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A DENSE G-DELTA SET OF RIEMANNIAN METRICS WITHOUT
THE FINITE BLOCKING PROPERTY

Marlies Gerber and Wah-Kwan Ku

Abstract. A pair of points (x, y) in a Riemannian manifold (M, g) is said to have the

finite blocking property if there is a finite set P ⊂ M \ {x, y} such that every geodesic
segment from x to y passes through a point of P . We show that for every closed C∞

manifold M of dimension at least two and every pair (x, y) ∈ M × M , there exists a

dense Gδ set, G, of C∞ Riemannian metrics on M such that (x, y) fails to have the
finite blocking property for every g ∈ G. Moreover, there exists a dense Gδ set, G1, of

C∞ Riemannian metrics on M such that for every g ∈ G1, there is a dense Gδ subset
R = R(g) of M ×M such that every (x, y) ∈ R fails to have the finite blocking property

for g.

1. Introduction

Let M be a closed C∞ manifold, and let g be a C∞ Riemannian metric on M.
We consider a geodesic as a mapping γ : I → M , where I is an interval of positive
length, and γ is parametrized by arc length. Two geodesics γi : Ii → M , i = 1, 2 will
be considered to be the same if and only if γ1 = γ2 ◦ ϕ, where ϕ is a translation that
maps I1 onto I2. Let x and y be points in M , possibly with x = y. When we say that
a geodesic γ : [c, d] → M is from x to y, we mean γ(c) = x and γ(d) = y.

Given a Riemannian metric g on M , a blocking set for (x, y) is defined to be a subset
P of M \{x, y} such that every geodesic from x to y passes through a point in P . The
pair (x, y) ∈ M ×M is said to have the finite blocking property for g if there exists a
finite blocking set for (x, y). If every (x, y) ∈ M ×M has the finite blocking property,
then (M, g) is called secure. (See [8] and [5] for an explanation of this terminology.)
A Riemannian manifold (M, g) is called insecure if it is not secure, and it is called
totally insecure if no pair (x, y) has the finite blocking property. Furthermore, it is
called uniformly secure if there exists a positive integer n such that any pair of points
(x, y) has a blocking set with at most n elements.

A point p ∈ M is a self-intersection point of a geodesic γ : I → M if there exist
s, t ∈ I, s 6= t, such that γ(s) = p = γ(t). If there is no such point p for a geodesic
γ, we say that γ is non-self-intersecting. We call a pair (x, y) ∈ M × M strongly
insecure for g if for each positive integer n, there exist n geodesics γi : [ci, di] →
M , i = 1, . . . , n, from x to y satisfying the following three conditions: (i) the sets
γi((ci,di)), i = 1, . . . , n, are pairwise disjoint; (ii) if x 6= y, then γ1, . . . , γn are non-self-
intersecting; and (iii) if x = y, then x /∈ γ1((c1, d1))∪· · ·∪γn((cn, dn)), and γ1, . . . , γn

have no self-intersection points except x. It follows already from condition (i) that if
(x, y) is strongly insecure, then (x, y) fails to have the finite blocking property.

Given a manifold M, it is natural to ask the following:

Received by the editors April 20, 2010.

389



390 MARLIES GERBER AND WAH-KWAN KU

Question. Which pairs of points (x, y) ∈ M ×M and which Riemannian metrics g
on M are such that (x, y) has the finite blocking property for g?

Our contribution in this direction is Theorem 1.1 below, which implies that any
given pair of points (x, y) fails to have the finite blocking property for a dense Gδ set
of metrics. We will give the proof in Section 3.

We let G denote the set of C∞ Riemannian metrics on M . For k = 1, 2, . . . ,∞,
there exists a complete metric on G whose topology coincides with the Ck topology
on G. In particular, the Baire category theorem applies to G with the Ck topology.
When we refer to the Ck topology on M × G or M ×M × G, we mean the product
topology, where we take the manifold topology on M and the Ck topology on G.

Theorem 1.1. Let M be a closed C∞ manifold of dimension at least two, and let G
be the space of C∞ Riemannian metrics on M . The following three statements hold.

(1) Let x and y be two points in M , possibly with x = y. Let G := {g ∈ G :
(x, y) fails to have the finite blocking property for g}. Then G contains the
intersection of a countable collection of sets that are C1-open and C∞-dense
in G.

(2) Let G̃ := {(x, y, g) ∈ M × M × G : (x, y) fails to have the finite blocking
property for g}. Then G̃ contains the intersection of a countable collection of
sets that are C1-open and C∞-dense in M ×M ×G.

(3) Let Ĝ := {(x, g) ∈ M ×G : (x, x) fails to have the finite blocking property
for g}. Then Ĝ contains the intersection of a countable collection of sets that
are C1-open and C∞-dense in M ×G.

If M has dimension at least three, then “fails to have the finite blocking property” can
be sharpened to “is strongly insecure” in all three statements.

If k ∈ {1, 2, . . . ,∞}, then a C1 open subset of G is Ck open, and a C∞ dense
subset of G is Ck dense. Thus we obtain the following corollary of Theorem 1.1.

Corollary 1.2. If M is a closed C∞ manifold of dimension at least two and G is the
space of C∞ Riemannian metrics on M , then the sets G, G̃, and Ĝ in Theorem 1.1
contain dense Gδ sets in the Ck topology for k = 1, 2, . . . ,∞.

Corollary 1.2 (for G̃ and Ĝ) implies the corollary below.

Corollary 1.3. Let M be a closed C∞ manifold of dimension at least two and suppose
k ∈ {1, 2, . . . ,∞}. The following two statements hold.

(1) There exists a dense Gδ set G1 in G with the Ck topology, so that for each
g ∈ G1, there is a dense Gδ subset R1 = R1(g) of M × M such that each
(x, y) ∈ R1 fails to have the finite blocking property for g.

(2) There exists a dense Gδ set G2 in G with the Ck topology, so that for each
g ∈ G2, there is a dense Gδ subset R2 = R2(g) ⊆ M such that for each
x ∈ R2, (x, x) fails to have the finite blocking property for g.

Again, if M has dimension at least three, then “fails to have the finite blocking prop-
erty” can be replaced by “is strongly insecure” in both statements.

V. Bangert and E. Gutkin obtained stronger results for the case when the dimension
of M is two and the genus is positive [2]. They proved that if M has genus greater
than one, then every Riemannian metric is totally insecure. Moreover, if M has genus
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one, they showed that non-flat metrics are insecure and a C2-open, C∞-dense set of
metrics are totally insecure. These results provide evidence that (c) follows from (a)
in the following conjecture, which originally appeared in [5] and [11]. A proof that
(c) implies (b) is given in [9].

