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GAP STRUCTURE OF COHERENT ARONSZAJN TREES

Carlos Martinez-Ranero and Stevo Todorcevic

Abstract. Assuming the Proper Forcing Axiom, we show (identifying trees that are

finite shifts of each other) that the class of coherent Aronszajn trees is the unique ℵ2-

saturated linear order of cardinality ℵ2.

1. Introduction

An Aronszajn tree is an uncountable tree in which all levels and chains are count-
able. They show that the Kőnig infinity lemma does not extend to the realm of
uncountable trees, although these objects were first discovered by Aronszajn and
Kurepa in in the early 1930’s (see [1], p.96) while analyzing the famous problem of
Suslin ([5]). Their study, both in and outside the contexts of Suslin’s problem has
played an important role in the development of set theory. The class of Aronszajn
trees has, however, its own intrinsic interest independent of the fact that many promi-
nent problems of set theory have their reformulations inside this class. The purpose
of this paper is to add to the structure theory of Aronszajn trees developed by the
second author in [6]. Recall that in general a rough classification result for a given
class K of structures usually depends on a quasi-ordering � on this class, i.e. a tran-
sitive and reflexive relation with the property that the inequality A � B means that
in some sense A is simpler structure than B. Since trees are natural generalization
of ordinals there is already quite natural quasi-ordering between trees that fits well
the class A. We say that a tree T is smaller than S and write T � S iff there is an
strictly increasing function f : T → S. In this paper we are interested in the structure
theory of 〈A,�〉 where A denote the class of all Aronszajn trees (from now on A-trees
in short). Recall also that the strength of a rough classification result for a given
class K of structures depends not only how fine the relation � we choose but also
on how fine description of the corresponding structure 〈K,�〉 we give. One of the
most prominent global conditions generally considered as giving satisfactory rough
classification result is the requirement of being a well-quasi-ordered set. Recall that
a class K is well-quasi-ordered (w.q.o., in short) if for every infinite sequence (An)
of elements of K there exist n < m such that An � Am. The sense of strength of
the w.q.o.-outcome in a rough classification result comes from the fact that whenever
(K,�) is well-quasi-ordered then the complete invariants of the equivalence relation
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≡1 on K are only slightly more complicated than the ordinals. In [6], solving a long-
standing open problem of Laver[2], the second author showed that the class of A-trees
is not well-quasi-ordered under � as there exist large families of pairwise incompa-
rable A-trees as well as infinite strictly decreasing sequences of A-trees. This is in
contrast with the corresponding result about the class of Aronszajn lines which is well
quasi-ordered under � as shown by the first author in [3]. Thus the result of [6] shows
that the structure 〈A,�〉 is far too complex to have a satisfactory classification result
and that we must restrict ourselves to some subclass of this class. It turns out that
the most natural class in this context would is the class C of Lipschitz trees. Recall
that for given trees S and T , a partial level-preserving map g : T → S is Lipschitz if

∆(x, y) 6 ∆(g(x), g(y)) for all x, y ∈ dom(g),

where for x, y ∈ T, we set

∆(x, y) = otp{z ∈ T : z 6 x and z 6 y}.
A Lipschitz tree, is an A-tree tree T with the property that every uncountable par-
tial level-preserving map from T into T is Lipschitz on an uncountable subset of its
domain. It turns out that in context of the Proper Forcing Axiom (which as we shall
see is the right context for this kind of rough classification result) every Lipschiz trees
is coherent and vice versa. We recall that an A-tree T is said to be a coherent tree
if T can be represented as a downward closed subtree of the tree (ω<ω1 ,⊆) in such a
way that

{ξ ∈ dom(t) ∩ dom(s) : s(ξ) 6= t(ξ)} is finite for every s, t ∈ T.
The paper [6] of the second author shows that under the assumption of PFA the
class C has some unexpected structure. For example, the class C is linearly ordered
but not well-ordered under � . Moreover, the class C is cofinal and coinitial in the
class 〈A,�〉 of all A-trees. It is also proved in [6], using the same assumption PFA,
that every Lipschitz tree is comparable with every other Aronszajn tree. Thus any
rough classification result for the class C of Lipschitz trees is likely to give us some
information about the whole class A of Aronszajn trees and vice versa any rough
classification result about a sufficiently rich subclass of A must involve the class C in
some way or the other. The paper [6] of the second author also proves that 〈C,�〉 is
a discrete chain in the sense that every element T of C has immediate successor T (1),
the natural shit of T. Thus if we want to understand 〈C,�〉 it is natural to consider
the quotient ordering 〈C/Z,�〉 over the equivalence relation

S ∼ T (mod Z) iff (∃k ∈ Z)S(k) = T

with countable and convex equivalence classes. If we are to provide some information
about the linear order 〈C/Z,�〉, the first thing is to understand its gap-structure.
Indeed, we shall use MAω1 to fill in any pre-gap whose sides have cardinalities at
most ℵ1. In other words, we show using MAω1 that there are no 〈κ, λ∗〉-gaps in
〈C/Z,�〉 whenever λ, κ ∈ {1, ω, ω1}. From our results about gaps we shall infer that
〈C,�〉 is universal for all the linear orders of cardinality ℵ2. Moreover, we shall prove,
assuming PFA, that 〈C/Z,�〉 is the unique saturated linear order of cardinality ℵ2.
We will make this more precise in the rest of the paper.

1Given by letting A ≡ B iff A � B and B � A.
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2. Preliminaries

In this section we will state mostly without proofs several results of the second
author about the class of coherent Aronszajn trees, which will be needed in the rest
of the paper. The reader is referred to Chapter 4 of [7] for their proofs.

