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FABER POLYNOMIALS AND POINCARÉ SERIES

Ben Kane

Abstract. In this paper we consider weakly holomorphic modular forms (i.e., those
meromorphic modular forms for which poles only possibly occur at the cusps) of weight
2− k ∈ 2Z for the full modular group SL2(Z). The space has a distinguished set of gen-
erators f2−k,m. Such weakly holomorphic modular forms have been classified in terms
of finitely many Eisenstein series, the unique weight 12 newform Δ, and certain Faber
polynomials in the modular invariant j(z), the Hauptmodul for SL2(Z). We employ
the theory of harmonic weak Maass forms and (non-holomorphic) Maass–Poincaré series
in order to obtain the asymptotic growth of the coefficients of these Faber polynomials.
Along the way, we obtain an asymptotic formula for the partial derivatives of the Maass–
Poincaré series with respect to y as well as extending an asymptotic for the growth of
the �th repeated integral of the Gauss error function at x to include � ∈ R and a wider
range of x.

1. Introduction

Let Sk be the space of weight k ∈ 2Z cusp forms for the full modular group
SL2(Z). The first case where Sk is non-empty is k = 12. Let Δ(z) ∈ S12 be the
unique normalized weight 12 cusp form (newform) for the full modular group SL2(Z).
Following Ramanujan, we denote the Fourier coefficients of Δ by τ(n) and refer to
τ : N → Z as Ramanujan’s tau function, so that

Δ(z) =
∑

n≥1

τ(n)qn,

where q = e2πiz. Since Δ(z) does not vanish on the upper half plane, inverting Δ leads
naturally to the study of weakly holomorphic modular forms, that is, those modular
forms which are holomorphic on the upper half plane but which are only meromorphic
at the (unique) cusp ∞. We denote the space of weight 2 − k weakly holomorphic
modular forms on SL2(Z) by M !

2−k. For k ≥ 2, let d := dk denote one less than the
dimension of the space of holomorphic modular forms, so that dk = dim (Sk) when
k �= 2 and d2 = −1. There is a distinguished set of generators f2−k,m ∈ M !

2−k (m ∈ Z)
which satisfy

(1.1) f2−k,m = q−m + O
(
q−d

)
,

and moreover f2−k,m is unique among weakly holomorphic modular forms satisfying
(1.1). The f2−k,m are natural in a number of ways. When k = 2, this set plays
a central role in the study of singular moduli [20] and is closely knit to the Hecke
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operators [2]. By work of Duke and Jenkins [7], there is also a duality which relates
the nth Fourier coefficient of f2−k,m to the mth Fourier coefficient of fk,n, paralleling
the duality in the weight 3

2 case famously obtained by Zagier [20] while giving a new
proof of Borcherds’ identity. In the case k = 2, f0,m have also been shown to satisfy
interesting congruences under the U(p)-operator. For example, Lehner [15] proved
that f0,1|U(p) is congruent to a constant (mod p) whenever p ≤ 11, while Serre [18]
has shown that

f0,1|U(13) ≡ −Δ(z) (mod 13)

and that f0,m|U(p) is never congruent to a constant (mod p) whenever p ≥ 13.
Elkies et al. [8] have recently considered the more general question of whether linear
combinations of f0,m|U(p) can be congruent (mod p) to a linear combination of other
f0,m′ by relating this question to the study of supersingular j-invariants.

An inspection of the set
{
f2−k,m

∣∣m > d
}

leads one naturally to a study of general-
ized Faber polynomials, first defined when k = 2 by Faber in [9] and generalized in [10],
which in the case k = 2 are related to the denominator formula for the Monster Lie
algebra. Indeed, these weakly holomorphic modular forms are explicitly constructed
by Duke and Jenkins [7] as

(1.2) f2−k,m(z) :=

{
Ek′(z)Δ(z)−d−1Fm(j(z)) if m > d,

0 if m ≤ d,

where k′ ∈ {0, 4, 6, 8, 10, 14} with k′ ≡ 2 − k (mod 12), Ek′ is the Eisenstein series
of weight k′, and Fm is a generalized Faber polynomial of degree m − d − 1 chosen
recursively in terms of f2−k,m′ with m′ < m to cancel the associated negative powers
of q. Since j(z), Δ(z)−1, and Ek′(z) all have integral coefficients, one sees inductively
that the coefficients of the Faber polynomial are all integers. Denote F̃m(x) := Fm(x+
1728), so that F̃m(x − 1728) = Fm(x). Then in particular

F̃m

(
E2

6

Δ
(z)

)
= Fm(j(z)).

We denote the rth coefficient of the polynomial F̃m by cm,r. Our goal will be to
determine the asymptotic growth of the coefficients cm,r in terms of m and r.

In order to establish asymptotics for these coefficients, we will investigate asymp-
totic growth for derivatives of certain Poincaré series. For an integer m and a function
ϕm : R

+ → C satisfying ϕm(y) = O (yα) for some α ∈ R as y → 0, the Poincaré series
P(m, k, ϕm; z) is defined by

P(m, k, ϕm; z) :=
∑

A∈Γ∞\SL2(Z)

ϕ∗
m|kA(z),

where

ϕ∗
m(z) := ϕm(y)e2πimx

and

f |k
(

a b
c d

)
(z) = (cz + d)−k

f

(
az + b

cz + d

)
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is the usual weight k slashing operator. Choosing ϕm(y) = e−2πmy (so that ϕ∗
m(z) =

qm) for k ≥ 2 leads to the classical family of holomorphic Poincaré series

P (m, k; z) := P(m, k, e(imy); z),

while choosing
ϕm(y) := M k

2
(4πmy)

with
Ms(y) := |y|− k

2 M(1− k
2 )sgn(y), s− 1

2
(|y|),

where Mν, μ(z) is the usual M -Whittaker function, leads to the Maass–Poincaré series
(see, e.g., [11])

F (m, 2 − k; z) := P(−m, 2 − k, ϕ−m; z).
The Maass–Poincaré series are what are known as harmonic weak Maass forms (see
[6]), which satisfy the same modularity as modular forms, but where holomorphicity
is replaced by the real analytic smoothness condition that they are annihilated by the
weight (2 − k)th hyperbolic Laplacian

Δ2−k := −y2

(
∂2

∂x2
+

∂2

∂y2

)
+ (2 − k)iy

(
∂

∂x
+ i

∂

∂y

)
.

