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PINNED EQUIVALENCE RELATIONS

Jindřich Zapletal

Abstract. Answering a question of Kechris, I show that the equality of countable sets
of reals is not the smallest unpinned equivalence relation.

1. Introduction

The theory of Borel reducibility of equivalence relations on Polish spaces has grown
considerably in the previous two decades [3, 1]. It all revolves around the following
central definition:

Definition 1.1. Let E,F be equivalence relations on respective Polish spaces X, Y .
The equivalence E is Borel reducible to F if there is a Borel function g : X → Y such
that ∀x0, x1 ∈ X x0 E x1 ↔ g(x0) F g(x1).

The Borel reducibility is a quasiordering comparing the equivalence relations in
the sense of their intuitive complexity. Mathematicians started building a map of
the commonly used Borel or analytic equivalence relations under this quasiordering.
In order for this program to succeed, it needs tools for proving that a given Borel
equivalence relation is not reducible to another one. One such fairly useful tool is the
notion of pinned/unpinned equivalence relation.

Definition 1.2. [3, Chapter 17] A Borel equivalence relation E on a Polish space X
is unpinned if there is a forcing P and a P -name ẋ for an element of X such that
P × P forces the left and right evaluations of ẋ to be E equivalent, and P forces ẋ
to be E-inequivalent to any ground model point of the space X. The equivalence is
pinned if it is not unpinned.

It is not difficult to see that if a Borel equivalence relation is pinned, then so are
all of the equivalence relations Borel reducible to it. This leads for example to a
short proof that F2, the equivalence on infinite sequences of reals connecting two such
sequences if their ranges are the same, is not reducible to El∞ , the equivalence on
infinite set of reals connecting two of them if their difference is bounded. The point is
that El∞ is pinned due to the complexity of its definition [3, Theorem 17.1.3], while
F2 is unpinned: the forcing witnessing the requisite property of F2 is the collapse of 2ω

to countable size, with ẋ a name for an enumeration of the set of ground model points
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of 2ω. Both of these equivalence relations occupy strategic positions in the Borel re-
ducibility map, and occur naturally in many places. For example, the Halmos-von
Neumann theorem shows that the conjugacy of ergodic measure preserving transfor-
mations with discrete spectrum is bireducible with F2; the Lipschitz isomorphism of
compact metric spaces is bireducible with El∞ [7].

One difficulty with the notion of an unpinned equivalence relation is its complex
definition. This may lead to the undesirable effect that for some Borel equivalence
relation, the status of pinned/unpinned may not be invariant under forcing. Kechris
asked whether perhaps this is an irrelevant issue and the unpinned property is simply
equivalent to F2 being reducible to a given Borel equivalence relation:

Question 1.3. [3, Question 17.6.1] Is F2 reducible to every unpinned Borel equiva-
lence relation?

In this brief note, I will show that the answer is negative.

Theorem 1.4. There is an unpinned Borel equivalence relation strictly below F2 in
the Borel reducibility sense.

In fact, it turns out that there is a whole small universe of heretofore unknown un-
pinned equivalence relations strictly below F2, with a complex structure related to
small uncountable cardinals.

The notation in this paper follows the set theoretic standards of [2].

2. Proof

Motivated by model theoretic concerns, Shelah [8] showed that there are Borel sets
in the plane with unexpectedly complex behavior:

Fact 2.1. For every countable ordinal α ∈ ω1 there is a c.c.c. extension in which
continuum is large and there is an Fσ set Bα ⊂ 2ω × 2ω which has a clique of size ℵα

but no larger clique.

Here, a clique for a set B ⊂ 2ω × 2ω is simply a set C ⊂ 2ω such that C ×C ⊂ B.
Later on, in a joint work with Kubis [5] the offending Fσ sets were constructed in
ZFC in the ground model, so that the c.c.c. extension is only used to increase the size
of the continuum in a suitable way and not to obtain the Borel codes of these sets. A
particularly simple example was found by Kubis and Vejnar [6]:

Fact 2.2. There are continuous functions fn : n ∈ ω from 2ω to 2ω, such that the
union B of their graphs and graphs of their inverses has an uncountable clique.

The proof is so simple and instructive that it should be reproduced here. Let
ω =

⋃
n an be a partition of ω into infinite sets, with πn : ω → an an increasing

enumeration of each, and let fn(x) = x ◦ πn. Let B be the union of graphs of fn’s
and their inverses and the diagonal. Now argue that every maximal clique of B must
be in fact uncountable. If {xm : m ∈ ω} is a clique, it is easy to find a point y ∈ 2ω

such that ∀m xm = fm+1(y) and y � a0 /∈ {xm � a0 : m ∈ ω}. Then, {y, xm : m ∈ ω}
is a clique extending the original countable clique!

