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SUBGROUPS OF PROFINITE SURFACE GROUPS

Lior Bary-Soroker, Katherine F. Stevenson, and Pavel A. Zalesskii

Abstract. We study the subgroup structure of the étale fundamental group Π of a

projective curve over an algebraically closed field of characteristic 0. We obtain an

analog of the diamond theorem for Π. As a consequence we show that most normal
subgroups of infinite index are semi-free. In particular every proper open subgroup of a

normal subgroup of infinite index is semi-free.

1. Introduction

Every subgroup of a free group is free, this is the content of the Nielsen-Schreier
theorem. The profinite version of the Nielsen-Schreier theorem fails in general and
even fails for normal subgroups, for example Zp ≤ Ẑ. Therefore the question of
finding conditions under which a subgroup of a free profinite group is free is natural
and of importance. The question was considered by Melnikov, Lubotzky, van der
Dries, Jarden, Haran, and others ([7, Chapter 8] and [3, Chapter 25]).

Roughly speaking the most general criteria are Melnikov’s characterization of nor-
mal (and accessible) subgroups of free profinite groups and Haran’s diamond theorem.
In this work we consider the étale fundamental group Π = π1(X), where X is a curve
over an algebraically closed field of characteristic 0 and the genus of its smooth com-
pletion is ≥ 2.

If X is affine, then Π is free of finite rank. Therefore Melnikov’s characterization
is known to hold [7, Chapter 8.6] and similarly Haran’s diamond theorem [1]. If X
is projective, then Π is a profinite surface group, i.e., the profinite completion of a
surface group. Melnikov’s characterization for normal subgroups of Π is obtained in
[8]. The objective of this work is to obtain the diamond theorem for profinite surface
groups:

Theorem 1.1. Let Π be a profinite surface group of genus g ≥ 2 and let N be a
closed subgroup of Π with [Π : N ] =

∏
p p

∞ as supernatural numbers, where p runs
over all primes. Assume there exist closed normal subgroups K1,K2 of Π such that
K1∩K2 ≤ N but K1 6≤ N and K2 6≤ N . Then N is a free profinite group of countable
rank.

We note that a necessary condition for a profinite group to be free is that it is
projective, and a closed subgroup N of a profinite surface group Π is projective if and
only if [Π : N ] =

∏
p p

∞ as supernatural numbers, where p runs over all primes [8,
Proposition 1.2].

Recently a notion of “free not necessarily projective” profinite groups evolved from
Galois theory [5, 2], the so called semi-free groups. A second countable profinite group
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is semi-free if and only if every finite split embedding problem is properly solvable.
Using this notion we can generalize Theorem 1.1 to any closed subgroup of infinite
index:

Theorem 1.2. Let Π be a profinite surface group of genus g ≥ 2 and let N be a closed
subgroup with [Π : N ] = ∞. Assume there exist closed normal subgroups K1,K2 of Π
such that K1 ∩K2 ≤ N but K1 6≤ N and K2 6≤ N . Then N is semi-free of countable
rank.

Since a semi-free projective group is free [2, Theorem 3.6], Theorem 1.1 follows
from Theorem 1.2.

A consequence of Theorem 1.2 is that ‘most’ closed normal subgroups of Π of
infinite index are semi-free in the following sense.

Corollary 1.3. Let Π be a profinite surface group of genus g ≥ 2 and let N be a
closed normal subgroup with [Π : N ] = ∞. Then every proper open subgroup of N is
semi-free.

We give more examples in Section 4.3.
A typical example of a closed normal subgroup which is not semi-free is the kernel

M of the epimorphism from Π to its maximal pro-p quotient (because M has no p-
quotient). Note however that M is contained in a semi-free closed normal subgroup
of Π. Indeed, there exists a continuous epimorphism α : Π → Z2

p, so kerα = K1 ∩K2,
where K1,K2 are closed normal subgroups of Π with Π/Ki

∼= Zp. By Theorem 1.2,
kerα is semi-free, and clearly M ≤ kerα.

We show in fact that every closed normal subgroup N of Π of infinite index such
that Π/N is not hereditarily just infinite is contained in a semi-free closed normal
subgroup. (An infinite profinite group is just infinite if it has no proper infinite
quotient. It is hereditarily just infinite if every open normal subgroup of it is just
infinite.)

Theorem 1.4. Let Π be a profinite surface group of genus g ≥ 2 and let N be a closed
normal subgroup with [Π : N ] = ∞ such that Π/N is not hereditarily just infinite.
Then there exists a semi-free closed normal subgroup M of Π such that N ≤M .