The Maass–Poincaré series (in a more general setting where the weight can be a
half integer and SL2(Z) may be replaced with a congruence subgroup) have played
a prominent role in recent years. For example, Bringmann and Ono have shown
that their coefficients satisfy a duality similar to that given by Zagier [4], they were
used to determine exact formulas for Ramanujan’s mock theta function f(q) (which
is the “holomorphic part” of a certain Maass–Poincaré series), proving the Andrews–
Dragonette conjecture [3], and have been used to give lifts from holomorphic cusp
forms to harmonic weak Maass forms [5].

Throughout this paper m will denote a positive integer and k will be taken to be
at least 2. The bounds on cm,r will be established by first determining the growth
of F (r)(m, 2 − k; i), where for a function f(z) with z ∈ H, we will abuse notation to
denote the partial derivative with respect to y by f ′(z) and more generally we will
denote the rth derivative of f with respect to y by f (r)(z) := ∂rf

∂yr (z). Our main result
will be to show an asymptotic relationship between cm,r and

∣∣F (ar)(m, 2 − k; i)
∣∣ for

some ar ∈ N depending on r.

Theorem 1.1. Suppose 2 < k ∈ 2Z, m ∈ N, and 0 ≤ r ≤ m. Then there exist
constants C1 depending only on k and a universal constant C2 such that

cm,r ∼ 1
C1Cr

2

×

⎧
⎪⎨

⎪⎩

|F (2r)(m,2−k;i)|
(2r)! if k ≡ 2 (mod 4),

|F (2r+1)(m,2−k;i)|
(2r+1)! if k ≡ 0 (mod 4).

In order to obtain an asymptotic for cm,r in terms of simple functions of m and r
(elementary functions in either variable when the other is fixed), we next determine
an asymptotic for

∣∣F (ar)(m, 2 − k; i)
∣∣ with ar = 2r or 2r + 1. In order to write down

our results, we define

(1.3) X(r, m) :=
1
2

(
1 +

√
1 +

4r − 2k + 3
2πm

)
.
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Note that for r ≤ m one has 1 ≤ X(r, m) ≤ X(m, m) ≈ 1.139652204 for m � k.

Theorem 1.2. Suppose that m is sufficiently large and k ≥ 2. Then F (m, 2 − k; z)
has at most one root on the line iy, y ∈ R. This root occurs precisely at z = i if and
only if k ≡ 0 (mod 4) and in that case it is a simple root. Moreover, for r ≤ m,

∣∣∣F (2r)(m, 2 − k; i)
∣∣∣ ∼ Γ(k)

(
1 + C(2r, m)X(2r, m)2r− k−1

2 + 1
4

· exp
(−2πm(X(2r, m) − 1)2

))
(2πm)2r e2πm(1.4)

in the case that k ≡ 2 (mod 4), where

(1.5) C(r, m) :=
1√

X(r, m) + 1 − X(r, m)−1
= O(1),

while
∣∣∣F (2r+1)(m, 2 − k; i)

∣∣∣ ∼ Γ(k)
(

1 + C(2r + 1, m)X(2r + 1, m)2r+1− k−1
2 + 1

4

· exp
(−2πm(X(2r + 1, m) − 1)2

))
(2πm)2r+1e2πm(1.6)

in the case that k ≡ 0 (mod 4).

Remarks. (1) It is worth noting that while C(r, m) is not a constant, the fact that
X(r, m) is bounded from above and below by a constant means that C(r, m) also has
this property. Indeed, for r = o(m) one has C(r, m) ∼ 1. Moreover, in the case that
r = o (

√
m), the asymptotic in (1.4) rather pleasantly becomes

∣∣∣F (2r)(m, 2 − k; i)
∣∣∣ ∼ 2Γ(k) (2πm)2r e2πm,

while, under the same restrictions, (1.6) becomes
∣∣∣F (2r+1)(m, 2 − k; i)

∣∣∣ ∼ 2Γ(k) (2πm)2r+1 e2πm.

(2) Duke and Jenkins [7] have shown that for m ≥ 2d all of the zeros of f2−k,m(z)
lie on the unit circle. It is not too difficult to show that F (m, 2 − k; z) grows asymp-
totically (in m) like f2−k,m(z), and hence it does not come as a surprise that there
are no zeros on the line z = iy for sufficiently large m. However, they show explicit
examples where there exists a zero outside of the unit circle. It might be interesting
to investigate whether such a zero is ever contained on the line z = iy and whether
the condition of m sufficiently large is necessary.

Theorem 1.2 leads to the following more precise version of Theorem 1.1 involving
the growth of the coefficients cm,r of the Faber polynomial. To describe our results,
we first define the constants (independent of m and r)

C1 :=

⎧
⎨

⎩

Ek′ (i)
Δd+1(i)

if k ≡ 2 (mod 4),
(Ek′ )′(i)
Δd+1(i)

if k ≡ 0 (mod 4),

and

C2 :=
(E′

6(i))
2

Δ(i)
≈ 585.200048.
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Remark. While C2 is also independent of k, C1 depends on k, but in a very pre-
dictable way, since it only depends on

Δ(i)−d ≈ (536.4954009)d

and k′, which only depends on k (mod 12).

Theorem 1.3. Assume 2 < k ∈ 2Z. Whenever k ≡ 2 (mod 4), for 0 ≤ r ≤ m − 2
one has that

cm,r ∼
(
1 + C(2r, m)X(2r, m)2r− k−1

2 + 1
4 exp

(−2πm(X(2r, m) − 1)2
)) (2πm)2r e2πm

(2r)!C1Cr
2

,

(1.7)

while whenever k ≡ 0 (mod 4), one has

cm,r ∼
(

1 + C(2r + 1, m)X(2r + 1, m)2r+1− k−1
2 + 1

4

· exp
(−2πm(X(2r + 1, m) − 1)2

)) (2πm)2r+1e2πm

(2r + 1)!C1Cr
2

.(1.8)

Remark. In the case that r = o (
√

m) we note again that this becomes

cm,r ∼ 2

(
(2πm)2r e2πm

(2r)!C1Cr
2

)

whenever k ≡ 2 (mod 4) and

cm,r ∼ 2
(

(2πm)2r+1e2πm

(2r + 1)!C1Cr
2

)

whenever k ≡ 0 (mod 4).