Conjecture 1.4. Let (M, g) be a closed C∞ Riemannian manifold. The following
statements are equivalent.

(a) (M, g) is secure.
(b) (M, g) is uniformly secure.
(c) g is a flat metric.

While Conjecture 1.4 concerns the finite blocking property for all pairs of points,
Theorem 1.1 shows that the finite blocking property can be destroyed for any given
pair of points, under some small perturbation of metric.

In the next section, we will present some results which will be used to prove The-
orem 1.1. We refer the reader to [7] for background information about geodesics and
conjugate points.

2. Some preliminary results

We begin with the following classical result by J. P. Serre [14], [12], [3], [13].

Theorem 2.1. Let (M, g) be a closed C∞-Riemannian manifold, and let x, y ∈ M .
Then there exist infinitely many geodesics from x to y. That is, exp−1

x {y} is an
infinite subset of TxM.

For a, b > 0, we let Ia denote the open interval (−a, a) ⊂ R, and we let Bb denote
the open ball {w ∈ Rn−1 : |w| < b}, where n is the dimension of the manifold M
under consideration.

Definition 2.2. If (M, g) is a closed Riemannian manifold of dimension n ≥ 2, and
a, b > 0, let F(a, b, g) = {f ∈ C∞(Ia ×Bb,M) | f satisfies (i),(ii),(iii) below}.

(i) The map f is a C∞-diffeomorphism onto its image.
(ii) For all p ∈ Bb , the map t 7→ f(t,p) , for t ∈ Ia, is a geodesic (for the metric

g).
(iii) For all t ∈ Ia, the (n − 1)-dimensional submanifold {f(t,p) : p ∈ Bb} is

perpendicular (in the metric g) to all the geodesics in (ii).
That is, each element of F(a, b, g) is a C∞ coordinate chart that is foliated by geodesics
and is also foliated by codimension one submanifolds perpendicular to the geodesics.
We endow F(a, b, g) with the relative topology induced from the C∞ compact-open
topology on C∞(Ia ×Bb,M).

The following lemma allows us to “merge” two foliations by geodesics for a Rie-
mannian metric g into a new foliation by geodesics for a small perturbation of g,
provided the two original foliations are C∞-close.

Lemma 2.3. Let (M, g) be a closed C∞ Riemannian manifold of dimension n ≥ 2,
and let G be the set of C∞ Riemannian metrics on M . Suppose N is an open
neighborhood of g in G with the C∞ topology. Let a, b > 0, and let F(a, b, g) be as in
Definition 2.2. Suppose f0 ∈ F(a, b, g).
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Then there exists an open neighborhood F0 ⊆ F(a, b, g) of f0 such that for all
f1, f2 ∈ F0, there exists g̃ ∈ N such that the following conditions are satisfied.

(1) g̃ agrees with g on the complement of f1(Ia/2 ×Bb/2) ∩ f2(Ia/2 ×Bb/2).
(2) There is a family of g̃-geodesics γp : Ia → f1(Ia × Bb) ∪ f2(Ia × Bb), for

p ∈ Bb/4, such that

γp(t) =

{
f1(t,p), if t ∈ (−a,−a/4);
f2(t,p), if t ∈ (a/4, a).

(3) If f1(t,0) = f2(t,0) for all t ∈ Ia, then γ0(t) = f1(t,0). This implies that the
map t 7→ f1(t,0) for t ∈ Ia, is a geodesic for g̃ as well.

geodesic foliation given by f2

foliation by a family of geodesics for g̃

geodesic foliation given by f1

Figure 1. Merging of the geodesic foliations given by f1 and f2

into a new foliation by geodesics for g̃, as in Lemma 2.3.

Proof. Let (ai)0≤i≤5 and (bj)0≤j≤5 be strictly decreasing sequences of positive num-
bers, where a0 = a, a3 = a/2, a5 = a/4, b0 = b, b1 = b/2, and b5 = b/4. Let
Ri,j = Iai

×Bbj
, for 0 ≤ i, j ≤ 5.

Let h : R → [0, 1] be a C∞ function such that

h(t) =

{
0, if t ≤ −a5;
1, if t ≥ a5,

and let H : M → [0, 1] be a C∞ function such that

H(x) =

{
0, if x ∈ M \ f0(R3,3);
1, if x ∈ f0(R4,4).

Given f0 ∈ F(a, b, g), the required open neighborhood F0 will be chosen so that
functions f1,f2 ∈ F0 satisfy the properties given below. We begin by requiring f1, f2

to be sufficiently close to f0 in the C0 topology so that

(2.1) f2(Ri+1,j+1) ⊆ f1(Ri,j) and f1(Ri+1,j+1) ⊆ f2(Ri,j), for 0 ≤ i, j ≤ 4.

We define φ : R1,1 → R0,0 by

φ(t,p) = (1− h(t))(t,p) + h(t)(f−1
1 ◦ f2(t,p))
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for (t,p) ∈ R1,1, where ‘+’ denotes the usual vector addition in Rn. We have φ(t,p) ∈
R0,0 , because f−1

1 ◦ f2(R1,1) ⊆ R0,0 (by (2.1)), and φ(t,p) is a convex combination
of f−1

1 ◦ f2(t,p) and (t,p).
Next we consider f̂ := f1 ◦ φ : R1,1 → f1(R0,0). If f1 and f2 are close to f0 in

C∞(R0,0,M), then φ is close to the inclusion map R1,1 ↪→ R0,0 in C∞(R1,1, R0,0),
and f̂ is close to f0 in C∞(R1,1,M). We require f1 and f2 to be sufficiently close to
f0 in C∞(R0,0,M) so that the following four conditions are satisfied:

(2.2) f̂ : R1,1 → M is a diffeomorphism onto its image,

(2.3) f̂(Ri+1,j+1) ⊆ f0(Ri,j) ∩ f1(Ri,j) ∩ f2(Ri,j), for 0 ≤ i, j ≤ 4,

(2.4) f0(R3,3) ⊆ f̂(R2,2), and

(2.5) (f1((−a1,−a2]×Bb2) ∪ f2([a2, a1)×Bb2)) ∩ f̂(R5,2) = ∅.