Through the paper, all subgroups of a profinite group are assumed to be closed,
and all homomorphisms of profinite groups are assumed to be continuous. The paper
is organized as follows. Section 2 is dedicated to preliminary results on surface groups.
In Section 3 we prove Theorems 1.1 and 1.2. In the last section we prove Corollary 1.3
and Theorem 1.4.

2. Surface groups

The fundamental group π1(X) of an oriented Riemann surface X of genus g is
given by the presentation

π1(X) =
〈
x1, . . . , xg, y1, . . . , yg

∣∣∣ g∏
i=1

[xi, yi]
〉
.

Here [x, y] = x−1y−1xy. A group with this presentation is said to be a surface group
of genus g. We shall call its profinite completion Π a profinite surface group of genus
g. Note that Π is the same as the ètale fundamental group of X.
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Fact 2.1. Let Π be a profinite surface group of genus g and let U be an open subgroup
of index n. Then U is a profinite surface group of genus n(g − 1) + 1.

Proof. This is well known for surface groups. The map π1(X) → Π induces an index-
preserving bijection between finite index subgroups of π1(X) and open subgroups of
Π sending a subgroup to its completion [7, Chapter 3]. �

Let Π be a profinite group. A finite split embedding problem (FSEP) for Π consists
of finite groups A,B and epimorphisms f : Π → B and α : A→ B, such that α splits.
We denote it by (f, α). A weak solution is a homomorphism ψ : Π → A such that
α ◦ ψ = f . If ψ is surjective we say it is a proper solution.

We shall need the following technical lemma.

Lemma 2.2. Let (f : Π → B,α : A → B) be a finite split embedding problem for Π
of genus g ≥ 2|A|3. Then (f, α) is properly solvable.

Remark 2.3. The bound g ≥ 2|A|3 is not the best possible. In fact, if s is the minimal
number of generators of kerα as a normal subgroup of A, then g ≥ s|B|2(|A| + 1)
suffices. We will not use this sharper bound here, and hence will not prove it.

Proof. Let n = |A|, and β : B → A a section of α. Note that kerα is generated by
|A|
|B| elements. Let ϕ = β ◦ f : Π → A. Then ϕ is a weak solution.

By [6, Lemma 6.1], it suffices to replace the generators of Π with a different set of
generators having the same unique relation such that the first |A|2+|A|

|B| ≤ 2|A|2
|B| new

xi’s (resp., yi’s) have the same image under ϕ. Let r = 2|A|2
|B| .

Each of the g pairs (xi, yi) has |B|2 possibilities for (ϕ(xi), ϕ(yi)), hence, since
g ≥ 2|A|3 ≥ |B|2r, Dirichlet’s box principle gives indexes j1 < · · · < jr for which

(1) ϕ(xj1) = · · · = ϕ(xjr ) and ϕ(yj1) = · · · = ϕ(yjr )

The following argument explains how to replace j1 with 1, j2 with 2, and so forth.
Let xy = y−1xy. Suppose j1 6= 1. Then

g∏
i=1

[xi, yi] = [xj1 , yj1 ]([x1, y1] · · · [xj1−1, yj1−1])[xj1 ,yj1 ][xj1+1, yj1+1] · · · [xg, yg].

For each i = 1, . . . , j1−1, replace the pair of generators xi, yi with x[xj1 ,yj1 ]
i , y

[xj1 ,yj1 ]
i .

Thus we may assume that j1 = 1. Continuing similarly, we get a new presentation
of Π of the same kind for which (1) holds, and hence by [6, Lemma 6.1] (f, α) is
solvable. �

3. Diamond �

In this section we prove Theorems 1.2 and 1.1.

3.1. Haran-Shapiro Induction. Let N ≤ Π be a subgroup of Π. Consider a FSEP

E = (µ1 : N → G1, α1 : AoG1 → G1)

for N . We describe a method to construct an embedding problem Eind for Π such that
a weak solution of Eind induces a weak solution of E , and under certain conditions, a
proper solution of Eind induces a proper solution of E .
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We start by setting up the notation. Let L /Π be an open normal subgroup of Π.
Assume

(2) L ∩N ≤ kerµ1.

Let µ : Π → G := Π/L be the natural epimorphism, G0 = NL/L ∼= N/N ∩ L, and
µ0 = µ|N : N → G0. Then µ1 factors as µ1 = ν ◦ µ0, where ν : G0 → G1 is induced
by (2). The group G0 acts on A via ν, i.e., ag := aν(g), for all a ∈ A, g ∈ G0.

