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SYMPLECTIC 4–MANIFOLDS WITH K = 0 AND THE LUBOTZKY
ALTERNATIVE

Stefan Friedl and Stefano Vidussi

Abstract. In this paper we use the Lubotzky alternative for finitely generated linear

groups to determine which 4-manifolds admitting a free circle action can be endowed
with a symplectic structure with trivial canonical class.

1. Introduction and main results

The study of symplectic manifolds with K = 0 is a central topic of symplectic
geometry. Restricting ourselves to (real) dimension 4, this problem (as well as the
closely connected case of manifolds with Kodaira dimension 0) has been studied by
many authors (see e.g. [12, 19, 20, 2, 30]). In this note we will determine which
4-manifolds admitting a free circle action can be endowed with a symplectic structure
with trivial canonical class.

In order to state our results we have to introduce some definitions and notation.
Let M be a smooth 4–manifold that admits a free circle action. Denote by N the orbit
space of this action, a smooth 3–manifold. Then we can consider M as the total space
of a principal S1-bundle over N , determined by the Euler class e ∈ H2(N ; Z). We
will refer to the Euler class of this S1-bundle as the Euler class of the free S1-action
on M .

The following now lists all examples of symplectic 4-manifolds with K = 0 which
are known to the authors (see also [19] and [12]):

(1) the K3 surface,
(2) T 2–bundles over T 2,
(3) S1-bundles over a T 2–bundle N .

(Note that the second and third classes of examples overlap.) The K3-surface is well-
known to be symplectic; torus bundles over a torus where shown by Geiges [12] to
be symplectic, and the third type of example was shown to be symplectic by many
authors (see e.g. [28, 3, 7, 10]). In all three cases it is well-known that the canonical
is zero. It is reasonable to conjecture that this list is complete. In this paper we
will prove this conjecture for the class of 4-manifolds which admit a free circle action.
More precisely, we have the following result.

Theorem 1. Let (M,ω) be a symplectic manifold with trivial canonical class. If M
admits a free circle action with orbit space N and Euler class e ∈ H2(N ; Z), then
N is a torus bundle over a circle and, perhaps with the exclusion of the case when
b1(N) = 1 and e is torsion, M is a torus bundle over a torus.
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Remark.
(1) If M is in fact a product M = S1 × N (i.e. e = 0), then this theorem was first
proved in [8] and reproved in greater generality in [9] (see also [11]). Note though that
both approaches rely heavily on the result, due to Kronheimer [17], that for manifolds
of the form S1×N there exists a refined adjunction inequality. This inequality allows
one to constrain the Thurston norm of a 3–manifold in terms of the canonical class.
In particular, if M = S1 × N is symplectic with K = 0 this constraint translates
into the fact that N must have vanishing Thurston norm, in particular N contains
incompressible tori. This strong topological information then gives information on
the homology of the finite covers of S1×N . In [8, 9] we showed that this information
is compatible with the existence of a symplectic structure with canonical equal to zero
only if N is a torus bundle over S1.

(2) Bowden [4] studied symplectic 4-manifolds with a free circle action over a 3–
manifold with vanishing Thurston norm along the lines of [8]. This discussion shows
that our main theorem contains Bowden’s results

If M is a 4-manifold with a free circle action and non-trivial Euler class, then it is
not known whether a refined adjunction inequality similar to that established in [17]
holds. We are therefore forced to gather information by other means. We will succeed
in doing so by extending the approach of Section 2 of [8], using as new topological in-
gredient a consequence of the Lubotzky alternative for finitely generated linear groups.

Note. The results of this paper previously appeared as part of a preprint by the
authors with the title “Symplectic 4–manifolds with a free circle action”.

2. Proofs and discussion

For sake of convenience, we split the proof of Theorem 1 in the two cases where
the Euler class e ∈ H2(N) is nontorsion and, respectively, torsion. We will first treat
the former case. The latter case, which can be reduced via covering theory to the
product case treated in [8], will be discussed subsequently.