For (t,p) = (t, p1, . . . , pn−1) ∈ R2,2, we define a Riemannian metric ĝ at f̂(t,p) ∈
f̂(R2,2) by

ĝ

(
∂f̂

∂t
,
∂f̂

∂t

)
= 1,(2.6)

ĝ

(
∂f̂

∂t
,

∂f̂

∂pk

)
= 0, and(2.7)

ĝ

(
∂f̂

∂pk
,

∂f̂

∂pl

)
= [1− h(t)]g

(
∂f1

∂pk
,
∂f1

∂pl

)
+ h(t)g

(
∂f2

∂pk
,
∂f2

∂pl

)
,

for 1 ≤ k, l ≤ n− 1.

We know that, for i = 0, 1, 2, the original metric g satisfies

g

(
∂fi

∂t
,
∂fi

∂t

)
= 1, and

g

(
∂fi

∂t
,
∂fi

∂pk

)
= 0, for k = 1, . . . , n− 1,

in the region fi(R0,0).
We define the required Riemannian metric as

g̃ = Hĝ + (1−H)g,

where we interpret Hĝ to be 0 when H = 0.
If (t,p) ∈ [−a1,−a5]×Bb1 , then h(t) = 0 and φ(t,p) = (t,p); if (t,p) ∈ [a5, a1]×

Bb1 , then h(t) = 1 and φ(t,p) = f−1
1 ◦ f2(t,p). Thus

(2.8) f̂(t,p) =

{
f1(t,p), if (t,p) ∈ [−a1,−a5]×Bb1 ;
f2(t,p), if (t,p) ∈ [a5, a1]×Bb1 .
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Therefore ĝ agrees with g on f̂(R2,2\R5,2). If f1 and f2 are close to f0 in C∞(R0,0,M),
then ĝ is C∞-close to g on f̂(R2,2) ⊇ f0(R3,3). Since g̃ = g on M \ f0(R3,3), we may
choose F0 sufficiently small so that g̃ ∈ N for f1, f2 ∈ F0.

To summarize, we have chosen F0 sufficiently small so that if f1, f2 ∈ F0, then
(2.1),(2.2),(2.3),(2.4), and (2.5) hold, and g̃ ∈ N .

Now we verify that (1), (2), and (3) hold.
The region where ĝ is defined and not equal to g is contained in f̂(R5,2), which

is a subset of f1(R3,1) ∩ f2(R3,1), by (2.3). Therefore g̃ = g on the complement of
f1(R3,1) ∩ f2(R3,1), which is conclusion (1).

Since H = 1 on f0(R4,4) ⊇ f̂(R5,5), we have g̃ = ĝ on f̂(R5,5). For each p ∈ Bb5 ,
we define a curve γp : Ia → M as

γp(t) =


f1(t,p), if t ∈ (−a,−a2];
f̂(t,p), if t ∈ (−a2, a2);
f2(t,p), if t ∈ [a2, a).

It follows from (2.8) that these curves are smooth. Moreover, these curves are g̃-
geodesics, because g̃ = g on f1((−a,−a2]×Bb5)∪f2([a2, a)×Bb5) (by (2.5)), ĝ = g = g̃

on f̂((Ia2 \ Ia5)×Bb5) = f1([−a2,−a5]×Bb5) ∪ f2([a5, a2]×Bb5), g̃ = ĝ on f̂(R5,5),
and the curves t 7→ f̂(t,p) are ĝ-geodesics for all p ∈ Bb2 (by (2.6) and (2.7)). This
proves conclusion (2). If f1(t,0) = f2(t,0) for t ∈ Ia, then φ(t,0) = (t,0) and
f̂(t,0) = f1(t,0) for t ∈ Ia1 . Therefore the g̃-geodesic γ0 is the same as t 7→ f1(t,0),
which establishes (3).

�

We now define a notion of merging for two geodesics. This will be used in Lemma 2.6
below.

γ2

γ2(r2)

γ(r1) = γ1(r1) γ(s2) = γ2(s2)

γ1(s1)
γ1

γ

Figure 2. Merging of γ1 into γ2 within U , as in Definition 2.4.

Definition 2.4. Let M be a C∞-manifold, and let g, g̃ be Riemannian metrics on M .
Suppose U is an open set in M , t0 ∈ R, and γi : [r̂i, ŝi] → M , i = 1, 2, are g-geodesics
such that

(2.9) {t ∈ [r̂i, ŝi] : γi(t) ∈ U} = (ri, si), where r̂i < ri < t0 < si < ŝi.
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We say that a g̃-geodesic γ : [r̂1, ŝ2] → M , merges γ1 into γ2 within U if there exist
r̃, s̃ such that r1 < r̃ < t0 < s̃ < s2, γ((r̃, s̃)) ⊆ U , γ(t) = γ1(t) for r̂1 ≤ t ≤ r̃, and
γ(t) = γ2(t) for s̃ ≤ t ≤ ŝ2.

In Lemma 2.6, it will be convenient to assume that the set within which the merging
occurs is convex (as defined below). Definition 2.5 is stronger than the usual definition
of convexity, but it follows from Theorem 3.7 and Proposition 4.2 in Chapter 3 of [7]
that every point has an open neighborhood U that satisfies Definition 2.5.

Definition 2.5. Let (M, g) be a closed C∞ Riemannian manifold. We call a subset
U of M convex if the following holds: for all x, y ∈ U, there is a unique geodesic from
x to y whose image is contained in U, and this geodesic is length-minimizing in M .

If U is a convex (with respect to a given metric g) open set in M, t0 ∈ R, and
γ0 : (−∞,∞) → M is a g-geodesic with γ0(t0) ∈ U, then there exist r̂0, ŝ0, r0, s0 such
that (2.9) is satisfied for i = 0. Moreover, r̂0 and ŝ0 can be chosen so that r0− r̂0 ≥ R
and ŝ0 − s0 ≥ R, where R is the injectivity radius of M. That is, every geodesic that
starts in U must leave U (in forward and backward time) and must stay outside U
for a time interval of length at least R. Another useful consequence of Definition 2.5
is that if V and U are convex sets and V ⊂ U, then any geodesic that starts inside
V and then leaves V, cannot return to V before it leaves U. This implies that if two
geodesics γi : [r̂i, ŝi] → M , i = 1, 2, that satisfy (2.9) with γi(t0) ∈ V are merged
within V by a g̃-geodesic γ, where g̃ agrees with g on M \V , then they are also merged
within U.

The following lemma allows us to merge two geodesics according to Definition 2.4.
K. Burns and G. Paternain have a similar result in the 2-dimensional case [6]. We also
note that Lemma 2 from D. Anosov’s proof of the bumpy metric theorem [1], plus the
observation in [10] that Anosov’s proof does not require his stated assumption that
the geodesic in his Lemma 2 is closed, can be used to give an alternate proof of our
Lemma 2.6.