N

µ0

��
µ1

��

AoG0
α0 //

ρ

��

G0

ν

��
AoG1

α1 // G1

Here ρ(a, g) = (a, ν(g)) and α0 is the projection map. The group G acts on

IndGG0
(A) = {f : G→ A | f(στ) = f(σ)τ , ∀σ ∈ G, τ ∈ G0} ∼= A(G:G0)

by (fσ)(σ′) = f(σσ′), for all σ, σ′ ∈ G, f ∈ IndGG0
(A). This gives rise to the so called

twisted wreath product

A oG0 G = IndGG0
(A) oG.

Let α : A oG0 G→ G be the projection map. Then we have the following FSEP for Π
induced from E (w.r.t. L satisfying (2)):

(3) Eind(L) = (µ : Π → G,α : A oG0 G→ G).

Let Sh: IndGG0
(A) oG0 → AoG0 be defined by Sh((f, σ)) = f(1)σ. Clearly Sh is

surjective, it is also a homomorphism, since

Sh(fσ) = fσ(1) = f(σ) = f(1)σ = Sh(f)σ.

Now, a weak solution ψ : Π → A oG0 G of Eind induces the weak solution ψind =
ρ ◦ Sh ◦ ψ|N of E :

N
ψ|N //

ψind

22IndGG0
(A) oG0

Sh //AoG0
ρ //AoG1

(Note ψ(N) ≤ IndGG0
(A) o G0 since µ(N) = µ0(N) = G0, hence Sh ◦ ψ|N is well

defined.)
Assume ψ is surjective. In general this does not imply surjectivity of ψind. The

following result gives a working sufficient condition on L for ψind to be surjective.

Proposition 3.1 ([2, Proposition 4.5]). Let N ≤ Π be profinite groups and let

E = (µ1 : N → G1, α1 : AoG1 → G1)

be a FSEP for N . Let D,Π0, L be subgroups of Π such that
(4a) D is an open normal subgroup of Π with N ∩D ≤ kerµ1,
(4b) Π0 is an open subgroup of Π with N ≤ Π0 ≤ ND,
(4c) L is an open normal subgroup of Π with L ≤ Π0 ∩D.
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In particular L ∩N ≤ D ∩N ≤ kerµ1, so (2) holds. Let Eind be as in (3).
Assume that there is a closed normal subgroup N of Π with N ≤ N ∩ L such that

there is NO nontrivial quotient Ā of A through which the action of G0 on A descends
and for which the FSEP

(5) Ēind,N (L) = (µ̄ : Π/N → G, ᾱ : Ā oG0 G→ G),

where µ̄ is the quotient map, G = Π/L, and G0 = Π0/L, is properly solvable. Then a
proper solution ψ of Eind induces a proper solution ψind of E.

3.2. Condition (�). Let N ≤ Π be profinite groups with [Π : N ] = ∞ and assume
there exist normal subgroups N1, N2 of Π such that N1 ∩N2 ≤ N but N1 6≤ N and
N2 6≤ N . Without loss of generality we can assume that [N1N : N ] = ∞. Indeed, if
[N1N : N ] <∞, then Π has an open subgroup N ′

2 such that N ′
2 ∩ (N1N) ≤ N . Then

N1 ∩N ′
2 ≤ N and [N ′

2N : N ] = ∞. Replace N1 with N ′
2 and N2 with N1 to get the

assumption.
The following result will be used in the sequel.

Lemma 3.2. Let N ≤ Π be profinite groups with [Π : N ] = ∞ and assume there
exist normal subgroups N1, N2 of Π such that N1 ∩N2 ≤ N , [N1 : N1 ∩N ] = ∞, and
N2 6≤ N . Let

E = (µ1 : N → G1, α1 : AoG1 → G1)
be a FSEP for N . Let L be an open normal subgroup of Π satisfying

(i) L ∩N ≤ kerµ1,
(ii) [N1NL : NL] ≥ 3,
(iii) [N2NL : NL] ≥ 2, and
(iv) [Π : NL] ≥ 3.

Let G = Π/L, G0 = NL/L ∼= N/N ∩ L and let

Eind = (µ : Π → G,α : A oG0 G→ G)

be as defined the induced embedding problem of Equation (3). Then a proper solution
ψ of Eind induces a proper solution ψind of E.