Theorem 2.1. Let (M,ω) be a symplectic manifold with trivial canonical class. If
M admits a free circle action with orbit space N and nontorsion Euler class e ∈
H2(N ; Z), then N is a torus bundle over a circle and M is a torus bundle over a
torus.

Proof. We denote the orbit space of the free circle action by N and we denote by p
the projection map M → N . Note that we have the Gysin sequence

· · · → H0(N) ∪e−−→ H2(N)
p∗−→ H2(M)

p∗−→ H1(N) ∪e−−→ H3(N) → · · ·

where p∗ is the map given by ‘integration along the fiber’. An easy argument shows
that the Gysin sequence combined with the assumption that e is non-torsion implies
that b+

2 (M) = b1(N)− 1. Since M is symplectic we conclude that b1(N) > 1.
We will first show that N is a torus bundle over S1. Given R = Z or R = Fp we

define the virtual Betti number to be

vb1(N ;R) = sup{b1(Ñ , R) | p : Ñ → N is a finite cover}.
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In particular we write vb1(N ;R) = ∞ if there exist finite covers with arbitrarily large
first R-Betti number.

We will now start by showing that the condition K = 0 implies that vb1(N) ≤ 3.
In [1] Baldridge has determined the relation between the Seiberg–Witten invariants
of M and N : The Seiberg-Witten invariant SWM (κ) of a class κ = p∗ξ ∈ p∗H2(N) ⊂
H2(M) is given by the following formula, that combines Corollaries 25 and 27 of [1],

(1) SWM (κ) =
∑

ξ∈(p∗)−1(κ)

SWN (ξ) ∈ Z,

in particular when b+
2 (M) = 1 it is independent on the chamber in which it was

calculated. Moreover, if b+
2 (M) > 1, these are the only basic classes. When the

canonical class is trivial, Taubes’ constraints ([26, 27]) imply that SWM (0) = 1 and
that the class K = 0 is the only basic class of M (when b+

2 (M) = 1, applying the
usual caveats for this case, this is true in p∗H2(N), and requires the use of Equation
1 and the symmetry of the Seiberg-Witten invariants of N). We can then compute
the sum of the coefficients of the Seiberg-Witten invariant of N as

(2)
∑

ξ∈H2(N)

SWN (ξ) =
∑

κ∈p∗H2(N)

SWM (κ) = SWM (0) = 1.

Now, for all 3–manifolds with b1(N) > 1, the sum of the coefficients of the Seiberg-
Witten polynomial equals, by the formula of Meng and Taubes (see [25]), the sum of
the coefficients of the Alexander polynomial, and the latter vanishes when b1(N) > 3
(see [29, Section II.5.2 and Theorem IX.2.2]). Equation (2) requires therefore that
b1(N) ≤ 3. Repeating this argument for all covers of N (for which the Euler class is
necessarily nontorsion and the canonical zero) gives the desired bound on vb1(N).

We want to show that the condition vb1(N) ≤ 3 entails that either N is a torus
bundle, or N is hyperbolic. First note that a generalization of an argument of [23]
shows that our assumption that M is symplectic implies that N is irreducible. This
argument is described in detail in [4] and it uses the fact that 3-manifold groups
are now known to be residually finite (which is a consequence of the proof of the
Geometrization Conjecture, we refer to [14] for details). Recall that we had shown
that b1(N) > 1; it now follows that N is Haken.

We can consider then the JSJ decomposition of N : we know that either N has a
non–trivial JSJ decomposition, or it is Seifert fibered, or it is hyperbolic.