Recall (see [6]), that a partial level-preserving map g : T → S is Lipschitz if

∆(x, y) 6 ∆(g(x), g(y))

for all x, y ∈ dom(g), where ∆(x, y) = otp{z ∈ T : z 6 x and z 6 y}.

Definition 1. A Lipschitz tree, is an uncountable tree T with the property that every
uncountable partial level-preserving map from T into T is Lipschitz in an uncountable
subset of its domain.

As already indicated above, it was shown in [6] (see also Lemma 4.2.7 in [7]) that
the class of Lipschitz trees agree with the class of coherent trees under the assumption
MAω1 . The following lemma (see Lemmas 4.3.6 and 4.3.7 of [7]) shows one of the
more prominent properties of Lipschitz trees and Lipschitz maps: in order to embed
a given Lipschitz tree S into another T, it suffices to find a Lipschitz map from an
uncountable subset of S into T .

Lemma 2. Assuming MAω1 , the following holds for every pair of coherent Aronszajn
trees S and T :

(a) S � T if and only if there is an uncountable X ⊆ S and a level-preserving
map f : X → T such that ∆(x, y) 6 ∆(f(x), f(y)) (i.e. f is a Lipschitz
map).

(b) S ≺ T if and only if there is an uncountable subset X ⊆ S and a level-
preserving map f : X → T so that ∆(x, y) < ∆(f(x), f(y)).

The following lemma (see Lemma 4.2.5 in [7]) is very useful when showing that certain
partial orders satisfy the countable chain condition.

Lemma 3. Let T be a coherent A-tree such that every uncountable subset of T has
an uncountable antichain. Let n be a positive integer, and let A be an uncountable
family of pairwise-disjoint n-element subsets of T. Then there exits an uncountable
B ⊂ A such that ∆(ai, bi) = ∆(aj , bj) for all a 6= b in B and i, j < n. 2

The following result, appearing originally in [6] (see also Theorem 4.3.10 in [7]), is
one of the important applications of the last two lemmas.

Lemma 4. Assume MAω1 . Then for every pair S and T of coherent A-trees, either
S � T or T � S holds.

From now on we assume that the trees T are represented in such a way that every
t ∈ Tα is simply a function from α into ω. Let Λ denote the set of all countable limit
ordinals.

2Here, for a given n-element subset a of T, we let a = {a1, a2, ..., an−1} be its increasing enumer-
ation according some fixed well-ordering of T.
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Definition 5. For an integer m and a tree T , we let T (m) be its m-th shift, the
downward closure of {t(m) : t ∈ T � Λ}, where for a limit node t of T , we let t(m) be
the function with the same domain λ as t defined by,

t(m)(ξ) = t(ξ −m),

when ξ −m exists: otherwise, we let t(m)(ξ) = 0.

Note that a positive shift T (m) of any coherent tree T is coherent (hence Lipschitz)
and that the map t 7→ t(m) is strictly increasing from T into T (m). The case of
negative shifts is more subtle as the negative shifts T (−m) are not always defined but
they do behave as expected whenever defined ( see Lemma 4.3.21 [7]). The following
lemma from [6] (see also Lemma 4.3.19 in [7]) is giving us the crucial property of the
shift operation.

Lemma 6. Assuming MAω1 . For every pair S and T of Lipschitz trees, S ≺ T
implies S(1) � T .

Note that this result together with Lemma 4 show that 〈C/Z,�〉 is a well-defined
quotient linear ordering with countable convex equivalence classes

We finish this section with a theorem that summarizes some results from [6] (see
also Lemma 4.3.31, Lemma 4.3.33 and the proof of Theorem 4.3,35 [7]).

Theorem 7. Assume PFA. For any Aronszajn tree T there exists two coherent Aron-
szajn trees T0 and T1 such that T (m)

0 ≺ T ≺ T1 for all n < ω. In particular, there are
no maximal nor minimal Aronszajn trees and the quotient linear ordering 〈C/Z,�〉
has no first element.

Remark 8. It is worth mentioning that the existence of T1 follows from MAω1 , and
it is not known if MAω1 suffices for the existence of T0.

3. Posets for Interpolating Pre-Gaps

Definition 9. If A,B are subsets of ω1, then an 〈A,B∗〉-pre-gap on 〈C,�〉 is a pair
of sequences of coherent Aronszajn trees

TA,B∗ = 〈T 0
ξ , T

1
η : ξ ∈ A, η ∈ B〉

that satisfy the following requirements:
(1) (∀ξ ∈ A)(∀η ∈ B) T 0

ξ ≺ T 1
η ,

(2) (∀ξ, ξ′ ∈ A) ξ < ξ′ implies T 0
ξ ≺ T 0

ξ′ ,
(3) (∀η, η′ ∈ B) η < η′ implies T 1

η′ ≺ T 1
η .

We further assume that it satisfies the following technical condition:
(4) For all unequal pairs (ξ, i) 6= (η, j) in (A ∪B)× 2 we have that T i

ξ ∩ T j
η = ∅.

We decide to use subsets of ω1 as opposed to cardinals in our definition of pre-gap
to cover the case of strictly increasing sequence of trees as well as the case of strictly
decreasing sequence of trees i.e. the cases B = ∅ and A = ∅, respectively. We shall
associate to each 〈A,B∗〉-pre-gap TA,B∗ two forcing notions P(TA,B∗) and P∗(TA,B∗),
which adjoin a coherent Aronszajn tree T filling the pre-gap. The purpose of this
section is to provide conditions on the pre-gap TA,B∗ for which the corresponding
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forcing notions satisfy the countable chain condition. In order to achieve this, we
define some auxiliary notions associated to every pre-gap that will help us in the
construction of the partial orders.