Lemma 2.6. Let (M, g) be a closed C∞Riemannian manifold of dimension n ≥ 2,
and let N be an open neighborhood of g in the C∞ topology. Suppose U is a convex
(with respect to g) open set in M and (x0, v0) ∈ T 1U. Then there exists an open
neighborhood V of (x0, v0) in T 1U such that for any (xi, vi) ∈ V, i = 1, 2, if γi :
[r̂i, ŝi] → M are g-geodesics that satisfy (2.9) and (γi(t0), γ′i(t0)) = (xi, vi), for i =
1, 2, then there exists g̃ ∈ N which agrees with g on M \ U , and a g̃-geodesic γ that
merges γ1 into γ2 within U .

Proof. Let γ0 : [r̂0, ŝ0] → M be a g-geodesic such that (γ0(t0), γ′0(t0)) = (x0, v0) and
(2.9) is satisfied for i = 0 and some choice of r0, s0. By replacing U by a smaller convex
open neighborhood of x0, if necessary, we may assume there exist C∞ orthonormal
vector fields E1, . . . , En on U such that En(γ0(t)) = γ′0(t) for all t ∈ (r0, s0). We
may assume that t0 = 0. Choose T such that 0 < T < |r0| and x̃0 := γ0(−T ) is not
conjugate to x0 along γ0|[−T, 0]. For u ∈ U and z = (z1, . . . , zn) ∈ Rn, let

(2.10) Φ(u, z) := z1E1(u) + · · ·+ znEn(u) ∈ TuU.

Define ϕ : {p = (p1, . . . pn−1) ∈ Rn−1 : |p| < 1} → {w ∈ Rn : |w| = 1} by
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(2.11) ϕ(p) := (p1, . . . pn−1, 1− (p2
1 + · · ·+ p2

n−1)
1/2).

Since x̃0 and x0 are not conjugate along γ0|[−T, 0] , there exist ã, b̃ > 0 such that the
map

f0(t,p) := expx̃0
(Φ(x̃0, (t + T )ϕ(p))),

defined for (t,p) ∈ Iã ×Bb̃, is a C∞ diffeomorphism onto its image, and its image is
contained in U. Note that f0(0,0) = x0. Moreover, there exist a, b with 0 < a < ã,
0 < b < b̃, an open neighborhood A of Id in SO(n), and an open neighborhood Ũ of
x̃0 in U such that for x̃ ∈ Ũ and A ∈ A, the map

f(t,p) := expx̃(Φ(x̃, (t + T )A(ϕ(p)))),

defined for (t,p) ∈ Ia × Bb is a C∞ diffeomorphism onto its image, and its image is
in U . Now choose V to be an open neighborhood of (x0, v0) in T 1U such that for
each (x, v) ∈ V, the geodesic γ̃ with (γ̃(0), γ̃′(0)) = (x, v) satisfies x̃ := γ̃(−T ) ∈ Ũ
and there exists A ∈ A with Φ(x̃, A(ϕ(0))) = γ̃′(−T ). We also require V to be small
enough so that x̃ is sufficiently close to x̃0 and A can be chosen sufficiently close to
Id, so that f is in the neighborhood F0 of f0 given in Lemma 2.3. (The condition
(iii) in Definition 2.2 for f0, as well as f1, f2 defined below, follows from the Gauss
Lemma.)

Let (xi, vi) ∈ V, i = 1, 2, and suppose γi : [r̂i, ŝi] → M , i = 1, 2, are g-geodesics
such that (2.9) is satisfied and (γi(0), γ′i(0)) = (xi, vi). Let ri, si, i = 1, 2, be as in
(2.9). For i = 1, 2, define

fi(t,p) := expx̃i
(Φ(x̃i, (t + T )Ai(ϕ(p)))),

for (t,p) ∈ Ia × Bb, where x̃i := γi(−T ), and Ai ∈ A is such that Φ(x̃i, Ai(ϕ(0))) =
γ′i(−T ). Then fi(t,0) = γi(t) for t ∈ Ia. From Lemma 2.3, we obtain g̃ ∈ N which
agrees with g on M \U so that conclusion (2) of Lemma 2.3 holds. Finally, we define
the required g̃-geodesic γ : [r̂1, ŝ2] → M as

γ(t) :=


γ1(t), if t ∈ [r̂1,−a];
γ0(t), if t ∈ (−a, a);
γ2(t), if t ∈ [a, ŝ2],

where γ0 is as in Lemma 2.3(2). �

Lemma 2.7 below allows us to destroy conjugate points along a geodesic by mak-
ing a small perturbation of the metric. A two-dimensional version of this lemma is
contained in [6].

Lemma 2.7. Let (M, g) be a closed C∞ Riemannian manifold of dimension n ≥ 2,
and let N be an open neighborhood of g in the C∞ topology. Let x, y ∈ M and
suppose γ : [0, L] → M is a g-geodesic from x to y. Let 0 = t0 < t1 < · · · < t` = L,
where ` ≥ 1, and define zk := γ(tk) for k = 0, . . . , `. Suppose s0 ∈ (tj , tj+1) for
some j ∈ {0, . . . , ` − 1} and u0 := γ(s0) is not a self-intersection point of γ (i.e.,
u0 /∈ γ([0, L] \ {s0})). Let U0 be an open neighborhood of u0. Then there exists ĝ ∈ N
that agrees with g on M \ U0 such that the following conditions hold:

(1) γ is also a unit speed geodesic for ĝ.
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(2) If k1 and k2 are integers such that 0 ≤ k1 ≤ j and j + 1 ≤ k2 ≤ `, then zk1 is
not conjugate to zk2 along γ|[tk1 , tk2 ] in the ĝ metric.

Proof. It suffices to prove the lemma for the case ` = 1 and 0 = t0 < s0 < t1 =
L, because we can then obtain (2) in the general case through a finite sequence of
perturbations of the metric (within N ) corresponding to each possible pair (k1, k2)
with 0 ≤ k1 ≤ j and j +1 ≤ k2 ≤ `. Each successive perturbation adds one more pair
(k1, k2) such that zk1 is not conjugate to zk2 along γ|[tk1 , tk2 ], and the perturbations
can be taken small so that no new conjugacies are introduced between such pairs of
points.