The paper is organized as follows. In Section 2, we recall the Fourier expansion of
the Maass–Poincaré series, due to Bringmann and Ono [5], and establish an equality
for the coefficient cm,0 in terms of a certain linear combination of Maass–Poincaré
series F (n, 2 − k; i) or their derivatives, leading naturally to the consideration of
derivatives of Poincaré series in determining the growth of the coefficients of the
polynomial. In Section 3, we prove Theorem 1.2. Along the way, we prove a lemma
which gives an asymptotic for the nth repeated integral (and, more generally, the
�th repeated integral, where � can be taken to be any real number, following the
definition given in fractional calculus) of the Gauss error function, which are related
to the parabolic cylinder functions (see [16, p. 76]) and have been studied going
back to Hartree [13] due to their role in physics and chemistry. In Section 4, we prove
Theorem 1.3 by showing that the constant cm,r times (2r)!C1C

r
2 (resp. (2r+1)!C1C

r
2)

is asymptotically equal to F (2r)(m, 2−k; i) (resp. F (2r+1)(m, 2−k; i)) whenever k ≡ 2
(mod 4) (resp. k ≡ 0 (mod 4)) and then invoking Theorem 1.2.

2. Evaluating the constant term

The goal of this section will be to determine a formula for the constant term of the
Faber polynomial in terms of the derivatives of the Poincaré series.
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Proposition 2.1. For 2 < k ∈ 2Z, there exist constants b1, . . . , bd ∈ Z such that

(2.1) cm,0 =
1

Γ(k)

(
F (m, 2 − k; i)

C1
−

d∑

n=1

bn
F (n, 2 − k; i)

C1

)
.

In particular, for k = 12 one has

(2.2) cm,0 =
1

11!

(
F ′(m,−10; i)Δ2(i)

(E14)
′ (i)

− τ(m)
F ′(1,−10; i)Δ2(i)

(E14)
′ (i)

)
.

Since cm,0, b1, . . . , bd ∈ Z, the following corollary about the rank of the Z-module
generated by F (m, 2 − k; i) when k ≡ 2 (mod 4) and Fy(m, 2 − k; i) when k ≡ 0
(mod 4) follows immediately.

Corollary 2.2. Suppose that k ≥ 2. Then the Z-module generated by

S :=

{{
F (m, 2 − k; i)

∣∣m ∈ N
}

k ≡ 2 (mod 4),{
F ′(m, 2 − k; i)

∣∣m ∈ N
}

k ≡ 0 (mod 4)

has rank at most d + 1.

Our argument will go through the Fourier expansion of the Poincaré series. Bring-
mann and Ono [5] have shown that F (m, 2−k; z) has the following Fourier expansion.

Proposition 2.3 (Bringmann–Ono [5]).

F (m, 2 − k; z) = (1 − k)q−m (Γ(k − 1, 4πmy) − Γ(k − 1)) +
∑

n∈Z

cy(n)qn.

For n �= 0

cy(n) = 2πik
∣∣∣
m

n

∣∣∣
k−1
2 ∑

c>0

K2−k(−m, n, c)
c

×
⎧
⎨

⎩
(1 − k)Γ (k − 1, |4πny|) Jk−1

(
4π
c

√|mn|
)

, n < 0,

−Γ(k)Ik−1

(
4π
c

√|mn|
)

, n > 0

and
cy(0) = −(2πi)kmk−1

∑

c>0

K2−k(−m, 0, c)
ck

.

We begin with the proof of Proposition 2.1.

Proof of Proposition 2.1. Consider the harmonic weak Maass form

f2−k,m(z) − F (m, 2 − k; z).

Let the principal part of f2−k,m(z) be given precisely by q−m +
∑d

n=1 bnq−n. Note
that since j(z), Δ−1(z), and Ek′(z) all have integer coefficients, all coefficients of
f2−k,m(z) are integers, and hence in particular bn ∈ Z. Recall that a harmonic weak
Maass form which maps to a cusp form under the operator ξ2−k := 2iy2−k ∂

∂z whose
principal part is constant must be zero (e.g., see Lemma 7.5 of [17]). Thus

(2.3) f2−k,m(z) =
1

Γ(k)

(
F (m, 2 − k; z) +

d∑

n=1

bnF (n, 2 − k; z)

)
,
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since the difference has no principal part and maps to a cusp form. We then use the
fact that

(2.4) f2−k,m(z) = F̃m

(
E2

6(z)
Δ(z)

)(
Ek′(z)

Δd+1(z)

)
=

Ek′(z)
Δd+1(z)

m−d−1∑

n=0

cm,n

(
E2

6(z)
Δ(z)

)n

.

Since E6(i) = 0 and Δ has no roots in the upper half plane, it follows that

lim
z→i

(
E2

6(z)
Δ(z)

)n

= 0

unless n = 0. We then multiply on both sides of equation (2.3) by Δd+1(z)
Ek′ (z) and take

the limit z → i, giving the first statement.
In the case k = 12, by the work of Bringmann and Ono [5] we have

ξ2−k (F (m, 2 − k; z)) = (k − 1) (4πm)k−1
P (m, k; z).

Since the space S12 is one dimensional, one has P (m, k; z) = cmΔ. One obtains
Γ(11)

(4πm)11 times the mth Fourier coefficient of Δ by integrating against P (m, k; z) (cf.
[14], [p. 359]), so that

Γ(11)
(4πm)11

τ(m) = 〈Δ, P (m, k; z)〉 = cm‖Δ‖2.

Hence P (m,k;z)
P (1,k;z) = cm

c1
= τ(m)

m11 . Therefore, it follows that

ξ2−k (F (m, 2 − k; z) − τ(m)F (1, 2 − k; z)) = 0,

and hence

f2−k,m =
1

11!
(F (m, 2 − k; z) − τ(m)F (1, 2 − k; z)) ,

so that b1 = τ(m). �

3. Derivatives of Poincaré series

We will first show the asymptotic growth for F (2r+δ) (m, 2 − k; i), where δ = 0 if
2 − k ≡ 0 (mod 4) and δ = 1 if 2 − k ≡ 2 (mod 4). Our argument will be based on
the Fourier expansion of the Poincaré series.

The following technical lemma will be helpful in establishing Theorem 1.2 and
includes bounds for the nth iterated integral of the error function whenever � =
n is taken to be an integer, generalizing work of Gautschi [12], which may be of
independent interest within chemistry and physics due to the emergence of these
special functions in those fields.

Lemma 3.1. Let 0 ≤ A, B ∈ R and � = �(A) ∈ R be given such that if � < 0 then �
is a fixed constant with respect to A and B is a fixed constant independent of A and
�. We denote L := 2� + 1 and

X0 := X0(�, A, B) :=
1
2

(
1 +

√
1 +

2L

A2B

)

for brevity.
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For L < BA2, one has the asymptotic

I := I�,A,B :=
∫ ∞

0

x�e−B(
√

x−A)2 dx

∼ 2
√

π√
B

· (AX0)
L

√
1 + X0 − X−1

0

exp

⎛

⎝−A2B

4

(
−1 +

√
1 +

2L

A2B

)2
⎞

⎠(3.1)

as A → ∞.