From our assumptions on the pre-gap, it follows that for every pre-gap TA,B∗ there
is a well defined index function

χ :
⋃

(ξ,i)∈(A∪B)×2

T i
ξ → (A ∪B)× 2

given by
χ(x) = (ξ, i) if and only if x ∈ T i

ξ .

Define a lexicographic ordering on (A ∪B)× 2 by

(ξ, i) <lex (η, j) iff i < j or i = j = 0 and ξ < η or i = j = 1 and ξ > η.

Using condition (4), for a given pre-gap TA,B∗ , we can construct a subset X =
XTA,B∗ of

⋃
(ξ,i)∈(A∪B)×2 T

i
ξ with the following properties:

(i) X ∩ T i
ξ is uncountable for all ξ ∈ A ∪B, i ∈ 2,

(ii) (∀α ∈ ω1) |X ∩ Levα(T i
ξ)| 6 1 for all ξ ∈ A ∪B, i ∈ 2,

(iii) (∀α ∈ ω1) |{(ξ, i) ∈ (A ∪B)× 2 : X ∩ Levα(T i
ξ) 6= ∅}| 6 1 and

(iv) (∀ξ ∈ A ∪B) (∀i < 2) (∀x, y ∈ X ∩ T i
ξ) ∆(x, y) > ω.

For each pre-gap TA,B∗ , more precisely for eachXTA,B∗ , defined as above, we construct
the partial orders P(TA,B∗) and P(TA,B∗) as follows.

Definition 10. Let TA,B∗ be a given pre-gap and let X = XTA,B∗ . We define the
partial order P = P(TA,B∗) as follows: Let P be the poset of all partial finite mappings
p : X × ω1 → ω with the following properties:

(1) ξ < ht(x) for all (x, ξ) ∈ dom(p),
(2) ∀x, y ∈ dom0(p)3 and ∀ξ < ht(x), ht(y) [(x, ξ) ∈ dom(p) if and only if (y, ξ) ∈

dom(p)],
(3) For all x, y ∈ dom0(p),

(a) If χ(x) = χ(y) = (η, 0) for some η, then

[(x, ξ), (y, ξ) ∈ dom(p), ξ < ∆(x, y) implies p(x, ξ) = p(y, ξ)].

(b) If χ(x) = χ(y) = (η, 1) for some η, then there exist

ξ 6 ∆(x, y) such that p(x, ξ) 6= p(y, ξ).

We let p extend q if p extend q as a function and
(4) p(x, ξ) = p(y, ξ) for all x, y ∈ dom0(q) and ξ < min{ht(x), ht(y)}, ξ /∈

dom1(q),
(5) p(x, ξ) 6= p(x, η) for all (x, η) ∈ dom(q) and (x, ξ) ∈ dom(p) \ dom(q).

Definition 11. Let TA,B∗ be a given pre-gap and let X = XTA,B∗ . We define the
partial order P∗ = P∗(TA,B∗) as follows: Let P∗ be the poset of all partial finite
mappings p : X × ω1 → ω with the following properties:

(1) ξ < ht(x) for all (x, ξ) ∈ dom(p),

3Here and below dom0(p) = {x : (x, ξ) ∈ dom(p) for some ξ} and dom1(p) = {ξ : (x, ξ) ∈
dom(p) for some x}.
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(2) ∀x, y ∈ dom0(p) and ∀ξ < ht(x), ht(y) [(x, ξ) ∈ dom(p) if and only if (y, ξ) ∈
dom(p)],

(3) For all x, y ∈ dom0(p),
(a) If χ(x) = χ(y) = (η, 0) for some η, then

[(x, ξ), (y, ξ) ∈ dom(p), ξ < ∆(x, y) implies p(x, ξ) = p(y, ξ)].

(b) If χ(x) = χ(y) = (η, 1) for some η, then there exist

ξ < ∆(x, y) such that p(x, ξ) 6= p(y, ξ).

We let p extend q if p extend q as a function and
(4) p(x, ξ) = p(y, ξ) for all x, y ∈ dom0(q) and ξ < min{ht(x), ht(y)}, ξ /∈

dom1(q),
(5) p(x, ξ) 6= p(x, η) for all (x, η) ∈ dom(q) and (x, ξ) ∈ dom(p) \ dom(q).

Note that the only difference between the partial orders P and P∗ is in condition
3(b) of its definition. The next result contains all the information we will need to
know about the partial orders P(TA,B∗) and P∗(TA,B∗).

Lemma 12. (A) The partial order P(TA,B∗) satisfies the countable chain condi-
tion for any pre-gap TA,B∗ .

(B) The partial order P∗(TA,B∗) satisfies the countable chain condition for any
pre-gap TA,B∗ for which A 6= ∅.

Proof. Let 〈pγ : γ ∈ ω1〉 be given uncountable sequence of conditions in either of
the forcing notions such that if A 6= ∅ then for every γ ∈ A there is x ∈ dom0(pγ)
such that ht(x) ≥ γ and π1(χ(x)) = 0 . Since both proofs are similar we shall prove
them at the same time and we will indicate what changes need to be done whenever
is necessary. By the ∆-system lemma and a counting argument, we may assume that
〈dom(pγ) : γ ∈ ω1〉 form a ∆-system with root D and moreover pγ � D = pγ′ � D for
all γ, γ′ ∈ ω1. Let Eγ = χ[dom0(pγ)].
By applying ∆-system lemma to the sequence 〈Eγ : γ ∈ ω1〉 we get an uncountable
set Ξ ⊆ ω1 and a finite set E such that 〈Eγ : γ ∈ Ξ〉 forms a ∆-system with root E.
We consider two possible assumptions about this ∆-system and show that in both
cases we can find two compatible conditions in the ∆-system.