It is clear that a set B as described in this Fact cannot have a clique of size ℵ2.
If C = {xα : α ∈ ω2} was such a clique then on cardinality grounds there would be
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an ordinal β ∈ ω2 such that for no γ ∈ ω1, no δ ∈ ω2 \ β and no n ∈ ω it is the case
that fn(xγ) = δ. On cardinality ground again, there would be an ordinal γ ∈ ω1 such
that for no n ∈ ω and no δ ∈ ω1 \ γ it is the case that fn(xβ) = xδ. Then clearly the
point 〈xγ , xβ〉 cannot belong to the set B, contradicting the assumption that C was
a clique.

Fix a set B ⊂ 2ω × 2ω as provided by the fact. Let Y be the Borel set of those
sequences y ∈ (2ω)ω whose range is a clique in B, and let E = F2 � Y . It is immediate
that E ≤ F2; the identity is the reducing function. I will show that E is unpinned
and F2 does not reduce to E; this will complete the proof of the theorem.

First of all, the equivalence E is unpinned. Let C ⊂ 2ω be an uncountable clique of
B, let P be a forcing enumerating the set C in ordertype ω, and let ẏ be the P -name
for the generic enumeration. It is immediate that ẏ witnesses the requisite property
of the equivalence E.

To show that F2 is not reducible to E, suppose that f is such a Borel reduction and
work towards a contradiction. Move to a generic extension V [G] where the continuum
hypothesis fails. Note that f remains a reduction in V [G] by Shoenfield’s absoluteness,
and the set B still has no clique of size ℵ2. Consider the forcing P collapsing the size
of the continuum to ℵ0 and let ẋ be a name for the generic enumeration of the ground
model elements of 2ω.

Claim 2.3. P 
 rng(f(ẋ)) ∈ V .

Proof. It must be the case that P 
 rng(f(ẋ)) ⊂ V . If some condition forced a new
element into the set, one could pass to a forcing extension with mutually generic filters
H0,H1 ⊂ P containing that condition. Clearly, (ẋ/H0)F2(ẋ/H1), but the ranges of
f(ẋ/H0) and f(ẋ/H1) are not equal by a mutual genericity argument. Thus f would
not be a reduction in that extension.

It also must be the case that for every ground model element y ∈ Y , the largest
condition in P must decide the statement y̌ ∈ rng(f(ẋ)). If p, q ∈ P decided this
statement in two different ways, then one could pass into a forcing extension with
V [G]-generic filters with p ∈ H0, q ∈ H1. But then, (ẋ/H0)F2(ẋ/H1) while y ∈
rng(f(ẋ/H0))∆rng(f(ẋ/H1)) and f is not a reduction in this extension.

Consequently, P 
 rng(f(ẋ)) = {y : 1 
 y̌ ∈ rng(ẋ)} ∈ V . �

Let C ⊂ 2ω be the set forced to be the range of ḟ(ẋ). Plainly, C is a clique in
B, and therefore its size is at most ℵ1 < c. Thus there are two elementary sub-
models M0,M1 of a large enough structure which contain C as an element and a
subset such that M0,M1 do not contain the same reals. Pass into a forcing extension
V [G][H] in which there are filters H0 ⊂ M0 ∩ P and H1 ∩ M1 ∩ P meeting all the
dense sets in the respective models. By the forcing theorem applied in the models,
M0[H0] |= rng(f(ẋ/H0)) = C and M1[H1] |= rng(f(ẋ/H1)) = C, and by Borel ab-
soluteness between the models M0[H0],M1[H1] and the extension, it is the case that
rng(f(ẋ/H0)) = C = rng(f(ẋ/H1)). However, the sequences ẋ/H0, ẋ/H1 are F2 in-
equivalent, since the models M0,M1 did not contain the same reals. Thus f is not a
reduction in the generic extension V [G][H], a contradiction. The theorem follows!
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3. Concluding remarks

The result opens more questions than it resolves. Let B ⊂ 2ω × 2ω be a Borel
set, and EB is the equivalence relation F2 restricted to the Borel set of all sequences
~x ∈ (2ω)ω enumerating cliques of B. What are the reducibility connections between
various equivalences of the form EB and other Borel equivalence relations?

Claim 3.1. The equivalence relation EB is pinned if and only if every clique of B is
countable.