Proof. To prove the assertion we use Proposition 3.1. Choose an open normal sub-
group D of Π with N ∩ D ≤ kerµ1, let Π0 = ND. We can choose an open normal
subgroup L of Π such that

N1L,N2L 6≤ NL (use N1, N2 6≤ N),(6’)
[Π : NL] > 2 (use [Π : N ] > 2),(7’)
(N1NL : NL) > 2 (use [N1N : N ] > 2).(8’)

Let G = Π/L, µ : Π → G be the natural epimorphism, G0 = µ(N) = NL/L ∼=
N/N ∩ L, and Gi = µ(Ni) = NiL/L ∼= Ni/Ni ∩ L. Then taking the above conditions
modulo L gives the following conditions.

G1, G2 6≤ G0.(6)
[G : G0] > 2.(7)
[G1G0 : G0] > 2.(8)

Let N = N1 ∩N2 ∩ L.
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Let Ā be a non-trivial quotient of A through which the action of G0 descends.
By Proposition 3.1 it suffices to show that Ēind,N appearing in (5) is not properly
solvable.

Assume ψ : Π → Ā oG0 G is an epimorphism with α ◦ ψ = µ that factors through
Π/N . Then ψ(N ) = 1. For i = 1, 2 put Hi = ψ(Ni). Then Hi / Ā oG0 G and
α(Hi) = µ(Ni) = Gi. By (6) there is an h2 ∈ H2 with α(h2) 6∈ G0. Recalling (8), [3,
Lemma 13.7.4(a)] gives an h1 ∈ H1 for which α(h1) = 1 and [h1, h2] 6= 1.

For i = 1, 2, lift hi to yi ∈ Ni (i.e., ψ(yi) = hi). Then µ(y1) = α(h1) = 1. So,
y1 ∈ L. Then [y1, y2] ∈ [L,N2] ∩ [N1, N2] ≤ L ∩ (N1 ∩ N2) = N . So, [h1, h2] =
[ψ(y1), ψ(y2)] ∈ ψ(N ) = 1. This contradiction proves that ψ as above does not
exist. �

We write f ↑ ∞ for an increasing function f : R+ → R+ with lim
x→∞

f(x) = ∞.

We say that a subgroup N of Π with [Π : N ] = ∞ satisfies Condition (�) in Π if
there exist normal subgroups N1, N2 of Π such that N1 ∩N2 ≤ N , [N1 : N1 ∩N ] ≥ 3,
[N2 : N2 ∩ N ] ≥ 2, and for every f ↑ ∞, r ∈ N, and open subgroup N ′ of N there
exists a diagram of subgroups

N ′ N E0 E Π

N ∩ L L

such that
(9a) L ≤ E0 ≤ E are open in Π;
(9b) L is normal in E;
(9c) [N1 ∩ E : N1 ∩ E0] ≥ 3;
(9d) [N2 ∩ E : N2 ∩ E0] ≥ 2;
(9e) f([Π : E]) ≥ r · [E : L].
In the sequel we use the notion of sparse and abundant subgroups ([1, Defin-

tion 2.1]) and some of their basic properties.

Definition 3.3. A closed subgroup M of a profinite group Π of infinite index is called
sparse if for every n ∈ N there exists an open subgroup K of Π containing M such
that for every proper open subgroup L of K containing M we have [K : L] ≥ n.

It follows that one can take K with arbitrarily large index in Π. See [2, Defini-
tion 5.1].

A subgroup of Π is called abundant if it is not open and not sparse

Proposition 3.4. Let Π, N,N1, N2 be profinite groups such that N,N1, N2 are sub-
groups of Π, N1, N2 are normal in Π, [Π : N ] = ∞, N1 ∩N2 ≤ N , [N1N : N ] = ∞,
and N2 6≤ N . Each of the following implies that N satisfies Condition (�) in an open
subgroup of Π.
(10a) [Π : NN1N2] = ∞.
(10b) [Π : NN1N2] <∞ and NN1 is abundant in Π.
(10c) [Π : NN1N2] <∞ and NN2 is abundant in Π.
(10d) [Π : (NN1) ∩ (NN2)] <∞ and N is abundant in Π.
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We need two lemmas for the proof.