Assumption 1: Eγ = E for all γ ∈ Ξ.
For δ < ω1, let

aδ = {x � δ : x ∈ dom0(pδ), ht(x) > δ}4

and
bδ = {x ∈ dom0(pδ) : ht(x) < δ}.

Moreover, for δ < α, we let h(δ) be the minimal ordinal that dominates every ordinal
of the set

{∆(x, y) : x, y ∈ aδ, χ(x) = χ(y)} ∪ (dom1(pδ) ∩ δ) ∪ {ht(x) : x ∈ bδ}.

4Here and below x � δ denote the unique predecessor of x in the δ-th level. We shall extend

this notation to the nodes x of height < δ as well by simply letting x � δ = x. This way for our

set X = XTA,B∗ (and for that matter for any other set of nodes) and any δ < ω1 we can define

X � δ = {x � δ : x ∈ X}.



GAP STRUCTURE OF COHERENT ARONSZAJN TREES 571

By the pressing down lemma there is a stationary set Γ of countable limit ordinals on
which the mapping h, the mapping

δ → dom(pδ) ∩ (X � δ)× δ,

as well as the mapping δ 7→ bδ are constant. Let ξ, F and b be the constant values,
respectively. Shrinking Γ, we may assume that all aδ (δ ∈ Γ) are of some fixed size n.
Moreover, we may assume that the function δ 7→ aδ � ξ has a constant value a, and
that the conditions pδ(δ ∈ Γ) generate isomorphic structures over ξ, F and a. Thus,
we want in particular the isomorphism between the pδ (δ ∈ Γ) to respect a fixed
enumeration aδ(i)(i < n) of aδ. Moreover, the isomorphism between the conditions
pγ and pδ is the identity on ξ and on aδ(i) � ξ (i < n), and maps nodes extending
aγ(i) into nodes extending aδ(i) for all i < n. Using Lemma 3 and Lemma 2(b) we
find an uncountable subset Σ ⊂ Γ such that for ξ < γ < δ in Σ:

(6) aγ(i) � ξ = aδ(i) � ξ for all i < n,

(7) every node of dom0(pγ) is either of height less or equal to ξ or it extends some
aγ(i)(i < n),

(8) every node of dom0(pδ) is either of height less or equal to ξ or it extends some
aδ(i)(i < n),

(9) dom1(pγ) ⊂ ξ ∪ (γ, δ) and dom1(pδ) ⊂ ξ ∪ (δ, ω1),
(10) aγ(i) and aδ(j) are incomparable for all i, j < n, whenever χ(aγ(i)) =

χ(aδ(j)),
(11) ∆(aγ(i), aδ(i)) = ∆(aγ(j), aδ(j))) for all i, j < n, whenever χ(aγ(i)) =

χ(aδ(i)) = χ(aγ(j)) = χ(aδ(j)) and
(12) ∆(aγ(i), aδ(i)) < ∆(aγ(j), aδ(j))) for all i, j < n, whenever χ(aγ(i)) =

χ(aδ(i)) <lex χ(aγ(j)) = χ(aδ(j)).
More specifically, this is done by a series of refinements. For example, one of these
refinements is done by using Lemma 3 to get the conclusion (10). Another refinement
is done by using Lemma 2(b) and the initial assumption that T k

ξ ≺ T l
η for (ξ, k) =

χ(aδ(i)) <lex χ(aγ(j)) = (η, l) to get the conclusion of (12).
We claim that if ξ < γ < δ are in Σ, then pγ and pδ are compatible. Our description

of the extension of such pγ and pδ depends, however, on whether A 6= ∅ or A = ∅.
Let us first consider the case A 6= ∅ which applies to both parts of the Lemma. Let

m = max[(range(pγ) ∪ (range(pδ)].

Let (η0, 0) be the <lex-maximum of the set {χ(aδ(i)) : i < n, π1(χ(aδ)) = 0}5 and let
ξ0 = ∆(aγ(i0), aδ(i0)) for some (every) i0 such that χ(aδ(i0)) = (η0, 0).
We define a condition p belonging to both versions of our pre-gap interpolation poset,
by letting its domain be

dom(pγ) ∪ dom(pδ) ∪ {(x, ξ0) : x ∈ dom0(pγ) ∪ dom0(pδ), ht(x) > ξ0},
and letting

p(x, ξ0) = m+ 1 for x ∈ dom0(pγ), ht(x) > ξ0, and

p(x, ξ0) = m+ 2 for x ∈ dom0(pδ), ht(x) > ξ0, and

p � (dom(pγ) ∪ dom(pδ)) = pγ ∪ pδ.

5Here, π1 : (A ∪B)× 2 → 2 is the projection map π1(ξ, i) = i.
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Note that p as a function extends pγ , pδ and it clearly satisfies the conditions (1) and
(2). Note moreover that

dom1(p) = dom1(pγ) ∪ dom1(pδ) ∪ {ξ0} and that

dom0(p) = dom0(pγ) ∪ dom0(pδ).