We now assume ` = 1 and 0 = t0 < s0 < t1 = L . By perturbing s0 slightly, if
necessary, we may assume that x is not conjugate to u0 along γ|[0, s0]. We may also
assume that the open neighborhood U0 of u0 is chosen so that {t ∈ [0, L] : γ(t) ∈
U0} = (s0 − η, s0 + η) for some η with 0 < η < min(s0, L − s0). Let U be an open
neighborhood of x disjoint from U0. Suppose τ ∈ (0, s0 − η) is such that γ|[0, τ ] is
one-to-one, and whenever 0 < t ≤ τ, x is not conjugate to γ(t) along γ|[0, t], and
γ(t) is not conjugate to y along γ|[t, L]. Let E1, . . . , En be C∞ vector fields along
γ|[0, τ ] with γ′(t) = En(γ(t)) for t ∈ [0, τ ]. Let Φ and ϕ be as in (2.10) and (2.11) for
u ∈ γ([0, τ ]). Since x is not conjugate to u0 along γ|[0, s0], there exist ã, b̃ > 0 such
that the map

f1(t,p) := expx,g(Φ(x, (t + s0)ϕ(p)),

defined for (t,p) ∈ Iã ×Bb̃, is a C∞ diffeomorphism onto its image, and its image is
in U0. (The ‘g’ in the subscript indicates we are referring to the exponential map for
the metric g. ) There exist a, b, δ̃ with 0 < a < ã, 0 < b < b̃, 0 < δ̃ < τ , such that the
map

f2(t,p) := expx̃,g(Φ(x̃, (t + s0 − δ)ϕ(p)),

defined for (t,p) ∈ Ia × Bb is a C∞ diffeomorphism onto its image, and its image is
in U0 for any x̃ := γ(δ) with 0 < δ < δ̃. Let f0 be the restriction of f1 to Ia × Bb,
and let F0 be as in Lemma 2.3. We choose δ sufficiently small so that f2 ∈ F0. Since
f1(Ia/2 × Bb/2) ∩ f2(Ia/2 × Bb/2) is a subset of U0, Lemma 2.3 implies that there is
a ĝ ∈ N which agrees with g on M \ U0 and Lemma 2.3(2) holds with g̃ replaced by
ĝ. We also obtain Lemma 2.3(3) with g̃ replaced by ĝ, because f1(t,0) = f2(t,0) for
t ∈ Ia. Therefore γ is also a geodesic for ĝ. For p ∈ Bb/4, let γp be as in Lemma
2.3(2) and define σp : [0, L] → M by

(2.12) σp(t) :=


expx,g(Φ(x, tϕ(p)), if t ∈ [0, s0 − a];
γp(t− s0), if t ∈ (s0 − a, s0 + a);
expx̃,g(Φ(x̃, (t− δ)ϕ(p)), if t ∈ [s0 + a, L].

Then σp is a ĝ-geodesic that merges, within U0, a g-geodesic originating at x with
initial velocity Φ(x, ϕ(p)) into a g-geodesic that is at x̃ with velocity Φ(x̃, ϕ(p)) at
time δ. Thus, for p ∈ Bb/4,

(2.13) expx,ĝ(Φ(x, tϕ(p))) = expx̃,g(Φ(x, (t− δ)ϕ(p))

for s0 + a ≤ t ≤ L. Since x̃ is not conjugate to y along γ|[δ, L] in the metric g, expx̃,g

is locally a diffeomorphism near (L − δ)γ′(δ). By (2.13), this implies that expx,ĝ is
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locally a diffeomorphism near Lγ′(0). Therefore x is not conjugate to y along γ in
the ĝ metric. �

A geodesic lasso is defined to be a closed curve γ : [0, L] → M which is a geodesic,
but γ′(0) 6= γ′(L). The following Lemma 2.8 allows us to perturb a geodesic so that
it avoids a finite set of points on M , and it also allows us to change a closed geodesic
to a geodesic lasso.

Lemma 2.8. Let (M, g) be a closed C∞ Riemannian manifold of dimension at least
two, and let N be an open neighborhood of g in the C∞ topology. Let x, y ∈ M and
suppose γ : [0, L] → M is a g-geodesic from x to y. Let Z be a finite set of points
in M such that x, y ∈ Z. Let {t ∈ [0, L] : γ(t) ∈ Z} = {tk : k = 0, . . . , `}, where
0 = t0 < · · · < t` = L, ` ≥ 1, and define zk := γ(tk), for k = 0, . . . `. Assume that

(i) x is not conjugate to zk along γ|[0, tk], for k = 1, . . . , `.
(ii) zk is not conjugate to y along γ|[tk, L], for k = 0, . . . , `− 1.

Suppose s0 ∈ (0, L), u0 := γ(s0) is not a self-intersection point of γ, and u0 /∈ Z. Let
U0 be an open neighborhood of u0. Then there exist open neighborhoods W1 and W2 of
γ′(0) and γ′(L) in T 1

xM and T 1
y M , respectively, such that for any w1 ∈ W1 \ {γ′(0)}

and any w2 ∈ W2 \ {γ′(L)}, there exists g̃ ∈ N that agrees with g on M \U0 and a g̃-
geodesic γ̃ : [0, L] → M from x to y such that γ̃′(0) = w1, γ̃′(L) = w2, γ̃((0, L))∩Z =
∅, and x is not conjugate to y along γ̃ for g̃.

Proof. We may assume that Z ⊂ γ([0, L]). By replacing U0 by a smaller open neigh-
borhood of u0 if necessary, we may assume that U0 is convex for g, U0 ∩ Z = ∅, and
{t ∈ [0, L] : γ(t) ∈ U0} = (s0 − η, s0 + η), for some η > 0.

Since x is not conjugate to zk along γ|[0, tk] for k = 1, . . . , `, and expx,g is locally a
diffeomorphism near 0 ∈ TxM , there exist open neighborhoods Vk of tkγ′(0) in TxM ,
for k = 0, . . . , `, such that the maps expx,g : Vk → M are diffeomorphisms onto their
images. Also,

(2.14) Z ∩ expx,g({tγ′(0) : t ∈ [0, L]} \ (V0 ∪ · · · ∪ V`)) = ∅,

because (exp−1
x,g Z)∩ {tγ′(0) : t ∈ [0, L]} = {t0γ′(0), . . . , t`γ′(0)}. By the continuity of

expx,g, we can choose W1 sufficiently small so that (2.14) still holds for γ replaced by
any g-geodesic γ1 : [0, L] → M with γ1(0) = x and γ′1(0) ∈ W1. If γ′1(0) ∈ W1\{γ′(0)},
then {tγ′1(0) : t ∈ (0, L]}∩ (V0 ∪ · · · ∪V`) does not contain any of tkγ′(0), k = 0, . . . , `.
Thus, (2.14) for γ1 implies that γ1((0, L])∩Z = ∅. Similarly, if W2 is sufficiently small,
then for any g-geodesic γ2 : [0, L] → M with γ2(L) = y and γ′2(L) ∈ W2 \ γ′(L) , we
have γ2([0, L)) ∩ Z = ∅.