Proof. We first shift x → (x + A)2 to rewrite

(3.2) I = 2
∫ ∞

−A

(x + A)2�+1e−Bx2
dx.

Up to a normalization, this is the (2� + 1)th integral of the Gauss error function

(3.3) erf(y) :=
2√
π

∫ y

0

e−x2
dx

evaluated at −A. Due to the appearance of these integrals in chemistry and physics,
asymptotics have been extensively studied when 2� + 1 ∈ N. Asymptotics in the case
−A < 0 were given by Gautschi [12] when � = O(A).

First assume that � = O
(
A2B

)
. We next pull AL out of the integral and then

make the change of variables x → x√
B

+ a
2AB for

(3.4) a := A2B

(
−1 +

√
1 +

2L

A2B

)
.

This gives

(3.5) I = 2
(

AL

√
B

)∫ ∞

−A
√

B− a
2AB

(
1 +

x + a
2A

√
B

A
√

B

)L

exp

(
−
(

x +
a

2A
√

B

)2
)

dx.

We now use the equation
(

1 +
1

f(A)

)g(A)

= exp
(
g(A) ln

(
1 + f(A)−1

)) ∼ exp

( ∞∑

n=1

(−1)n+1 g(A)
nf(A)n

)
,

(3.6)

valid whenever f(A) ≥ 1 for A sufficiently large, with g(A) = L and f(A) = A
√

B
x+ a

2A
√

B

.

Here the condition for f(A) is satisfied because L < A2B and hence

a

A2B
= −1 +

√
1 +

2L

A2B
<

√
3 − 1 < 1.

We now expand f(A)−n using the binomial theorem. The nth term of the sum
becomes

(−1)n+1

n

n∑

j=0

(
n

j

)
xn−jLaj

2j
(
A
√

B
)n+j

.
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When a = o
(
A
√

B
)
, then this sum is clearly asymptotically o(1) for all n ≥ 1.

Otherwise the asymptotic is increasing as a function of j, and for j < n− 2 the terms
are bounded by

O

⎛

⎜⎝
an−3L

(
A
√

B
)2n−3

⎞

⎟⎠.

Since a = O(A2B) and L = O(A2B), this becomes

O

((
A
√

B
)−1

)
= o(1).

Therefore, setting Y := a
2A2B , the exponential in (3.6) is asymptotically equal to

exp

[(
L

a

∞∑

n=2

(−1)n−1

n
2
(

n

2

)
Y n−1

)
x2 −

(
2LA

√
B

a

∞∑

n=1

(−Y )n

)
x

+L

∞∑

n=1

(−1)n+1

n
Y n

]

= exp
(

L

a

(
1

(1 + Y )2
− 1

)
x2 − 2L

a

(
A
√

B
)( 1

(1 + Y )
− 1

)
x + L ln(1 + Y )

)
,

(3.7)

since
2(n

2)
n = n− 1 and the first sum is then merely the power series expansion of the

derivative of the geometric series with the n = 1 term missing. We now look at the
coefficient in front of x in the integrand of (3.5). This equals

2L

a

(
A
√

B
)( Y

1 + Y

)
− a

A
√

B

=
A
√

B

a

⎛

⎝2L

⎛

⎝
−1 +

√
1 + 2L

A2B

1 +
√

1 + 2L
A2B

⎞

⎠− A2B

(
−1 +

√
1 +

2L

A2B

)2
⎞

⎠

=
A
√

B

a

⎛

⎜⎝2L

⎛

⎜⎝

(
−1 +

√
1 + 2L

A2B

)2

−1 +
(
1 + 2L

A2B

)

⎞

⎟⎠− A2B

(
−1 +

√
1 +

2L

A2B

)2
⎞

⎟⎠ = 0.

We now determine the coefficient in front of x2. This equals

L

a

(
1

(1 + Y )2
− 1

)
− 1.

Using the fact that (1 + Y )a = L and X0 = 1 + Y , this then equals

X−1
0 − X0 − 1 = − (

1 + X0 − X−1
0

)
.

Noting that 1 � X0 � 1, we may consider the statement of the lemma for convergent
subsequences where the limit limA→∞ X0(�, A, B) exists. Hence the coefficient of x2

converges to a fixed value, and the fact that � < 0 implies that � is a fixed constant
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shows that the coefficient of x2 converges to a constant less than or equal to −1. By
first pulling the terms

(3.8) (1 + Y )L exp
(
− a2

4A2B

)

from the constant coefficients of the integrand, we can hence use the dominated con-
vergence theorem (considering the integral over the entire real line where the function
is zero outside of the support) and the value of the error function over the whole real
line to conclude that

I ∼ 2AL

√
B

XL
0 exp

(
− a2

4A2B

)
·
√

π

1 + X0 − X−1
0

.

After plugging in definition (3.4) of a, one sees that this is precisely equation (3.1). �

Proof of Theorem 1.2. We will separate into the cases where k ≡ 2 (mod 4) and k ≡ 0
(mod 4). We will only show the k ≡ 2 (mod 4) case here, but the k ≡ 0 (mod 4)
case is entirely analogous. In this case, we plug z = iy into the expansion given for
the Fourier coefficients in Proposition 2.3. We begin with the expansion given in
Proposition 2.3 and directly differentiate 2r times with respect to y.

For every n > 1 we separate the c = 1 term from the sum given in cy(n) and note
that K2−k(−m, n, 1) = 1 to obtain

F (2r)(m, 2 − k; iy) =Γ(k)

(
(2πm)2r e2πmy

+
∑

n>0

2π (2πn)2r e−2πny
∣∣∣
m

n

∣∣∣
k−1
2

Ik−1

(
4π

√
mn

)
)

+ E2r(y),

where

E0(y) := (2π)kmk−1
∑

c>0

K2−k(−m, 0, c)
ck

+ (1 − k)Γ(k − 1, 4πmy)e2πmy

+ 2π(k − 1)
∑

n<0

∣∣∣
m

n

∣∣∣
k−1
2

e−2πnyΓ(k − 1,−4πny)
∑

c>0

K2−k(−m, n, c)
c

× Jk−1

(
4π

c

√
|mn|

)

+ 2πΓ(k)
∑

n>0

∣∣∣
m

n

∣∣∣
k−1
2

e−2πny
∑

c>1

K2−k(−m, n, c)
c

Ik−1

(
4π

c

√
mn

)
(3.9)

denotes the sum of all of the terms corresponding to n ≤ 0 and all of the terms with
n > 0 and c > 1, and furthermore Er(y) := E

(r)
0 (y).