Lemma 3.5. Let Π be a profinite group and N a subgroup of Π of infinite index.
Let N1, N2 be normal subgroups of Π such that N1 ∩ N2 ≤ N , [N1 : N1 ∩ N ] ≥ 3
and [N2 : N2 ∩N ] ≥ 2. Assume that for every f ↑ ∞, s ∈ N, Π has open subgroups
E1 ≤ E containing N such that f([Π : E]) ≥ s · [E : E1]! and for each i ∈ {1, 2} either

(11a) Ni ≤ E or
(11b) NiE1 = Π and [E : E1] ≥ 3.
Then N satisfies Condition (�).

Proof. Let f ↑ ∞, r ∈ N and N ′ an open subgroup of N . Then there exists an open
normal subgroup D of Π such that D ∩ N ≤ N ′. Since [N1 : N1 ∩ N ] ≥ 3, and
[N2 : N2 ∩N ] ≥ 2, Π has an open normal subgroup H containing N such that

(12) [N1 : N1 ∩H] ≥ 3 and [N2 : N2 ∩H] ≥ 2.

Put s = r · [Π : H]![Π : D].
Our condition gives open subgroups E1 ≤ E containing N such that f([Π : E]) ≥

s · [E : E1]! and for each i ∈ {1, 2} either (11a) or (11b) holds. Set E0 = H ∩E1. Let
E11 =

⋂
σ∈E E

σ
1 (resp., H00 =

⋂
σ∈ΠH

σ) be the normal core of E1 (resp., H) in E
(resp., Π). Finally let L = H00 ∩ E11 ∩D. Then L ≤ H00 ∩ E11 ≤ H ∩ E1 = E0.

H00 H Π

E

E0

tttttttttt
E1

L H00 ∩ E11 E11

We have

[E : L] = [E : H00 ∩ E11 ∩D]
= [E : E11][E11 : H00 ∩ E11][H00 ∩ E11 : H00 ∩ E11 ∩D]
≤ [E : E11][Π : H00][Π : D]

≤ [E : E1]![Π : H]![Π : D] ≤ 1
s
f([Π : E])[Π : H]![Π : D]

=
1
r
f([Π : E]).

It remains to show that [N1 ∩ E : N1 ∩ E0] ≥ 3 and [N2 ∩ E : N2 ∩ E0] ≥ 2. First
assume (11a), i.e., Ni ≤ E. Then, since E0 ≤ H,

[Ni ∩ E : Ni ∩ E0] ≥ [Ni : Ni ∩H],

and we are done by (12).
Next assume (11b), i.e., NiE1 = Π and [E : E1] ≥ 3. Then (Ni ∩ E)E1 = E, so

[Ni ∩ E : Ni ∩ E0] ≥ [Ni ∩ E : Ni ∩ E1] = [E : E1],

as needed. �
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Lemma 3.6. Let N be an abundant subgroup of a profinite group Π. Then for
every f ↑ ∞ and s ∈ N there exist open subgroups N ≤ E1 ≤ E ≤ Π such that
f([Π : E]) ≥ s · [E : E1]! and [E : E1] ≥ 3.

Proof. Since N is abundant in Π, there exist m,n ∈ N such that for every open
subgroup Π0 of Π containing N with [Π : Π0] ≥ m there exists an open subgroup Π1

of Π0 containing N such that 1 < [Π0 : Π1] ≤ n.
Let f ↑ ∞ and s ∈ N. By definition, [Π : N ] = ∞. Thus there exists an open

subgroup Π0 of Π containing N with f([Π : Π0]) ≥ max{s · n!, s · 4!, f(m)}. In
particular f([Π : Π0]) ≥ f(m), thus [Π : Π0] ≥ m. By assumption, Π0 has an open
subgroup Π1 containing N such that 1 < [Π0 : Π1] ≤ n.

If [Π0 : Π1] ≥ 3, then the subgroups E = Π0 and E1 = Π1 satisfy the conclusion of
the lemma because f([Π : Π0]) ≥ s · n!. Otherwise, [Π0 : Π1] = 2. By assumption Π1

has an open subgroup Π2 containing N such that 1 < [Π1 : Π2] ≤ n. If [Π1 : Π2] ≥ 3,
then, similarly to the previous case, the subgroups E = Π1 and E1 = Π2 satisfy the
conclusion of the lemma. Otherwise, [Π1 : Π2] = 2, thus [Π0 : Π2] = 4, so E = Π0,
E1 = Π2 satisfy the conclusion of the lemma because f([Π : Π0]) ≥ s · 4!. . �

Proof of Proposition 3.4. Let f ↑ ∞ and s ∈ N. By Lemma 3.5 it suffices to find open
subgroups E1 ≤ E of Π containing N such that f([Π : E]) ≥ s · [E : E1]! and for each
i ∈ {1, 2} either

(i) Ni ≤ E or
(ii) NiE1 = Π and [E : E1] ≥ 3.