Let v0 = γ′(s0) and let V be an open neighborhood of (u0, v0) in T 1U0 satisfying the
conclusion of Lemma 2.6 (with U replaced by U0 and x0 replaced by u0). In addition to
the requirements of the preceding paragraph, we require W1 and W2 to be sufficiently
small so that if γi : [0, L] → M , i = 1, 2, are such that γ1(0) = x, γ′1(0) ∈ W1,
γ2(L) = y, and γ′2(L) ∈ W2, then there exist ri, si with 0 < ri < s0 < si < L, such
that {t ∈ [0, L] : γi(t) ∈ U0} = (ri, si) and (γi(s0), γ′i(s0)) ∈ V.

Suppose w1 ∈ W1 \ {γ′(0)} and w2 ∈ W2 \ {γ′(L)}, and let γi : [0, L] → M ,
i = 1, 2, be g-geodesics such that γ1(0) = x, γ′1(0) = w1, γ2(L) = y, and γ′2(L) = w2.
By Lemma 2.6, there exists a metric g̃ ∈ N that agrees with g on M \ U0 and a
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g̃-geodesic γ̃ : [0, L] → M that merges γ1 into γ2 within U0. Since U0 ∩ Z = ∅ and
γ1((0, L)) ∩ Z = ∅ = γ2((0, L)) ∩ Z, we have γ̃((0, L)) ∩ Z = ∅. By Lemma 2.7 we
can make a small additional perturbation of the metric g̃ within U0, if necessary, to
arrange for x and y to not be conjugate along γ̃. �

The following lemma will be used to obtain strong insecurity in Theorem 1.1 in
the case of a manifold of dimension at least three.

Lemma 2.9. Let (M, g) be a closed C∞ Riemannian manifold of dimension at least
three, and let N be an open neighborhood of g in the C∞ topology. Let x, y ∈ M and
suppose γ : [0, L] → M is a g-geodesic from x to y. Let Z be the union of the images
of finitely many C1 curves from compact intervals to M such that x, y ∈ Z. Suppose
that {t ∈ [0, L] : γ(t) ∈ Z} is finite. Define ` , tk, and zk as in Lemma 2.8, and
assume (i) and (ii) from Lemma 2.8. Assume that there exist points in the image of
γ that are not self-intersection points of γ. Then there exist open neighborhoods W1

and W2 of γ′(0) and γ′(L) in T 1
xM and T 1

y M , respectively, and dense open subsets
Ŵi of Wi, i = 1, 2, such that for any wi ∈ Ŵi, there exist ĝ ∈ N that agrees with g
on an open set containing Z, and a ĝ−geodesic γ̂ : [0, L] → M from x to y such that
γ̂′(0) = w1, γ̂′(L) = w2, γ̂((0, L)) ∩ Z = ∅, and x is not conjugate to y along γ̂ for ĝ.
In addition, ĝ and γ̂ may be chosen such that the following two conditions hold.

(1) If x 6= y, then γ̂ has no self-intersection points.
(2) If x = y, then x /∈ γ̂((0, L)), and γ̂ has no self-intersection points except x.

Proof. The proof is similar to the proof of Lemma 2.8. We indicate the modifications
that are needed. As in the proof of Lemma 2.8, x not being conjugate to y can
be arranged at the end. Thus it is enough to obtain γ̂ and ĝ satisfying the other
conditions in the conclusion of the present lemma.

We no longer assume that Z ⊂ γ([0, L]). We choose s0, u0, and U0 and Vk, k =
0, . . . `, as in Lemma 2.8 and its proof. We also require the closure of U0 to be disjoint
from Z. We again have (2.14) and we can choose an open neighborhood W1 of γ′(0)
in T 1

xM sufficiently small so that (2.14) still holds for γ replaced by any g-geodesic
γ1 : [0, L] → M with γ1(0) = x and γ′1(0) ∈ W1. Now let Ẑ = {w1 ∈ W1 : w1 =
v/||v||, for v ∈ (exp−1

x,gZ) ∩ (V0 ∪ · · · ∪ V`)} and let Ŵ = W1 \ Ẑ. (Here || · || denotes
the norm with respect to the metric g.) Then Ẑ is relatively closed in W1, and
Ẑ is the union of at most countably many C1 curves. Since T 1

xM is at least two
dimensional, Ŵ1 is dense in W1. If γ1 : [0, L] → M is a g-geodesic with γ′1(0) ∈ Ŵ1,
then γ1((0, L]) ∩ Z = ∅. Similarly, there is an open neighbhorhood W2 of γ′(L) in
T 1

y M and a dense open subset Ŵ2 of W2 such that for any g-geodesic γ2 : [0, L] → M

with γ2(L) = y and γ′2(L) ∈ Ŵ2, we have γ2([0, L)) ∩ Z = ∅.
We now apply Lemma 2.6 as in the third and fourth paragraphs in the proof of

Lemma 2.8 , except we take wi ∈ Ŵi, i = 1, 2, instead of w1 ∈ W1 \ {γ′(0)} and
w2 ∈ W2 \ γ′(L). As in the proof of Lemma 2.8, we obtain a metric g̃ ∈ N that
agrees with g on M \ U0 and a g̃−geodesic γ̃ : [0, L] → M from x to y such that
γ̃((0, L)) ∩ Z = ∅.

Since x, y ∈ Z, γ̃((0, L))∩{x, y} = ∅. Thus the set S of self-intersection points of γ̃
is finite. We will modify γ̃ to eliminate self-intersection points. If {s ∈ (0, L) : γ̃(s) ∈
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S} = ∅ , then either S = {x} (in the case x = y) or S = ∅ (in the case x 6= y), and
in both of these cases, γ̃ already satisfies the conditions required of γ̂. Hence we may
assume {s ∈ (0, L) : γ̃(s) ∈ S} = {sk : k = 1, . . . ,m}, where 0 < s1 < · · · < sm < L
and m ≥ 1. Choose s̃i, i = 1, 2, such that 0 < s̃1 < s1 < s̃2 < s2 and γ̃(s̃1) is not
g̃-conjugate to γ̃(s̃2) along γ̃|[s̃1, s̃2]. We will show that there exist a metric g̃1 ∈ N
that agrees with g on an open set containing Z and a g̃1-geodesic γ̃1 : [0, L] → M
from x to y such that γ̃1 agrees with γ̃ on [0, ε] ∪ [L − ε, L], for some positive ε,
γ̃1((0, L)) ∩ Z = ∅, and we have

(2.15) {s ∈ (0, L) : γ̃1(s) is a self-intersection point of γ̃1 on [0, L]} ⊂ {s2, . . . , sm}.
By applying this procedure at most m times, we obtain a metric ĝ ∈ N that agrees
with g on an open set containing Z and a ĝ-geodesic γ̂ from x to y satisfying all of
the conditions in the lemma.