We now prove that for the first two cases the condition vb1(N) ≤ 3 allows us to
conclude that N is a torus bundle. In fact, N must contain an incompressible torus T .
(This is obvious if N has a non–trivial JSJ decomposition, but it is true also when N
is Seifert fibered, as Seifert fibered manifolds without incompressible tori must have
b1 ≤ 1 (cf. [15, p. 89ff]).) It now follows from vb1(N) ≤ 3 combined with the results
of Kojima and Luecke (see [16, p. 744] or [22, Theorem 1.1]) that there exists a finite
cover p : Ñ → N such that Ñ is a torus bundle. We claim that this implies that N is
also a torus bundle. Indeed, a straightforward Thurston norm argument shows that
any non-zero class in H1(Ñ ; Z) corresponds to a torus bundle. Since b1(N) ≥ 2 we
can pick a non-zero class φ ∈ H1(N ; Z). We see that (Ñ , p∗(φ)) is a torus bundle
and it is well-known that this implies that (N,φ) is already a torus bundle. (If N is
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a torus bundle, all its finite covers are torus bundles, so the condition vb1(N) ≤ 3 is
satisfied.)

We are left therefore with the cases where N is a torus bundle, or an hyperbolic
manifold with vb1(N) ≤ 3. To complete the proof of the Theorem, it remains to
show that the latter case can be excluded. It is widely expected (and verified for the
arithmetic case, see [5]) that hyperbolic manifolds with positive Betti number have
vb1(N) = ∞, so it is quite possible that that case is taken care of by the previous
result, but even if we lack a general proof of this fact, we will be able to explicitly
rule out that case too.

We start by observing that, as consequence of [29, Section II.5.2 and Theorem
IX.2.4], if the homology group H1(N, Fp) has rank b1(N, Fp) > 3, then the sum of the
coefficients of the Alexander polynomial vanishes mod p. Now a consequence of the
Lubotzky alternative (cf. [21, Corollary 16.4.18] and [18, Theorem 1.3]) asserts that
if π1(N) is a finitely generated linear group, then either π1(N) is virtually soluble
or, for any prime p we have vb1(N, Fp) = ∞. Since N is hyperbolic and orientable,
its fundamental group is of course linear. By [6, Theorem 4.5] the only (orientable)
3–manifolds with positive Betti number and soluble fundamental group are torus
bundles, whence the first condition cannot occur. It follows that for any prime p, there
exists a cover of N (even regular, by [18, Theorem 5.1]) whose Alexander polynomial
has sum of coefficients that vanishes mod p. This entails that the corresponding cover
of M violates the combination of Equation (2) with [25], hence the possibility of a
hyperbolic N is excluded.

(If N is a torus bundle, all its finite covers are torus bundles, so the condition
vb1(N ; Fp) ≤ 3 is satisfied.)

We now showed that M is a principal S1-bundle over a 3-manifold N which is a
torus bundle and which satisfies b1(N) ≥ 2. Note that a torus bundle with b1(N) ≥ 2
is also an S1–bundle over T 2 (see e.g. [13]). It follows that M is in fact a T 2–bundle
over T 2. �

Remark.
(1) The proof of Theorem 2.1 applies, mutatis mutandis, to the product case, making
it unnecessary there as here to use Kronheimer’s refined adjunction inequality or
Donaldson’s theorem on the existence of symplectic representatives of (sufficiently
high multiples of) the dual of [ω], that are used instead in [17] and [31].

(2) Note that the statement of Theorem 2.1 covers in fact all symplectic manifolds
with torsion canonical class (a class that a priori could be broader, when b+

2 (M) = 1,
than the case of trivial canonical class). In fact, if b+

2 (M) = 1, b1(M) = 2, and
K is torsion, McDuff and Salamon show in [24] that K is in fact trivial. (This can
actually be verified, in the case at hand, using Taubes’ constraints and the symmetry
of SWN .) So Theorem 2.1 covers all symplectic manifolds with Kodaira dimension 0,
in the notation of [19] (M is symplectically minimal, as it is aspherical).