We distinguish between the four cases:
In the first case we have [Π : NN1N2] = ∞. Then there exists an open subgroup

E of Π containing NN1N2 such that f([Π : E]) ≥ s. Put E1 = E. Then N1, N2 ≤ E
and f([Π : E]) ≥ s · [E : E1]!.

In the second case, we assume that [Π : NN1N2] <∞ and NN1 is abundant in Π.
By [1, Corollary 2.3], NN1 is abundant in every open subgroup that contains it, so
NN1 is abundant in NN1N2. Thus we can replace Π by NN1N2 in order to assume
that Π = NN1N2; it suffices to prove (i) and (ii) for this Π. Lemma 3.6 gives open
subgroups E1 < E of Π that contain NN1 for which f([Π : E]) ≥ s · [E : E1]! and
[E : E1] ≥ 3. Then, N1 ≤ E and E1N2 = Π.

The third case is the same as the second case, after exchanging the indices 1 and
2.

In the last case we assume that [Π : (NN1) ∩ (NN2)] < ∞ and N is abundant in
Π. In particular NNi is open in Π, so

(13) [Ni : Ni ∩N ] = [NNi : N ] = ∞, i = 1, 2.

Let Π′ = (NN1) ∩ (NN2). Then since Π′ is open in Π, it follows that N is abundant
in Π′.
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PutN ′
1 = N1∩Π′ andN ′

2 = N2∩Π′. ThenNN ′
1 = NN ′

2 = Π′. Since [Ni : N ′
i ] <∞,

by (13), it follows that [N ′
i : N ′

i ∩N ] = ∞.

N1 N1N Π

N ′
1 Π′ N2N

N ′
2 N2

Replace Π by Π′, N1 by N ′
1, and N2 by N ′

2, if necessary, to assume that NN1 = Π
and NN2 = Π; it suffices to prove (i) and (ii) for this Π. Lemma 3.6 gives open
subgroups E1 ≤ E of Π containing N with f([Π : E]) ≥ s · [E : E1]! and [E : E1] ≥ 3.
Meanwhile, for i = 1, 2,

Π = NNi ≤ E1Ni ≤ Π,

hence these subgroups satisfy (ii). �

3.3. Proof of Theorem 1.2. Let Π be a profinite surface group of genus g ≥ 2.
We start with two lemmas.

Lemma 3.7. A sparse subgroup of Π is semi-free of countable rank.

Proof. Assume N ≤ Π is sparse. Since Π is finitely generated, the rank of N is at most
ℵ0. Thus it suffices to solve any finite split embedding problem (µ : N → B,α : A→
B) for N [2, Lemma 3.4].

Choose an open normal subgroup D/Π with D∩N ≤ kerµ and set H = ND. Then
H is open in Π and µ extends to an epimorphism µ′ : H → B by setting µ′(nd) = µ(n)
for all n ∈ N , d ∈ D.

Since N is sparse in Π, by [1, Lemma 2.2], there is an open subgroup H0 of
H that contains N such that [Π : H0] ≥ 2|A|3 and every proper open subgroup
N ≤ H1 � H0 satisfies [H0 : H1] > |A|. Note that µ0 = µ′|H0 is surjective, since
µ′(H0) ≥ µ′(N) = B.

By Fact 2.1, we get that H0 is a profinite surface group of genus

g0 = [Π : H0](g − 1) + 1 > [Π : H0] ≥ 2|A|3.

By Lemma 2.2, the split embedding problem

(µ0 : H0 → B,α : A→ B)

is properly solvable; let γ : H0 → A be a solution. It suffices to show that γ(N) = A,
or equivalently N ker γ = H0, since then γ|N is a solution of (µ, α). Indeed, as
[H0 : N ker γ] ≤ [H0 : ker γ] ≤ |A|, we have N ker γ = H0. �

Lemma 3.8. Assume N satisfies Condition (�) in Π. Then N is semi-free.
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Proof. Since Π is finitely generated we get that N is countably generated. Hence it
suffices to show that every finite split embedding problem

E = (µ1 : N → G1, α1 : AoG1 → G1)

with A 6= 1 is properly solvable.
Let f(x) = log x and take N ′ = kerµ1. Choose r such that

(14) ery ≥ 2|A|3yy3, ∀y ≥ 2.