To determine the asymptotic of the derivatives at z = i we plug in y = 1 and bound
Er(1). We will first show the asymptotic growth of the main terms

(3.10) (2πm)2re2πm + 2π
∑

n>0

(2πn)2re−2πn
∣∣∣
m

n

∣∣∣
k−1
2

Ik−1

(
4π

√
mn

)
,
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all of which are real and positive. The term (2πm)2re2πm clearly exhibits the growth
given in Theorem 1.2 with constant 1, and hence to show that the main terms satisfy
the given asymptotic, it suffices to show that

(3.11) 2π
∑

n>0

(2πn)2re−2πn
∣∣∣
m

n

∣∣∣
k−1
2

Ik−1

(
4π

√
mn

) ∼ (2πm)2re2πm.

Since m is large, we may use the asymptotic

(3.12) Iα(x) ∼ ex

√
2πx

to bound the I-Bessel function in each case. This shows that the terms in (3.10) are
asymptotically equal to

(3.13) (2πm)2re2πm +
1√
2

∑

n>0

(2πn)2r

(mn)
1
4

∣∣∣
m

n

∣∣∣
k−1
2

e−2πn+4π
√

mn.

Set � := 2r− k−1
2 − 1

4 . Denote the nth term of the sum in (3.13) by an(2π)2rm
k−1
2 − 1

4 .
Consider the function

(3.14) f(x) := exp
(
� ln(x) − 2πx + 4π

√
m
√

x
)
.

Set

x0 :=

⎧
⎨

⎩

(
1
2

√
m + 1

2

√
m + 2

π �
)2

if m + 2
π �

√
m ≥ 0,

1 otherwise.

One easily determines that the function f(x) is increasing as a function of x for
1 < x < x0 and decreasing for x ≥ x0. We write

f1(x) :=

⎧
⎪⎨

⎪⎩

f(1), x < 1,

f(x), 1 ≤ x ≤ x0,

f (x0) , x > x0,

and

f2(x) :=

{
f (x0) , x < x0,

f(x), x ≥ x0,

and see clearly that f1 and f2 are monotonic, with f1(n) = an for 1 �= n ≤ x0 and
f2(n) = an for n > x0. One then bounds the sum

	x0
∑

n=1

an ≤
∫ 	x0
+1

1

f1(x) dx = (�x0� + 1 − x0) f (x0) +
∫ x0

1

f(x) dx

since the left-hand side is a Riemann lower bound for the integral and the integral
from x0 to �x0� + 1 is easily computed. Meanwhile,

	x0
∑

n=1

an ≥
∫ 	x0


0

f1(x) dx = f(1) +
∫ 	x0


1

f(x) dx
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since the sum is a Riemann upper bound for this integral. Similarly, using the function
f2(x), we obtain the bound

∫ ∞

	x0
+1

f(x) dx ≤
∞∑

n=	x0
+1

f2(n) ≤ (x0 − �x0�) f (x0) +
∫ ∞

x0

f(x) dx.

Hence we obtain

f(1) − f(x0) +
∫ ∞

1

f(x) dx ≤
∑

n>0

an ≤ f (x0) +
∫ ∞

1

f(x) dx.

We will see later that f(1) and f (x0) contribute to the error. First we will give an
asymptotic for the integral

(3.15)
(2π)2r

√
2

m
k−1
2 − 1

4

∫ ∞

1

x�e−2πx+4π
√

m
√

x dx.

We rewrite the integral in (3.15) as

e2πm

∫ ∞

1

x�e−2π(√x−√
m)2

dx

and then use Lemma 3.1 with B = 2π, A =
√

m and � = 2r − k−1
2 − 1

4 to give the
asymptotic

√
2

x
�+ 1

2
0√

1 +
(

x0
m

) 1
2 −

(
m
x0

) 1
2

exp

(
−2πx0 + 2πm

√
1 +

4� + 2
A2B

)

for the integral. Plugging this into (3.15) and noting that

2πm

√
1 +

4� + 2
A2B

+ 2πm = 2π
√

m
√

x0

gives the asymptotic

(2π)2r
m

k−1
2 − 1

4

∫ ∞

1

f(x) dx ∼ (2π)2r
m

k−1
2 − 1

4 x
�+ 1

2
0√

1 +
(

x0
m

) 1
2 −

(
m
x0

) 1
2

exp
(−2πx0 + 2π

√
m
√

x0

)
.

(3.16)

We now recall definition (1.3) of X(r, m) in order to rewrite this as

(2π)2r e2πmm
k−1
2 − 1

4 · m2r− k−1
2 + 1

4 X(2r, m)2r− k−1
2 + 1

4

√
1 + X(2r, m) − X(2r, m)−1

exp
(
−2πm (X(2r, m) − 1)2

)

= (2πm)2r e2πm X(2r, m)2r− k−1
2 + 1

4

√
1 + X(2r, m) − X(2r, m)−1

exp
(
−2πm (X(2r, m) − 1)2

)
,(3.17)

as desired. We now return to the terms f(1) and f (x0). The term f(1) = e−2π+4π
√

m

clearly is an error term when compared against (3.17). When x0 �= 1 we then evaluate
the term

(3.18) f (x0) = x�
0 exp

(−2πx0 + 4π
√

m
√

x0

)
.
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Comparing with (3.16), we see that

f (x0) = O

⎛

⎜⎜⎝

√
1 +

(
x0
m

) 1
2 −

(
m
x0

) 1
2

√
x0

∫ ∞

1

x�e−2π(√x−√
m)2

dx

⎞

⎟⎟⎠.

Since m � x0 � m, one has that
√

1 +
(x0

m

) 1
2 −

(
m

x0

) 1
2

= O(1),

while
√

x0 → ∞ as m → ∞. It follows that f (x0) contributes to the error.
It remains to show that E2r(1) contributes to the error when compared to (3.17) as

well. We show the case for r = 0 first. The constant term clearly exhibits polynomial
growth in the variable m. We use the asympotic for the incomplete Gamma function

(3.19) Γ(s, x) ∼ xs−1e−x

as x → ∞. Hence

(1 − k)Γ(k − 1, 4πm)e2πm � mk−2e−2πm → 0

as m → ∞. We next move to bounding the sum of the remaining terms in (3.9)
containing an incomplete Gamma function. For c � √

mn we use the asymptotic for
Jk−1(x) with x small, namely

(3.20) Jα(x) ∼ 1
Γ(α + 1)

(x

2

)α

,

to obtain

Jk−1

(
4π

c

√
|mn|

)
�

√
c

(mn)
1
4

= O(1),

while for c � √
mn we use the asymptotic

(3.21) Jα(x) ∼
√

2
πx

cos
(
x − π

2
α − π

4

)

for large parameters, giving

Jk−1

(
4π

c

√
|mn|

)
�

(√|mn|
c

)k−1

.