For i = 1, 2, let Ui be an open neighborhood of γ̃(s̃i) whose closure does not
intersect Z. Since γ̃(s̃1) and γ̃(s̃2) are not self-intersection points of γ̃, we may assume
that U1 and U2 are chosen so that {s ∈ [0, L] : γ̃(s) ∈ Ui} = (s̃i − τi, s̃i + ηi), for
some τi, ηi > 0, where {0, s1, s2, . . . , sm, L} ∩ (s̃i − τi, s̃i + ηi) = ∅ for i = 1, 2. We
also choose a point ũ0 ∈ γ̃((s̃1, s1)) and a convex open neighborhood Ũ0 of ũ0 whose
closure does not intersect Z ∪ γ̃([0, s̃1]∪ [s̃2, L]). We may assume that Ũ0, U1, and U2

are pairwise disjoint.
By applying the same procedure as in the above construction of γ̃, we can find a

metric g̃0 ∈ N that agrees with g̃ outside Ũ0, and a g̃0-geodesic σ : [s̃1, s̃2] → M from
γ̃(s̃1) to γ̃(s̃2) such that σ((s̃1, s̃2))∩ γ̃([0, s̃1]∪ [s̃2, L]) = ∅. Moreover, g̃0 and σ can be
chosen so that σ is as close as we like to γ̃|[s̃1, s̃2] in the C0 topology. In particular,
we may assume that σ([s̃1, s̃2]) ∩ Z = ∅. We then use Lemma 2.6 to smooth out the
broken geodesic that is equal to γ̃ on [0, s̃1] ∪ [s̃2, L] and is equal σ on [s̃1, s̃2]. That
is, we merge γ̃ into σ within U1, and we merge σ back into γ̃ within U2, letting t0
in Definition 2.4 be s̃1 and s̃2, respectively. The merging procedure results in a new
metric g̃1 ∈ N that agrees with g̃0 on M \ (U1 ∪ U2) (and therefore agrees with g on
M \ (U0 ∪ Ũ0 ∪U1 ∪U2)), and a g̃1-geodesic γ̃1 : [0, L] → M such that γ̃1 agrees with
γ̃ on [0, ε] ∪ [L− ε, L], for some positive ε, and γ̃1((0, L)) ∩ Z = ∅. It follows from the
proof of Lemma 2.6 that γ̃1 can be constructed so that it has no self-intersections in
U1 ∪ U2. Thus (2.15) holds. �

3. Proof of Theorem 1.1

We now use the results of Section 2 to prove Theorem 1.1. The notation tr(γ) will
mean the trace of a curve γ : I → M , i.e., tr(γ) = {γ(t) : t ∈ I}.

Proof. Let (x, y, g) ∈ M × M × G, and let n ∈ N. We consider the statement
S(x, y, n, g) : there exist g-geodesics γi : [0, Li] → M from x to y, i = 1, . . . , n,
which satisfy the following four properties:

(i) If x 6= y, then the tangent vectors

γ′1(0), γ′2(0), . . . , γ′n(0)

at x are pairwise linearly independent, and the tangent vectors

γ′1(L1), γ′2(L2), . . . , γ′n(Ln)
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at y are pairwise linearly independent. If x = y, then the tangent vectors

γ′1(0), γ′1(L1), γ′2(0), γ′2(L2), . . . , γ′n(0), γ′n(Ln)

are pairwise linearly independent. Thus we cannot join γi to γj smoothly at
x or at y, for any i, j ∈ {1, . . . , n}.

(ii) For each i = 1, . . . , n, we have γi((0, Li)) ∩ {x, y} = ∅. That is, γi meets x
and y only at its endpoints.

(iii) Any three of γ1, . . . , γn are concurrent only at x and at y.
(iv) The point x is not conjugate to y in the metric g along γi|[0, Li], for i =

1, . . . , n.
We define Hn(x, y) := {g ∈ G : S(x, y, n, g) is satisfied}. We make the following
claim:

Claim 3.1. (a) Hn(x, y) is C∞-dense in G and (b) there is a C1-open neighborhood
Gn(x, y) of Hn(x, y) in G such that parts (i), (ii), and (iii) of S(x, y, n, g) are satisfied
for all g ∈ Gn(x, y).

Claim 3.1 implies that the set
⋂
Gn(x, y) is the intersection of a countable collection

of sets that are C1 open and C∞ dense in G. Suppose P ⊆ M \ {x, y} is a set with
m points, and g ∈

⋂
Gn(x, y). Since g ∈ G2m+1, we can find 2m + 1 g-geodesics that

satisfy (iii). If P were a blocking set for (x, y), then by the pigeonhole principle, at
least three of these geodesics would pass through the same point in P , which leads to
a contradiction. Hence there is no finite blocking set for (x, y), and Theorem 1.1(1)
follows from Claim 3.1.

Similarly, if we define H̃n := {(x, y, g) ∈ M ×M ×G : S(x, y, n, g) is satisfied} and
Ĥn := {(x, g) ∈ M×G : S(x, x, n, g)} is satisfied}, and we prove the following claims,
then Theorem 1.1(2),(3) will follow by considering

⋂
G̃n and

⋂
Ĝn, respectively.

Claim 3.2. (a) H̃n is C∞-dense in M×M×G and (b) there is a C1-open neighborhood
G̃n of H̃n in M ×M × G such that (i), (ii), and (iii) of S(x, y, n, g) are satisfied for
all (x, y, g) ∈ H̃n.

Claim 3.3. (a) Ĥn is C∞-dense in M × G and (b) there is a C1-open neighborhood
Ĝn of Ĥn in M × G such that (i), (ii), and (iii) of S(x, x, n, g) are satisfied for all
(x, g) ∈ Ĥn.