By Condition (�) applied to f , r and N ′, there exist normal subgroups N1, N2 of Π
such that N1 ∩ N2 ≤ N , [N1 : N1 ∩ N ] ≥ 3, [N2 : N2 ∩ N ] ≥ 2 and a diagram of
subgroups

N ′ N E0 E Π

N ∩ L L

satisfying the conditions (9). In particular, (9e) is equivalent to [Π : E] ≥ er·[E:L].
Then E is a surface group of genus

(15) g0 = [Π : E](g − 1) + 1 ≥ er·[E:L] ≥ 2|A|3[E:L][E : L]3.

Let N ′
i = Ni ∩ E. We apply Lemma 3.2 with E replacing Π and N ′

i replacing Ni.
Let G = E/L, G0 = NL/L ∼= N/N ∩ L, and

Eind = (µ : E → G,α : A oG0 G→ G)

the induced embedding problem. We claim that the conditions (i)-(iv) of the lemma
are satisfied. Indeed, L∩N ≤ N ′ by the diagram, so we have (i). Since NL ≤ E0 ≤ E
we have

[N ′
iNL : NL] = [N ′

i : N ′
i ∩NL] = [Ni ∩ E : (Ni ∩ E) ∩NL] ≥ [Ni ∩ E : Ni ∩ E0].

So (9c) and (9d) imply (ii) and (iii). Finally, by (9c) we have

[E : NL] ≥ [E : E0] ≥ [N1 ∩ E : N1 ∩ E0] ≥ 3.

So (iv) is satisfied.
Now by (15) we have that g0 ≥ 2|A oG0 G|3, hence by Lemma 2.2, Eind is properly

solvable, and thus by Lemma 3.2 so is E . �

Proof of Theorem 1.2. As explained at the beginning of Section 3.2, we can assume
that [N1N : N ] = ∞.

Note that by Lemma 3.8, if one of the conditions of Proposition 3.4 is satisfied,
then N is semi-free. Hence we assume that none of them holds.

If [Π : (NN1)∩(NN2)] <∞, then the negation of Condition 10d of Proposition 3.4
gives that N is sparse in Π. Hence N is semi-free of countable rank (Lemma 3.7).
Thus we may assume that [Π : (NN1)∩ (NN2)] = ∞. W.l.o.g. [Π : NN1] = ∞. Then
the negation of ((10a) ∨ (10b)) gives that NN1 is sparse in Π. Then Lemma 3.7 gives
that NN1 is semi-free of countable rank.

Put N ′
2 = (NN1)∩N2. Then N1, N

′
2/NN1, N1∩N ′

2 ≤ N and N1 6≤ N . If N ′
2 6≤ N ,

then the diamond theorem for semi-free groups ([2, Main Theorem VI]) gives that N
is semi-free of countable rank.
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We are left with the case N ′
2 ≤ N . Then N = NN1 ∩ NN2. By the negation of

(10a) of Proposition 3.4, [Π : NN1N2] <∞, hence

[Π : NN2] = [Π : NN1N2][NN1 : N ] = ∞.

N2 NN2
∞

NN1N2
<∞

Π

N ′
2 N

∞
NN1

The negation of (10c) of Proposition 3.4 gives thatNN2 is sparse in Π and hence in the
open subgroup NN1N2 of Π ([1, Corollary 2.3]). But since NN1/N

′
2
∼= NN1N2/N2,

this implies that N is sparse in the semi-free group NN1, and hence N is semi-free of
countable rank ([1, Lemma 2.4]). �

3.4. Proof of Theorem 1.1. Since [Π : N ] =
∏
p p

∞, N is projective [8, Propo-
sition 1.2]. By Theorem 1.2, N is semi-free. Therefore, by [2, Theorem 3.6] N is
free. �

4. Applications

4.1. Proof of Theorem 1.4. Let Π be a surface group of genus g ≥ 2 and let NCΠ
be a normal subgroup of infinite index such that Π/N is not hereditary just infinite .
We need to prove that N is contained in a semi-free normal subgroup.

If there exists a normal subgroup N � M /Π with [Π : M ] = ∞, then there exists
N ≤ U C Π open in Π such that M ∩ U 6= M (recall that N is the intersection of all
open subgroups containing it). So M ∩ U is semi-free by Theorem 1.2, and we are
done.