Bounding the Kloosterman sum trivially by c, we now have absolute convergence on
the sum in c > 0 from the factor ck in the denominator. This gives

∣∣∣∣∣
∑

n<0

∣∣∣
m

n

∣∣∣
k−1
2

e−2πnΓ(k − 1,−4πn)
∑

c>0

K2−k(−m, n, c)
c

Jk−1

(
4π

c

√
|mn|

)∣∣∣∣∣

�
∑

n<0

∣∣∣
m

n

∣∣∣
k−1
2 √

|mn|e−2πn |Γ(k − 1,−4πn)| � m
k
2 ,(3.22)

where we have used the asymptotic (3.19) for the incomplete Gamma function to
obtain absolute convergence on the sum in n < 0. In the case when r > 0, we
now note that taking derivatives of the incomplete Gamma function changes the



604 BEN KANE

asymptotic behaviour by (2πn)α for some α ∈ N with α < r ≤ m, while taking the
derivative with respect to y of qn behaves in the same manner. Hence the exponential
decay of the terms shown above will follow through to show absolute convergence in
the same way. Therefore this will contribute to the error term for all r ∈ N0.

Hence only the terms with c > 1 and n > 0 remain to bound E2r(1). We again
show the result for r = 0 and note that the full result follows by multiplying by
an appropriate power of n. In these terms we bound the I-Bessel function with the
asymptotic (3.12) for x large and

(3.23) Iα(x) ∼ 1
Γ(α + 1)

(x

2

)α

for x small in order to obtain∣∣∣∣∣
∑

c>1

K2−k(−m, n, c)
c

Ik−1

(
4π

c

√
|mn|

)∣∣∣∣∣

� 1
(mn)

1
4

∑

1<c�m

∣∣∣∣
K2−k(−m, n, c)√

c

∣∣∣∣ e
2π

√
mn +

∑

c�m

∣∣∣∣
K2−k(−m, n, c)

ck

∣∣∣∣
√

mn
k−1

� m
5
4 n− 1

4 e2π
√

mn,

since the second sum converges absolutely and exhibits only polynomial growth in√
mn.
Hence the sum of the remaining terms becomes

(3.24) �
∑

n>0

∣∣∣
m

n

∣∣∣
k−1
2

m
5
4 n− 1

4 e−2πn+2π
√

mn � m
k
2 + 3

4

∑

n>0

1

n
k
2− 1

4
e−2πn+2π

√
mn.

In the range n � m1+ε, we have e−2πn+2π
√

mn � e(−2π+ε)n, giving absolute con-
vergence in this range, while the maximal value for the exponential in the range
n � m1+ε is e

π
2 m, which is obtained at n = m

4 . Hence the sum is bounded by

(3.25) m
k
2 + 7

4+εe
π
2 m = o

(
e2πm

)
.

Thus we have established that E0(1) = o
(
e2πm

)
.

We now move on to bounding E2r(1). The term with n = 0 disappears for r > 0.
For the terms with n > 0 and c > 1, we note that each of the terms in (3.24) is
multiplied by (2πn)2r for the corresponding term in E2r(1). For r ≤ k

2 +1 this simply
multiplies the bound in (3.25) by (2πm)2r, while for r > k

2 we bound the sum in (3.24)
by the corresponding integral and then complete the square, which gives a term e

π
2 m

while rewriting the integral as one from Lemma 3.1 with B = 2π, A =
√

m
2 , and

� = 2r − k−1
2 − 1

4 . Lemma 3.1 then shows that this sum is bounded from above by

m
k
2 + 3

4 (2πm)2re
π
2 m = o

(
(2πm)2re2πm

)

and this term hence still contributes to the error.
It remains to bound the terms with n < 0 from E2r(1). We first evaluate the

derivative of Γ(k − 1, 4πny)e2πny. Using the product rule, if we always take the
derivative of e2πny and evaluate at y = 1, then this gives

(2πn)rΓ(k − 1, 4πn)e2πn,
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while otherwise we took the derivative of e2πny the first j times and then took the
derivative of Γ(2 − k, 4πny). After this, we have

(3.26) −(2πn)j(4πn)k−1yk−2e−2πny.

Taking the derivative of (3.26) 2r times, we keep track of how many times we have
taken the derivative of yk−2. With this accounting, the derivative evaluated at y = 1
becomes

(2πn)2rΓ(k − 1, 4πn)e2πn

− (4πn)k−1 e−2πn
k−1∑

i=1

2r−i∑

j=0

(2πn)j

(
r − j − 1

i − 1

)
(k − 2)i−1(−2πn)2r−j−i.(3.27)

We simplify so that the sum in (3.27) becomes
k−1∑

i=1

(−1)i(2πn)2r−i(k − 2)i−1

2r−i∑

j=0

(−1)j

(
2r − j − 1

i − 1

)

=
k−1∑

i=1

(−1)i(2πn)2r−i(k − 2)i−1

2r−i∑

j=0

(−1)j

(
r − j − 1

2r − i

)
�

k−1∑

i=1

(2πn)2r−i(2πm)i,

(3.28)

by bounding the binomial coefficient naively against (2r)i−1 and using r ≤ m. We
now bound the incomplete Gamma function with (3.19), so that both terms are of
the same asymptotic size and the corresponding sums may be treated simultaneously.

Noting that the maximal value of (2πn)�e−2πn occurs at 2πn = r, the maxi-
mal value from the sum

∑
n≥1(2πn)�e−2πn contributes to the error, and we may

bound against the integral as we did in the main case. In this case, bounding by
the integral

∫∞
�

x��e−x and using integration by parts ��� times gives the bound
���+1e−� � m��+1, exhibiting only polynomial growth in m. This concludes the
proof of equation (1.4).