Let us show that p satisfies clause (3) for being a condition. In order to do this, we
proceed by cases:
Case 1: Consider x ∈ dom0(pγ) and y ∈ dom0(pδ) with χ(x) = χ(y) = (η, 0) for some
η. Let ξ < ∆(x, y) be given such that (x, ξ), (y, ξ) ∈ dom(p).
Subcase a: x � γ = aγ(i) and y � δ = aδ(i) for some i < n.
Then since (η, 0) 6lex (η0, 0) using (11) and (12) and the definition of ξ0 we get that

ξ < ∆(x, y) = ∆(aγ(i), aδ(i)) 6 ξ0.

It follows that ξ ∈ (dom1(pγ) ∩ dom1(pδ)) ⊂ ξ. Let y′ in dom0(pγ) be the copy of y
relative to the isomorphism between pγ and pδ. Then y′ extends aγ(i) and pδ(y, ξ) =
pγ(y′, ξ). Since x also extends aγ(i) we have ξ < γ 6 ∆(x, y′) and χ(y′) = (η, 0) =
χ(x). So by 3(a) for the condition pγ we conclude that pγ(x, ξ) = pγ(y′, ξ) = pδ(y, ξ),
as required.
Subcase b: x � γ = aγ(i) and y � γ = aδ(j) with i 6= j < n.
Let y′ be the copy of y in dom0(pγ) relative to the isomorphism between the conditions
pγ and pδ. Since y′ extends aγ(j) we get that ∆(x, y) = ∆(aγ(i), aγ(j)) = ∆(x, y′),
so in particular, ξ < ξ. By 3(a) of pγ we infer pγ(x, ξ) = pγ(y′, ξ) = pδ(y, ξ).
Subcase c: x ∈ b or y ∈ b, where b is the constant value of the mapping δ 7→ bδ. Then
either x, y ∈ dom0(pγ) or x, y ∈ dom0(pδ). Let us focus on the case x, y ∈ dom0(pγ),
as the other one is similar. Then this implies that ξ < ξ, so in particular (y, ξ) is
a fixed point of the isomorphism between pγ and pγ , so we get pγ(y, ξ) = pδ(y, ξ).
Applying 3(a) for condition pγ we obtain pγ(x, ξ) = pγ(y, ξ). This finishes the proof
in Case 1.
Case 2: Consider the case x ∈ dom0(pγ), y ∈ dom0(pδ) and χ(x) = χ(y) = (η, 1) for
some η.
Subcase a: x � γ = aγ(i), y � δ = aδ(i) for some i < n.
Since (η0, 0) <lex (η, 1), it follows from (12) and the definition of ξ0 that ∆(x, y) =
∆(aγ(i), aδ(i)) > ξ0. Moreover p(x, ξ0) = m+ 1 6= m+ 2 = p(y, ξ0) so ξ0 is a witness
for clause 3(b) (for both partial orders).
Subcase b: x � γ = aγ(i), y � δ = aδ(j) with i 6= j < n.
Then ∆(x, y) = ∆(aγ(i), aγ(j)) = ∆(aδ(i), aδ(j)) which is less than ξ. Let x′ and y′

be the copies of x and y relative to the isomorphism between pγ and pδ, respectively.
Note that x′ extends aδ(i) and y′ extends aγ(j). Since pγ is a condition there exists
η < ∆(x, x′) = ∆(y, y′) such that pγ(x, η) 6= pγ(x′, η). Since the isomorphism between
pγ and pδ is the identity for elements less than ξ we get that η ∈ dom1(pδ). Moreover,
pγ(x, η) = pδ(x′, η) and pγ(y′, η) = pδ(y, η) which implies that pγ(x, η) 6= pδ(y, η) so
η is a witness for 3(b).
Subcase c: x ∈ b or y ∈ b, where b is the constant value of the mapping δ 7→ bδ. Then
either x, y ∈ dom0(pγ) or x, y ∈ dom0(pδ). Since both cases are similar let us consider
only the case x, y ∈ dom0(pγ). Let y′ be the copy of y relative to the isomorphism
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between pγ and pδ. By 3(b) for the condition pγ we can find η < ∆(x, y) so that
pγ(x, η) 6= pγ(y′, η) = pδ(y, η), finishing the proof in Case 2.

In case A = ∅ the construction of the extension of pγ and pδ is done in a
similar manner so we just indicate the change that is needed. To this end, let
(η0, 1) be the <lex-minimum of the set {χ(aδ(i)) : i < n, π1(χ(aδ)) = 1} and let
ξ0 = ∆(aγ(i0), aδ(i0)) for some (every) i0 such that χ(aδ(i0)) = (η0, 1). The rest of
the construction follows that of the case A 6= ∅ and is left to the reader.

We are left with proving that p extends both pγ and pδ and we again give the
full details only in the case of the construction coming from the case A 6= ∅ leaving
the other analogous case to the interested reader. Given x, y ∈ dom0(pγ) or x, y ∈
dom0(pδ) we have that p(x, ξ0) = m + 1 = p(y, ξ0) or p(x, ξ0) = m + 2 = p(y, ξ0),
respectively, where ξ0 is the only new member of dom1(p) \ dom1(pγ) and the only
element of dom1(pδ). On the other hand, given x ∈ dom0(pγ) or x ∈ dom0(pδ) we have
that p(x, ξ0) = m+ 1 > p(x, η) for all (x, η) ∈ dom(pγ) or p(x, ξ0) = m+ 2 > p(x, η)
for all (x, η) ∈ dom(pγ) and all (x, η) ∈ dom(pδ). Thus, p satisfies clauses (4) and (5).
This finishes the proof of that under the Assumption 1 the given sequence 〈pγ : γ ∈ ω1〉
has two compatible members in both versions of the poset .