We will discuss now the case where the Euler class e ∈ H2(N ; Z) is torsion. In
principle, we could proceed as in the previous case, using the results of [1] for the
relation between the Seiberg-Witten invariants of M and N in case of torsion Euler
class. This does not present particular conceptual difficulties but requires, in the case
of b+

2 (M) = b1(N) = 1, a detailed bookkeeping of the chamber dependence of the
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Seiberg-Witten invariants for both M and N , that would impose on us a somewhat
long detour. Instead of following that path, it is simpler to use a straightforward
algebro–topological observation to reduce the problem to the product case treated in
[8]. (The same approach was independently taken by Bowden [4, Proposition 3].) We
have the following result:

Theorem 2.2. Let (M,ω) be a symplectic manifold with trivial canonical class. If M
admits a free circle action with orbit space N and torsion Euler class e ∈ H2(N ; Z),
then N is a torus bundle over a circle. Furthermore, if either b1(N) > 1 or e = 0,
then M itself is a torus bundle over a torus.

Proof. If the Euler class e ∈ H2(N) is trivial, M is a product S1 ×N . It was shown
in [8] that N fibers over S1, hence M is a torus bundle over a torus.

So we now assume that e 6= 0, so that in particular Tor(H1(N)) is non–trivial.
Denote by Γ an abelian group isomorphic to Tor(H1(N)), and pick a map H1(N) → Γ
such that the induced map

Tor(H1(N)) → H1(N) → Γ

is an isomorphism. Denote by γ : π1(N) → H1(N) → Γ the corresponding map from
the fundamental group of N . We claim that, denoting as usual by π : NΓ → N the
associated regular cover, and by π : MΓ → M its 4–dimensional counterpart, MΓ is
the product S1 ×NΓ. In fact, we have the commutative diagram

1 // π1(NΓ) //

��

π1(N)

��

// Γ

��

// 1

H1(NΓ) // H1(N) // Γ

Tor(H1(NΓ))

OO

// Tor(H1(N)).

OO
∼=

::ttttttttttt

It follows from the commutativity, and from the exactness of the top horizontal se-
quence that the map π∗ : Tor(H1(NΓ)) → Tor(H1(N)), and hence

(π∗)∗ : Ext(H1(N), Z) → Ext(H1(NΓ), Z)

is trivial. It now follows from the naturality of the universal coefficient short exact
sequence that the Euler class eΓ = π∗e of the fibration pΓ : MΓ → NΓ is zero, i.e. MΓ

is the product S1 ×NΓ.
Now assume that M admits a symplectic structure. Then the manifold S1 × NΓ

inherits a symplectic structure π∗ω with canonical class π∗K = 0. It now follows
from [8] that NΓ is a torus bundle. A Thurston norm argument shows that (NΓ, φΓ)
is a torus bundle for any φΓ ∈ H1(NΓ; Z). Now let φ ∈ H1(N ; Z) be any non-trivial
element, which exists since b1(N) ≥ 1. By the above (NΓ, π∗(φ)) is a torus bundle
and it is well-known that this implies that (N,φ) is a torus bundle. When e = 0
obviously and when b1(N) > 1 with the same argument as in Theorem 2.1 we deduce
that M itself is a torus bundle over a torus. �

Note that in all cases a manifold M as in the statement of Theorem 2.2 is finitely
covered by a torus bundle over a torus.
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As for the case of Theorem 2.1, [24] guarantees that the manifolds above are the
only symplectic manifolds with Kodaira dimension zero.

We finish this note with one observation and one conjecture. The proof of Theorem
1 boils down, using the appropriate topological arguments, to the study of virtual
Betti numbers of symplectic manifolds with K = 0. This approach, in various forms,
appears in [2, 4, 8, 20]. From our viewpoint, the upper bounds on the virtual Betti
number are a consequence, via dimensional reduction, of known constraints on the
sum of the coefficients of Alexander polynomials, while in the approach of [2, 20]
(that applies, differently from ours, to any 4–manifold) it follows from properties of
the Bauer-Furuta invariants. Overlapping the results available with both approaches,
it seems sensible to conjecture that any symplectic 4-manifold M with K = 0 should
satisfy vb1(M, Fp) ≤ 4. Verifying this conjecture could give further evidence that the
list of [19] is complete.
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