We now show the statement that there is at most one root of F (m, 2− k; z) on the
line iy. Note that for y �= 1 and r = 0, the terms in equation (3.13) are replaced by

(3.29) e2πmy − ik
√

π
∑

n>0

1
(mn)

1
4

∣∣∣
m

n

∣∣∣
k−1
2

exp

(
−2πy

(√
n −

√
m

y

)2

+ 2π
m

y

)

When y < 1, since all terms are positive, the sum is bounded from below by
m
y +

√
m∑

n= m
y

∑

n>0

1
(mn)

1
4

∣∣∣
m

n

∣∣∣
k−1
2

exp

(
−2πy

(√
n −

√
m

y

)2

+ 2π
m

y

)
� exp

(
2π

√
m

y

)
,

and hence dominates the term e2πmy. Thus iy cannot be a root of F (m, 2 − k; z) as
this sum exhibits exponential growth and the terms E0(y) will still contribute to the
error.

For y > 1, one similarly shows that e2πmy dominates the terms of the sum, and
hence iy also cannot be a root for m sufficiently large.

In the case k ≡ 2 (mod 4) there is no such root, while for k ≡ 0 (mod 4) there is
always a root by modularity. Since the first derivative at z = i grows asymptotically
as e2πm in this case, we know that for m sufficiently large the root must be simple. �
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We will also need the following simpler bound whenever m is fixed and the number
of derivatives is taken to go to ∞. Denote the holomorphic part of F (m, 2 − k; z) by

F (m, 2 − k; z)+ = Γ(k)q−m +
∑

n≥0

cy(n)qn,

with cy(n) given in Proposition 2.3, and likewise denote the r-th derivative with
respect to y by F (r)(m, 2 − k; z)+.

Proposition 3.2. When m is fixed while r → ∞ we have the bound

(3.30) F (r)(m, 2 − k; i)+ = O

⎛

⎝
(

� + 1
2

2πe1−ε

)�+ 1
2

⎞

⎠ = O

((
1
2π

+ ε

)�

Γ
(

� +
1
2

)
�

1
2

)
,

where � = r − k−1
2 − 1

4 . In particular, when k = 2 we have

(3.31) F (r)(m, 0; i) = F (r)(m, 0; i)+ �ε

(
1
2π

+ ε

)r

Γ
(

r − 1
4

)
r

1
2 ,

Proof. First we see that for m fixed and r → ∞, the term

(2πm)2re2πm = O (cr)

for some constant c.
We now deal with the terms coming from cy(n) with c = 1. Since m ≤ r we have

(2πm)2re2πm = O
((

2πe
m
r πm

)2r
)

.

One also sees that when � → ∞ the maximum occurring in (3.13) occurs at n
equal to

x0 =

(
1
2
√

m +
1
2

√
m +

2�

π

)2

.

But then the maximal value from the sum (3.13) is

f (x0) =

⎛

⎜⎜⎝
x0

exp
(

1 − m
� π − π

√(
m
�

)2 + 2
π

m
�

)

⎞

⎟⎟⎠

�

,

where f is the function defined in (3.14). Since m
� → 0, this gives the estimate

f (x0) �ε

( x0

e1−ε

)�

.

We then write

x0 = �

(
1
2

√
m

�
+

1
2

√
m

�
+

2
π

)2

� �

2π
(1 + ε) � �

2π
eε.

Obviously f(1) = O (cr), so for the terms not contained in Er(1) it remains to show
that the integral contributes to the error in this case. For this, consider the integral
in (3.2) with A =

√
m, B = 2π and � as chosen above.
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We set

a0 :=
A

2

(
−1 +

√

1 + 2
(

2� + 1
A2B

))

so that the maximum of the value inside the integral

(3.32)
∫ ∞

−A

(x + A)2�+1e−Bx2
dx

occurs at x = a0. Call the integrand g(x). We write x = a0 + y so that the integral
is given by ∫ ∞

−a0

exp
(
(2� + 1) ln (a0 + A + x) − B (a0 + x)2

)
dx

We expand the exponential as
(−Ba2

0 + (2� + 1) ln (a0 + A)
)− Ba0x − Bx2 + (2� + 1) ln

(
1 +

x

a0 + A

)
.

The first two grouped terms give the maximal value g (a0), while the last term can
be bounded by (

1 +
x

a0 + A

)2�+1

� e
2�+1
a0+A x.

This gives the bound for the integral (3.32) of

(3.33) g (a0)
∫ ∞

−a0

e−Ba0x−Bx2+ 2�+1
a0+A x dx � g (a0).

It remains to bound g (a0). Bounding

1 +

√

1 + 2
(

2� + 1
A2B

)
� eε

√

2
(

2� + 1
A2B

)

and denoting 2� + 1 = L, the fact that A and B are constants implies

g (a0) �
(∣∣∣∣

A

2

∣∣∣∣
L 2

L
2 L

L
2

ALB
L
2 e

L
2

)
eε�,

since

exp

(
A2B

2

√
1 +

2L

A2B
− A2B

2

)
� eε�.

Plugging in B = 2π gives the first approximation given in equation (3.30) and the
second follows directly from Stirling’s formula.

The terms with c > 1 contribute to the error by the above argument combined
with the fact that the maximal value g(x0) is asymptotically smaller in this case. �

Remark. Although one could obtain a bound in general for the terms coming from
the non-holomorphic part of the Poincaré series, we choose not to do so here be-
cause these terms will not play a role the asymptotic of the coefficients of the Faber
polynomials. This occurs because we will only need the above bound when taking
linear combinations of harmonic weak Maass forms which are weakly holomorphic
modular forms. Since such forms are holomorphic in the upper half plane, their
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non-holomorphic parts must necessarily cancel and hence cannot contribute to the
asymptotics for the coefficients of the Faber polynomials.

4. Coefficients of the Faber polynomials

We have now set up the necessary tools to prove Theorem 1.3.

Proof of Theorem 1.3. We begin by combining (2.3) and (2.4) to obtain

cm,r

(
E2

6(z)
Δ(z)

)r

Ek′(z) =
1

Γ(k)

(
F (m, 2 − k; z) +

d∑

n=1

bnF (n, 2 − k; z)

)

−
∑

0≤n≤m−d−1
n �=r

cm,n

(
E2

6(z)
Δ(z)

)n

Ek′(z).(4.1)

Since the order of vanishing at z = i on the left-hand side is precisely 2r (resp. 2r+1)
whenever k ≡ 2 (mod 4) (resp. k ≡ 0 (mod 4)), we take the derivative of both sides
2r (resp. 2r + 1) times and then evaluate at z = i. We only write down the k ≡ 2
(mod 4) case here.