Assumption 2: Eγ \ E 6= ∅ for all γ ∈ Ξ.
Let us consider the reduction 〈pE

γ : γ ∈ Ξ〉 of the sequence 〈pγ : γ ∈ Ξ〉 to the suborder
P(TA∩E,(B∩E)∗) (or P∗(TA∩E,(B∩E)∗)), where

pE
γ = pγ � {(x, ξ) ∈ dom(pγ) : χ(x) ∈ E}.

By the work done under the Assumption 1, we know that the posets P(TA∩E,(B∩E)∗)
and P∗(TA∩E,(B∩E)∗) satisfy the countable chain condition, so there exist γ, δ ∈ Ξ and
r ∈ P(TA∩E,(B∩E)∗) (or P∗(TA∩E,(B∩E)∗)) such that r 6 pE

γ , p
E
δ . We can amalgamate

r with pγ , pδ to a new condition q of P(TA∩E,(B∩E)∗) (or P∗(TA∩E,(B∩E)∗)) as follows.
First of all note that r ∪ pγ ∪ pδ is a function. Let

n = max[rang(r) ∪ rang(pγ) ∪ rang(pδ].

Let q be the function with domain

{(x, ξ) : x ∈ dom0(r ∪ pγ ∪ pδ), ξ ∈ dom1(r ∪ pγ ∪ pδ) ξ < ht(x)}.

Defined by q � dom(r) = r, q � dom(pγ) = pγ , q � dom(pδ) = pδ and q(x, ξ) =
n + 1 for all (x, ξ) ∈ dom(q) \ (dom(r) ∪ dom(pγ) ∪ dom(pδ). Since the clause (3)
is only meaningful for pairs x, y ∈ dom0(q) so that χ(x) = χ(y), it follows from
our construction that it only applies to pairs x, y so that either x, y ∈ dom0(pγ)
or x, y ∈ dom0(pδ) or χ(x) = χ(y) ∈ A. In the later case clause (3) holds since
x, y ∈ dom0(r) and r is a condition of P(TA∩E,(B∩E)∗) ( or P∗(TA∩E,(B∩E)∗)). Thus, q
is a condition. Let us now show that q extend both pγ and pδ. Consider x, y ∈ dom(pγ)
or x, y ∈ dom0(pδ) it follows from the definition of q that q(x, ξ) = n + 1 = q(y, ξ)
for all ξ /∈ dom1(pγ) or ξ /∈ dom1(pδ). Moreover, q(x, ξ) = n + 1 > q(x, η) for all
ξ /∈ dom1(pγ) and η ∈ dom1(pγ), or ξ /∈ dom1(pδ) and η ∈ dom1(pδ). This finishes
the proof. �
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4. Pre-Gaps in 〈C,�〉 under MAω1

In this section we show that sufficiently generic filters of the posets P(TA,B∗) and
P∗(TA,B∗) will give us coherent A-trees that interpolate the pre-gap TA,B∗ = 〈T 0

ξ , T
1
η :

ξ ∈ A, η ∈ B〉.

Lemma 13. Let TA,B∗ be a pre-gap of 〈C,≺〉 indexed by A,B ⊆ ω1 and let P =
P(TA,B∗) or P = P∗(TA,B∗). Then for all x0 ∈ X, the set

Dx0 = {p ∈ P : x0 ∈ dom0(p)}
is dense open in P.

Proof. Since the proof for P = P∗(TA,B∗) is quite similar we focus on the case P =
P(TA,B∗). Fix p ∈ P. If x0 ∈ dom0(p) we are done, so let us assume x0 6∈ dom0(p).
We proceed by considering two cases and some subcases.
Case 1: If χ(x0) = (ξ, 1) for some ξ. Let n = max(rang(p)).
Subcase a: If there is a x ∈ dom0(p) such that χ(x) = χ(x0). Set

ξ = min{∆(x0, x) : x ∈ (dom0(p) \ {x0}), χ(x0) = χ(x)}.
By (iv) ξ > ω so we can find ξ0 < ξ, ξ0 /∈ dom1(p). Let q be a map with domain
equal to

dom(p) ∪ {(x, ξ0) : x ∈ dom0(p), ξ0 < ht(x)}
∪{(x0, ξ0)} ∪ {(x0, ξ) : ξ ∈ dom1(p), ξ < ht(x0)}.

Define q by q � dom(p) = p,

q(x, ξ0) = n+ 2 for x ∈ dom0(p), and

q(x0, ξ) = q(x0, ξ0) = n+ 1 for all ξ ∈ dom1(p), ξ < ht(x0).
Let us show that q is a condition in the partial order P. It should be clear from
our definition of q that clauses (1) and (2) holds. Consider x, y ∈ dom0(q) with
χ(x) = χ(y) and π1(χ(x)) = 06. Let ξ < ∆(x, y), ξ ∈ dom1(q) be given. Then either
ξ ∈ dom1(p) which implies q(x, ξ) = q(y, ξ) since (x, ξ), (y, ξ) ∈ dom(p), or ξ = ξ0
which implies q(x, ξ0) = n+2 = q(y, ξ0). This shows that clause 3(a) holds. To verify
clause 3(b), let x, y ∈ dom0(q) be given so that χ(x) = χ(y) and π1(χ(x)) = 1. If
x, y ∈ dom0(p) then using the fact that p is a condition, we can find η ≤ ∆(x, y)
in dom1(p) so that p(x, η) 6= p(y, η). On the other hand, if x0 = x then q(x0, ξ0) =
n + 1 6= n + 2 = q(y, ξ0). It follows that q is a condition which belongs to Dx0 .
Let us verify that q extends p. First of all, by its very definition, q extends p as a
function. Note that for x, y ∈ dom0(p) we have q(x, ξ0) = n+ 2 = q(y, ξ0) with ξ0 as
the only element in dom1(q) \ dom1(p). Moreover, q(x, ξ0) = n + 2 > q(x, ξ) for all
(x, ξ) ∈ dom(p). So this checks that q is a condition extending p.
Subcase b: There is no x ∈ dom0(p) so that χ(x0) = χ(x). Then let q be the function
with domain