Proof. Obviously, every uncountable clique yields an unpinning forcing which just
enumerates the clique generically in type ω. On the other hand, if every clique is
countable, P is a forcing and τ is a P -name for an enumeration of a clique such that
P × P 
 rng(τleft) = rng(τright), then similarly to Claim 2.3 there must be a clique
C such that P 
 rng(τ) = Č, and since C is countable, P 
 τ is equivalent to any
enumeration of the clique C. �

Having an uncountable clique is a property of a Borel set B which is invariant
under forcing. It is equivalent to an existence of a model of a certain sentence in
the language Lω1ω(Q), where Q is the quantifier ”there exist uncountably many”.
However, Keisler [4] showed that the relevant infinitary logic is complete, and so the
existence of a model is equivalent to the consistency of the sentence. The consistency
means nonexistence of a proof of contradiction, the proofs are wellordered countable
sequences of countable formulas, and so the consistency of such a theory is equivalent
to a Π1

2 sentence, and therefore absolute between transitive models of set theory.

Claim 3.2. F2 is reducible to the equivalence relation EB if and only if B has a
perfect clique.

Proof. On one hand, if C ⊂ 2ω is a perfect clique, then choose a Borel injection
f : 2ω → C and naturally extend it to a function f : (2ω)ω → (2ω)ω by f(xn : n ∈
ω) = (f(xn) : n ∈ ω). The function f is a Borel reduction of F2 to EB .

On the other hand, suppose that B has no perfect clique and f is a Borel reduction
of F2 to EB . I will reach a contradiction by passing into a large Cohen extension V [G]
and showing that in it, B has no clique of size c. The function f should still be a
reduction in the model V [G] by analytic absoluteness, but then a contradiction is
reached just as in the previous section.

The proof that in a large Cohen extension the set B cannot have a clique of size
continuum can be found in several places in the literature, including Shelah’s [8].
Work in V and let κ be a regular cardinal larger than the continuum such that
κω = κ. The model V [G] is the extension of V with forcing Q adding κ many Cohen
reals with finite support. To verify the requisite feature, suppose for contradiction
that the poset Q forces that 〈żα : α ∈ κ〉 is a clique in the set B. For every ordinal
α ∈ κ, let Mα be a countable elementary submodel of a large structure containing
α. Note that the c.c.c. of Q implies that żα ∩ Mα = żα for every ordinal α. Use
the cardinal arithmetic assumption to find a cofinal set a ⊂ κ such that the models
Mα : α ∈ a form a ∆-system with root r. Thinning out the set a further if necessary I
may assume that the structures 〈Mα, żα, r, u̇α〉 : α ∈ a are pairwise isomorphic, with
the same transitive collapse M̄, z̄, r̄, ū. The simple form of the forcing Q implies that
Q ∩ r is a regular subposet of Q ∩ M̄ which is in turn regular in Q and so there is
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a Q ∩ r name u̇α for the remainder of the name zα. Now, for every pair of ordinals
α 6= β ∈ a, Q forces that the filters Ġ∩Mα\r and Ġ∩Mβ \r are mutually generic over
V [Ġ∩ r], and the evaluations of the names u̇α, u̇β according to these filters provide a
pair of points in the set B. It follows that in the model V [G∩r], it is the case that the
product of two copies of the poset Q∩ M̄ \ r̄ force the two evaluations of the name ū
to form a point in the set B; moreover, the evaluations must be distinct by a mutual
genericity argument. Back to the ground model V . choose a countable elementary
submodel N of a large structure containing the transitive collapses. It is easy to find
an N -generic filter g ⊂ Q̄ ∩ r̄ and a perfect set D of pairwise N̄ [g]-generic filters
on Q̄ \ r̄, and any perfect subset of the uncountable analytic set {z̄/g ∪ h : h ∈ D}
is a perfect clique of B by the forcing theorem applied to N and an absoluteness
argument. A contradiction! �

Since all Borel countable equivalence relations are reducible to F2, it is natural to
wonder whether they are also reducible to the relations EB . Regarding this question,
I will just show that it is not difficult to amend the set B from the previous section
so that all countable equivalence relations reduce to EB . To do that, let E be a
universal countable Borel equivalence relation on 2ω, fix an action of a countable
group G whose orbit equivalence E is, and enrich the countable set {fn : n ∈ ω} of
functions generating the set B by the functions x 7→ g · x for all g ∈ G. The resulting
set B is still strictly below F2 by the same proof, and the function x 7→ 〈g ·x : g ∈ G〉
reduces E to EB .

The structure of the equivalence relations of the form EB under the Borel reducibil-
ity quasiorder seems to be very complex. I will conclude the paper with noting that
if a set B has a clique of certain cardinality, then it is not reducible to any equiv-
alence reduction EC where C has no clique of that cardinality, as the proof in the
previous section immediately shows. Thus, the results of Shelah and Kubis [8, 5]
yield uncountably many unpinned Borel equivalence relations below F2, pairwise not
bireducible to each other.
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