Therefore we can assume that J = Π/N is just infinite. By [4, Theorem 3(b)],
there exists an open normal subgroup J0 of J such that either J0 is hereditarily just
infinite or J0 = A×B, where A and B are infinite groups. The former is not possible,
since if U is an open normal subgroup of J with a proper infinite quotient, then U ∩J0

is an open normal subgroup of J0 with a proper infinite quotient.
Let Π0,K1,K2 be the respective preimages of J0, A,B under the map Π → J .

Then Π0 is a surface group of genus ≥ 2 and N = K1 ∩K2. So by Theorem 1.2, N
is semi-free. �

Remark 4.1. Let N be a normal subgroup of Π such that Π/N is hereditarily just
infinite. We do not know whether N is necessarily semi-free.

4.2. Proof of Corollary 1.3. Let Π be a surface group of genus at least 2, N a
normal subgroup of Π of infinite index, and M a proper open subgroup of N . There
exists an open normal subgroup U C Π such that U ∩ N ≤ M . Note that U is not
contained in M because [Π : M ] = ∞. By Theorem 1.2, M is semi-free. �
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4.3. Some examples. Let Π be a surface group of genus at least 2 and N a closed
subgroup of infinite index. The following result provides many interesting examples
of semi-free subgroups of a surface group.

Proposition 4.2. If N C Π and if every open subgroup of Π/N can be generated by
d elements, for some d ≥ 1, or if N is sparse in Π, then N is semi-free.

Proof. Let
E(N) = (µ0 : N → A,α0 : C oA→ A)

be a FSEP for N . Since N is countably generated, it suffices to show that E(N) has
a proper solution. Assume first that every open subgroup of Π/N is generated by d
elements. Choose r, n ≥ 1 such that n > ((|C||A|)!)d and r ≥ 2|A|3|C|3n.

Choose L C Π to be an open subgroup of Π such that L ∩N ≤ kerµ0. Choose Π̃
be an open subgroup of Π such that N ≤ Π̃ ≤ LN and such that [Π : Π̃] ≥ r. Then
we can extend µ0 to µ : Π̃ → A by µ(nl) = µ0(n), for every n ∈ N , l ∈ L, for which
nl ∈ Π̃. By Fact 2.1 the genus of Π̃ is at least r. Without loss of generality we can
replace Π with Π̃ to assume µ0 can be extended to µ : Π → A and g ≥ r. (Note that
the rank of Π̃/N is bounded by the rank of Π/N .)

Consider the FSEP

En(Π) = (µ : Π → A,α : Cn oA→ A),

where A acts component-wise on Cn. Since g ≥ r ≥ 2|A|3|C|3n, by Lemma 2.2, there
exists a proper solution Ψ: Π → Cn o A of En(Π). For each i = 1, . . . , n, let ψi be
the composition of Ψ with the projection CnoA→ CoA on the ith coordinate. Let
Li = kerψi. Then LiLj = kerµ, for every i 6= j.

If LiN = Π for some i, then ψi(N) = C oA, so ψi|N is a proper solution of E(N),
and we are done.

Otherwise, assume that LiN 6= Π for every i. But since (LiN)(LjN) = (LiLj)N =
kerµN = Π, we get that LiN are distinct subgroups of index ≤ |C||A|. So Π/N has
at least n > ((|C||A|)!)d open subgroups of index ≤ |C||A|. This is a contradiction be-
cause each such a subgroup induces a distinct homomorphism to the symmetric group
S|C||A| defined by the action on the cosets, and the number of these homomorphisms
is bounded by ((|C||A|)!)d.

Next assume that N is sparse in Π. Replace Π by an open subgroup Π̃ of index
[Π : Π̃] ≥ 2|C|3|A|3 that contains N such that Π̃ has no proper subgroups of index
≤ |C||A| that contain N . Then arguing as above with n = 1, we get that L1N ≤ Π
and [Π : L1N ] ≤ |C||A|, so L1N = Π. So ψ1|N is a proper solution of E(N). �

Examples 4.3. Each of the following conditions implies that N is semi-free.
(1) Π/N = Zp (every subgroup is cyclic)
(2) Π/N = K1×K2 (N is the intersection of the preimages of K1,K2 in Π, hence

by Theorem 1.2, is semi-free).
(3) Π/N is abelian (Π/N is either Zp or direct product).
(4) Π/N is pro-nilpotent but not pro-p (Π/N is a direct product).
(5) [Π : N ] =

∏
p p

n(p), where 0 ≤ n(p) <∞ (this implies that N is sparse in Π).

Notice that (2) gives a new proof that the congruence kernel of an arithmetic lattice
in SL2(R) is a free profinite group of countable rank, see [8] for more details.
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