dom(p) ∪ {(x0, ξ) : ξ ∈ dom1(p), ξ < ht(x0)}
defined by q � dom(p) = p and

q(x0, ξ) = n+ 1 for all ξ ∈ dom1(p), ξ < ht(x0).

6Recall that π1 : (A ∪B)× 2 → 2 is the projection map π1(ξ, i) = i.
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It should be clear that q is a condition belonging to Dx0 and extending p.
Case 2: χ(x0) = (ξ, 0) for some ξ. Let n = max(rang(p)).
Subcase a: There is x ∈ dom0(p) such that χ(x0) = χ(x). Pick x′0 ∈ dom0(p) such
that χ(x′0) = χ(x0) and

∆(x0, x
′
0) = max{∆(x0, x) : x ∈ dom0(p), χ(x0) = χ(x)}.

Let q be map with domain

dom(p) ∪ {(x0, ξ) : ξ ∈ dom1(p), ξ < ht(x0)}.
Define q by q � dom(p) = p and

q(x0, ξ) = p(x′0, ξ) for ξ ∈ dom1(p) ∩∆(x0, x
′
0) and

q(x0, ξ) = n+ 1 for ξ ∈ dom1(p) ∩ [∆(x0, x
′
0), ht(x0)).

Let us show that q is a condition. First note that q satisfies clauses (1), (2) and
3(b) by definition. In order to verify clause 3(a) let x, y ∈ dom0(q) be given so
that χ(x) = χ(y) and π1(χ(x)) = 0. Let ξ < ∆(x, y), ξ ∈ dom1(q) be given.
Then either x, y ∈ dom0(p) and therefore q(x, ξ) = q(y, ξ) since (x, ξ), (y, ξ) ∈ p
and p is a condition, or x = x0 which implies ξ < ∆(x0, y) = ∆(x′0, y) and therefore
q(y, ξ) = q(x′0, ξ) = q(x0, ξ). This checks that q is indeed a condition. Note also
that q extends p as clauses (5) and (6) are vacuously true. Therefore q is a condition
belonging to Dx0 and extending p.
Subcase b: There is no x ∈ dom0(p) so that χ(x0) = χ(x). Then let q be the condition
with domain

dom(p) ∪ {(x0, ξ) : ξ ∈ dom1(p), ξ < ht(x0)}
be defined by q � dom(p) = p and

q(x0, ξ) = n+ 1 for all ξ ∈ dom1(p) such that ξ < ht(x0).

Then it is readily seen that q is a condition which belongs to Dx0 and extends p. �

Lemma 14. Let TA,B∗ be a pre-gap of 〈C,≺〉 indexed by A,B ⊆ ω1 and let P =
P(TA,B∗) or P = P∗(TA,B∗). Then for all (x0, ξ0) ∈ X × ω1 with ξ0 < ht(x0), the
set

D(x0,ξ0) = {p ∈ P : (x0, ξ0) ∈ dom(p)}
is dense and open in P.

Proof. Let p ∈ P be given. By Lemma 13, we can find a condition p′ extending p so
that x0 ∈ dom0(p′). Let n = max(rang(p′)). Set q to be the function with domain

dom(p′) ∪ {(x, ξ0) : x ∈ dom0(p′), ξ0 < ht(x)}
be defined by q � dom(p′) = p′ and

q(x, ξ0) = n+ 1 for all x ∈ dom0(p′) such that ξ0 < ht(x).

Let us verify that q is a condition. It should be clear that clauses (1) and (2) holds.
Let x, y ∈ dom0(q) be given so that χ(x) = χ(y) and π1(χ(x)) = 1. Since x, y ∈
dom0(p′) and p is a condition, we can find η ∈ dom1(p′) such that η < ∆(x, y) and
p(x, η) 6= p(y, η). On the other hand, given x, y ∈ dom0(q), ξ ∈ dom1(q) such that
χ(x) = χ(y), π1(χ(x)) = 0 and ξ < ∆(x, y) then either ξ ∈ dom1(p′) which would
imply q(x, ξ) = q(y, ξ) since (x, ξ), (y, ξ) ∈ dom(p′) and p′ is a condition, or ξ = ξ0
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in which case q(x, ξ0) = n + 1 = q(y, ξ0). We are left to prove that q extends p′.
First of all note that q(x, ξ0) = n + 1 = q(y, ξ0) for all x, y ∈ dom0(q). It follows
that ξ0 < ht(x), ht(y), where ξ0 is the only element of dom1(q) \ dom1(p′). Moreover,
q(x, ξ0) = n+1 > q(x, ξ) for all (x, ξ) ∈ dom(p′). This finishes the proof that D(x0,ξ0)

is open and dense in P. �

We are now in position to state the main result of this section.