Since the left-hand side is holomorphic in the upper half plane, the right-hand side
must be as well. We therefore will only need asymptotics for F (r′)(m′, 2 − w; i)+ for
some choices of r′, m′, and w. Since the main term in Theorem 1.2 came from the
holomorphic part, one has the same asymptotic growth for F (r′)(m′, 2−w, i)+ as for
F (r′)(m′, 2 − w, i). Since we must take the derivative of each of the E6(z) occurring
on the left-hand side exactly once and we may take the derivatives in any order, the
derivative of the left-hand side equals

(4.2) (2r)!C1C
r
2cm,r.

We will show that the 2rth derivative of the right-hand side of (4.1) is asymptotically
equal to F (r)(m, 2−k; i) and then the theorem will follow directly from Theorem 1.2.

We first consider the terms
∑d

n=1 bnF (n, 2 − k; z). Choose an orthonormal basis
gj ∈ Sk. We may write gj =

∑d
n=1 b̃nP (n, k; z) for some choice of b̃n ∈ C, and the

work of Bringmann and Ono [5] shows that

Gj(z) :=
1

k − 1

d∑

n=1

(4πn)1−k b̃nF (m, 2 − k; z)

is a lift for gj (that is, ξ2−k (Gj(z)) = gj(z)). Since {gj |j ∈ {1, . . . , d}} are orthogonal,
it follows that the Gj are independent, and hence give another basis for the space of
harmonic weak Maass forms with principal part at most q−d. Therefore

d∑

n=1

bnF (n; 2 − k; z) =
d∑

j=1

cjGj(z)

for some constants cj . Say that P (m, k; z) =
∑d

j=1 aj,mgj . Then by integrating
P (m, k; z) against itself, one obtains

(4.3) ‖P (m, k; z)‖ =
d∑

n=1

a2
j,m,
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and

f2−k,m(z) = F (m, 2 − k; z) −
d∑

j=1

aj,mGj(z),

since ξ2−k acts trivially on the right-hand side so that it must be a weakly holomorphic
modular form, while f2−k,m(z) is the unique weakly holomorphic modular form with
principal part q−m+O

(
q−�

)
. Since the bound given in Proposition 3.2 is independent

of n for n fixed, we obtain the same asymptotic bound for Gj(z), so that

G
(2r)
j (i)+ � (2r)2r = o

(
(2πm)2r

)
= O

(
e−2πmF (2r)(m, 2 − k; i)+

)
.

By (4.3), these terms will contribute to the error as long as ‖P (m, k; z)‖ grows only
polynomially as a function of m. Since the mth Fourier coefficient of P (m, k; z) equals

‖P (m, k; z)‖(4πm)k−1

Γ(k − 1)
,

we can use the expansion

1 + 2πik
∑

c>0

Kk(m, m, c)
c

Jk−1

(
4πm

c

)

for the mth coefficient. Due to a bound of Weil [19], the Kloosterman sum grows at
most like m

1
2 as a function of m. In the case c � m, the J-Bessel function decays as

a function of m, while for c � m the J-Bessel function grows like m
k−1
2 , so that we

obtain polynomial growth in terms of m in both cases. It follows that

(4.4)
d∑

n=1

bnF (2r)(n, 2 − k; z)+ = o
(
F (2r)(m, 2 − k; i)+

)
.

We now consider the terms coming from the Faber polynomial with n �= r. When
r is bounded as a function of m we are done, since in that case these terms are
bounded by

cm,r−1 = O

(
F (2r)(m, 2 − k; i)+

m2

)
.

We hence assume that r → ∞. The 2rth derivative of

cm,n

(
E2

6(z)
Δ(z)

)n

Ek′(z)

equals zero at z = i whenever n > r, since we cannot take a derivative of each E6(z)
and E6(i) = 0.

It remains to bound the terms with n < r. In this case, we keep track of how many
times we take the derivative of each term E2

6
Δ (z) = F (1, 0; z) + c (for some constant

c) and how many times we take the derivative of Ek′(z) when using the product
rule repeatedly. The derivatives of the Ek′(z) can easily be shown to satisfy the same
bounds (actually, better bounds) as those given in (3.31) of Proposition 3.2 by writing
the Fourier expansion for the Eisenstein series, so, for cosmetic reasons and for clarity
of proof, we will treat them universally with the same bound. Assume that we are
taking r1 derivatives of the first term, r2 derivatives of the second term, and so forth.
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After reordering to force r1 ≤ r2 ≤ · · · ≤ rn+1 with
∑n+1

i=1 ri = 2r, the number of
times we take this many derivatives is counted by the multinomial coefficient

(2r)!
r1!r2! · · · (rn+1)!

.

Thus, using (3.31) to bound the derivatives (note that for r bounded the asymptotic
is also clearly true), we have the bound

(4.5)
r−1∑

n=0

cm,n

∑

r1≤r2≤···≤rn+1
r1+···+rn+1=2r

(2r)!
r1!r2! · · · rn+1!

n+1∏

i=1

((
1
2π

+ ε

)ri

Γ
(

ri − 1
4

)
r

1
2
i

)
.

We now use Sterling’s formula to bound the ratio

Γ
(
ri − 1

4

)
r

1
2
i

ri!
� r

− 1
4

i

and the fact that
n+1∏

i=1

(
1
2π

+ ε

)ri

=
(

1
2π

+ ε

)2r

to bound the inner sum of (4.5) universally, giving the bound of (4.5) from above by

(4.6) (2r)!
(

1
2π

+ ε

)2r r−1∑

n=0

cm,n

∑

r1≤r2≤···≤rn+1
r1+···+rn+1=2r

1.

The inner sum now counts the number of partitions of 2r into precisely n + 1 parts.
We naively bound this by the Hardy and Ramanujan asymptotic

p(2r) ∼ eπ
√

4r
3

8r
√

3
for the partition function. Since the r bounded case has already been completed,
we may use induction to plug in the asymptotic for cm,n. Since C2 > 1, which
is easily verified by bounding E′

6(i) = 1 + 504
∑∞

n=1 nσ5(n)e−2πn > 1 and Δ(i) =
e−2π

∏∞
i=1

(
1 − e−2πn

)
< e−2π, and

(2r)!
(2n)!

(2πm)2n
< (2r)2r−2n (2πm)2n = O

(
(2πm)2r

π2r−2n

)
,

we may bound (4.6) by

O

((
1
2π

+ ε

)r

eπ
√

4r
3 F (2r)(m, 2 − k; i)+

)
.

For r sufficiently large, the factor
(

1
2π + ε

)r eπ
√

4r
3 goes to zero, and the theorem

follows.
�
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