,1

0
0

0
0

0
94

5
40

04
78

88
74

80
88

24
09

4
12

37
20

36
67

57
23

59
50

34
12

68
65

81
6

N
d
,1

1
0

0
0

0
0

15
58

00
20

12
94

29
70

81
47

51
94

15
32

80
49

12
45

04
73

55
27

18
54

81
N

d
,1

2
0

0
0

0
0

43
61

72
1

15
70

12
93

42
83

17
04

60
52

91
36

61
4

28
09

62
48

18
38

44
55

7
N

d
,1

3
0

0
0

0
0

91
89

18
13

10
24

29
06

71
43

56
34

87
81

05
75

0
14

46
07

32
14

88
66

61
50

N
d
,1

4
0

0
0

0
0

13
51

35
73

77
84

95
22

0
86

18
93

38
90

07
28

0
61

43
31

90
84

73
79

56
59

d
=

1
0

1
1

1
2

1
3

N
d
,0

1
1

1
1

N
d
,1

2
4
3

3
0
0

3
6
3

4
3
2

N
d
,2

2
7
9
7
2

4
3
0
6
5

6
3
5
2
5

9
0
4
8
6

N
d
,3

2
0
2
9
9
8
0

3
9
3
9
2
9
5

7
1
3
9
8
2
3

1
2
2
4
5
3
5
5

N
d
,4

1
0
4
2
8
5
7
9
0

2
5
7
9
9
1
0
4
2

5
7
9
3
0
8
2
2
0

1
2
0
3
7
5
6
1
6
5

N
d
,5

4
0
3
7
1
2
6
3
4
6

1
2
8
8
6
5
8
5
2
3
6

3
6
1
6
1
7
6
3
1
2
0

9
1
6
2
9
6
8
3
2
7
1

N
d
,6

1
2
2
4
1
6
0
6
2
0
1
8

5
1
0
6
8
1
3
0
1
5
5
0

1
8
0
7
3
0
8
0
7
5
1
1
1

5
6
2
2
2
4
6
6
7
8
7
4
1

N
d
,7

2
9
8
3
9
2
7
0
2
8
7
8
7

1
6
4
9
1
2
7
2
5
1
7
4
6
5

7
4
3
1
4
6
6
4
9
1
7
7
2
2

2
8
5
8
2
6
6
8
9
0
1
9
3
9
5

N
d
,8

5
9
5
4
6
8
6
5
6
4
7
1
5
1

4
4
2
3
4
2
7
0
7
2
3
3
4
0
0

2
5
6
3
8
9
3
1
4
6
6
8
7
3
0
1

1
2
2
8
2
0
2
5
6
5
3
7
6
9
6
3
5

N
d
,9

9
8
5
8
7
5
0
3
4
9
6
1
2
6
0

9
9
9
6
1
0
4
5
5
3
4
4
3
7
6
6

7
5
3
1
8
5
0
3
1
9
1
5
2
3
7
1
5

4
5
2
8
3
7
8
6
3
6
8
9
4
2
8
0
4
0

N
d
,1

0
1
3
6
7
5
7
4
8
3
1
7
1
5
1
3
8
2

1
9
2
3
8
2
2
2
6
8
0
5
4
6
9
7
0
7

1
9
0
5
5
2
0
4
2
9
2
8
7
2
9
5
6
2
3

1
4
4
9
4
3
5
6
1
3
9
3
1
7
7
8
7
7
7
3

N
d
,1

1
1
6
0
1
1
6
0
0
0
5
4
4
4
3
7
8
4
9

3
1
7
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7
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4
9
8
3
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0
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1
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1
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2
0
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7
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0
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1
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2
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4
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5
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d
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1
5
9
0
8
9
5
2
2
9
8
8
9
3
2
3
0
3
4
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4
3
3
3
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1
5
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3
4
2
0
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2
1
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0
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0
1
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0
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1
0
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2
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0
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0
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1
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d
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3
4
6
7
9
2
7
4
6
4
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6
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0
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1
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1

1
3
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1
7
5
2
1
1
4
7
5
2
7
6
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6
1

2
2
1
4
0
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4
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4
9
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9
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0
0
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3
7
5
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d
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9
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4
1
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4
9
9
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0
4
9
4
1
0
6
7
5

2
0
4
5
0
7
9
6
3
6
3
5
2
5
4
5
3
1
9
7
2
6
5
0

4
3
4
8
3
3
3
3
9
1
4
7
5
3
1
0
3
1
4
3
2
5
8
7
5



COMPUTING NODE POLYNOMIALS FOR PLANE CURVES 643

Acknowledgments

I am thankful to Sergey Fomin for suggesting this problem and fruitful guidance. I also
thank the anonymous referee, Erwan Brugallé, Grigory Mikhalkin and Gregg Musiker
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