Theorem 15. Assume MAω1 . For every pre-gap

TA,B∗ = 〈T 0
ξ , T

1
η : ξ ∈ A, η ∈ B〉

in the class 〈C,≺〉 of coherent A-trees indexed by some A,B ⊆ ω1 there is a coherent
A-tree T such that T 0

η � T � T 1
ξ for all η ∈ A, ξ ∈ B. Moreover, if A 6= ∅ we can

find a tree T that satisfies T 0
η � T ≺ T 1

ξ for η ∈ A, ξ ∈ B, or in other words, we can
make the second inequality strict.

Proof. By MAω1 we can find a filter G intersecting the dense-open sets D(x0,ξ) for
all x0 ∈ X and ξ < ht(x0). Let F =

⋃
G. Then for each x ∈ X we can define the

corresponding fiber map fx : ht(x) → ω by fx(ξ) = F (x, ξ). Let T be the downward
closure of the set {fx : x ∈ X}. By clauses (4) and (5) of the definition of the forcing
notion, the tree T is a coherent A-tree. Now the following claim finishes the proof.

Claim 1: T 0
ξ � T � T 1

η for all ξ ∈ A and η ∈ B.
To see this, for each ξ ∈ A, we set

X0
ξ = {x ∈ X : χ(x) = (ξ, 0)}.

Consider the map ϕξ : X0
ξ → T defined by ϕξ(x) = fx. Then from the clause 3(a) it

follows that for all ξ ∈ A, the map ϕξ is Lipschitz map on its uncountable domain
X0

ξ ⊆ T 0
ξ . Using Lemma 2(a), we obtain the inequalities T 0

ξ � T for all ξ ∈ A. For
η ∈ B let

Yη = {fx : χ(x) = (η, 1)}.
Now define a map ψη : Yη → T 1

η as follows: ψη(fx) = x. Then by 3(b) we infer ψη

is a Lipschitz map on its uncountable domain Yη ⊆ T . Using Lemma 2(a) again,
we conclude that T � T 1

η for all η ∈ B. Finally note that if A is non-empty then
from clause 3(b) for the poset P ∗ and Lemma 2(b) we can infer that T ≺ T 1

η for all
η ∈ B. �

Remark 16. We can not expect to find a tree where the strict inequality in the
conclusion of Theorem 14 holds for all type of pre-gaps. In particular, in view of
Lemma 6, this is not possible for the 〈1, 1〉 pre-gap 〈T, T (1)〉 for any coherent Aronsajn
tree T .

To avoid this kind of difficulties, we shall pass to the quotient structure 〈C/Z,≺〉,
where we let C/Z be the collection of all classes of the equivalence relation

S ≡ T (mod Z) iff there is n ∈ ω so that T ≡ S(n) or T (n) ≡ S

induced by the shift, and where use the same notation for the ordering which ≺
induces on this quotient structure. We consider this quotient ordering in the next
section.
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5. Pre-Gaps in 〈C,�〉 under PFA

We are now in position to state and prove the main theorem of this paper.

Theorem 17. Assume PFA. There are no 〈κ, λ∗〉-gaps in 〈C,�〉 whenever κ, λ ∈
{∅, 1, ω, ω1} and 〈κ, λ∗〉 6= 〈1, 1〉.

Proof. We split the proof in the following four cases.
Case 1: There are no 〈∅, 1〉 and 〈1,∅〉 gaps.
This is equivalent to the non existence of minimal or maximal coherent A-trees, which
is the content of Theorem 7.
Case 2: There are no gaps of type 〈κ, λ∗〉-gaps for λ, κ ∈ {∅, ω, ω1}.
Note that if T is the tree given by the conclusion of Theorem 15, then T fills any
pre-gap of this type.
Case 3: There are no gaps of the form 〈ω, 1〉 nor 〈ω1, 1〉.
This is similar to Case 2 where we use Theorem 15 again and moreover we use the
extra assumption that A is non-empty.
Case 4: There are no 〈1, ω∗〉 nor 〈1, ω∗1〉 gaps. Since the two cases are similar we focus
on the 〈1, ω∗1〉-pre-gaps. Consider a pre-gap

S ≺ ... ≺ Sξ ≺ ... ≺ S1 ≺ S0 (ξ < ω1)

of coherent A-trees. Note that the existence of the tree which fills the pregap is not
immediate from Theorem 15, since nothing rules out the possibility that the tree T
given by Theorem 15 is equal to S. Note however that since there are no coherent
A-trees between S and its shift S(1), we have that S(1) ≺ Sξ for all ξ < ω1. Repeating
this over all other finite shifts S(n) of S, we get that

S = S(0) ≺ S(1) ≺ ... ≺ S(n) ≺ ... ≺ Sξ ≺ ... ≺ S1 ≺ S0 (n ∈ ω, ξ < η ∈ ω1).

It follows from Case 2 that there is a tree T such that

S(n) ≺ T ≺ Sξ for all (n < ω, ξ < ω1).

This T fills the 〈1, ω∗1〉 pre-gap. �

Our first corollary of Theorem 17 answers Question 9.9 of [4].

Corollary 18. Assuming PFA, the chain 〈C,�〉 of coherent A-trees has the cofinality
and the coinitiality equal to ω2.

Proof. This uses the additional fact that, under PFA, the two numbers are bounded
by ω2 since |C| = 2ℵ1 = ℵ2.

We finish this paper with a complete description of the quotient ordering 〈C/Z,�〉
under the assumption of PFA.

Corollary 19. Assuming PFA, the ordering 〈C/Z,�〉 is the unique ℵ2-saturated
linear order of cardinality ℵ2.

Proof. The result is an immediate consequence of Theorem 17 and the fact that
|C/Z| = |C| = 2ℵ1 = ℵ2 under PFA. �
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