We now prove Claim 3.1(a) by mathematical induction. For n = 1, let N be
any non-empty C∞-open set in G, and let g ∈ N . Let γ : [0, L] → M be a g-
geodesic from x to y. By restricting the domain of γ, if necessary, we may assume
that γ((0, L))∩ {x, y} = ∅. Then we let ` = 1 and 0 = t0 < t1 = L in Lemma 2.7. By
Lemma 2.7, there exists ĝ ∈ N such that γ is also a unit speed geodesic for ĝ and x is
not conjugate to y along γ. If (x, γ′(0)) 6= (y, γ′(L)), then we let g1 = ĝ, and γ1 = γ.
If (x, γ′(0)) = (y, γ′(L)), that is, γ is a closed geodesic, then we apply Lemma 2.8 to
obtain g1 ∈ N and a g1-geodesic lasso γ1 : [0, L] → M with γ1(0) = γ1(L) = x but
γ′1(0) 6= γ′1(L), and x /∈ γ1((0, L)). Then (i) , (ii), and (iv) are satisfied, and (iii) is
vacuous. Since N is arbitrary, H1(x, y) is C∞-dense.

Next we suppose Hn−1(x, y) is C∞-dense for some n ≥ 2, and we will prove
that Hn(x, y) is C∞-dense. Let N be any non-empty C∞-open set in G. There
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exist gn−1 ∈ Hn−1(x, y) ∩ N and gn−1-geodesics γi : [0, Li] → M from x to y,
i = 1, . . . , n− 1, so that properties (i) - (iv) are satisfied with n replaced by n− 1. By
Theorem 2.1, there exists a gn−1-geodesic γ : [0, L] → M from x to y, distinct from
γ1, . . . , γn−1. If x = y, we also require γ to be distinct from −γ1, . . . ,−γn−1, where
−γi is γi traversed in the opposite direction.

By (i) and (ii), we have tr(γ) * tr(γ1) ∪ · · · ∪ tr(γn−1). However, it may happen
that tr(γ) contains one (or more) of the sets tr(γ1), . . . , tr(γn−1). If x = y, then
we can restrict the domain of γ, if necessary, so that tr(γ) does not contain any
of the sets tr(γ1), . . . , tr(γn−1). If x 6= y, then we can restrict the domain of γ,
if necessary, to obtain a gn−1-geodesic from x to y such that one of the following
happens: (a) tr(γ) does not contain any of the sets tr(γ1), . . . , tr(γn−1); (b) γ consists
of one of γ1, . . . , γn−1 preceded by a gn−1-geodesic from x to x; (c) γ consists of
one of γ1, . . . , γn−1 followed by a gn−1-geodesic from y to y. If (a) holds, then we
assume that tr(γ) does not contain any of the sets tr(γ1), . . . , tr(γn−1), and the rest
of this paragraph can be skipped. So assume that one of cases (b) or (c) hold, and
assume that the domain of γ has been restricted so that cases (b) and (c) do not
hold for any further restriction to a proper closed subinterval of the domain. Let
u0 ∈ tr(γ)\ [tr(γ1)∪· · ·∪tr(γn−1)] be such that u0 is not a self-intersection point of γ,
and let U0 be an open neighborhood of u0 such that U0 ∩ [tr(γ1)∪ · · · ∪ tr(γn−1)] = ∅.
By Lemma 2.7, we can make a perturbation of the gn−1 metric within U0 such that γ
remains a geodesic, the new metric is in N , and neither of x or y is conjugate to either
of x or y along an arc of γ. Then Lemma 2.8 applies with Z = {x, y}. Thus we may
again perturb the metric within U0 to produce a new metric ĝ ∈ N and a ĝ-geodesic
γ̂ close to γ and different from γ1, . . . , γn−1, such that γ̂ meets x and y only at its
endpoints. In particular, tr(γ) does not contain any of the sets tr(γ1), . . . , tr(γn−1).
Since U0 ∩ [tr(γ1) ∪ · · · ∪ tr(γn−1)] = ∅, γ1, . . . , γn−1 remain geodesics for ĝ.

From the preceding paragraph, we have a metric ĝ ∈ N and a ĝ-geodesic γ̂ :
[0, L] → M from x to y such that γ1, . . . , γn−1 are ĝ-geodesics and tr(γ̂) does not
contain any of the sets tr(γ1), . . . , tr(γn−1). Then tr(γ̂) ∩ [tr(γ1) ∪ · · · ∪ tr(γn−1)] is a
finite set. If n = 2, let Z = {x, y}; if n > 2, let Z be the collection of all intersection
points between the trace of any two of γ1, . . . , γn−1. From (i) and (ii), we know that Z
is a finite set. We also have x, y ∈ Z. We want to perturb γ̂ so that it does not meet Z
except at its endpoints. Let γ̂−1(Z)∩[0, L] = {t0, . . . , tl}, where 0 = t0 < · · · < t` = L,
and denote zk := γ̂(tk), for k = 0, . . . , `. Let s1 ∈ (t0, t1) , s2 ∈ (t`−1, t`), s1 < s2,
u1 := γ̂(s1), u2 := γ̂(s2) be such that u1, u2 /∈ tr(γ1) ∪ · · · ∪ tr(γn−1) and u1, u2 are
not self-intersection points of γ̂. We can apply Lemma 2.7 twice with s0 = si and
U0 = Ui for i = 1, 2, where (U1 ∪ U2) ∩ [tr(γ1) ∪ · · · ∪ tr(γn−1)] = ∅. Thus we obtain
a metric ḡ ∈ N such that γ1, . . . , γn−1 are ḡ-geodesics, and conditions (i) and (ii) in
Lemma 2.8 hold for g replaced by ḡ and γ replaced by γ̂. Hence, by Lemma 2.8, there
is a metric g̃ ∈ N such that γ1, . . . , γn−1 are g̃-geodesics, and there is a g̃-geodesic
γ̃ from x to y that is different from γ1, . . . , γn−1, and does not meet any point of Z
except at its endpoints. Moreover, by Lemma 2.8, we may choose g̃ and γ̃ so that x
and y are not conjugate along γ̃ in the g̃-metric. All of the perturbations of the metric
can be done outside a neighborhood of tr(γ1) ∪ · · · ∪ tr(γn−1). We let gn = g̃. Then
γ1, . . . , γn−1 are gn-geodesics, and (iv) remains true for γ1, . . . , γn−1 with the metric
gn. Thus properties (i)-(iv) hold for γ1, . . . , γn, where γn = γ̃, and g is replaced by
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gn. Since N is arbitrary, we conclude that Hn(x, y) is C∞-dense. This completes the
proof of Claim 3.1(a).

Claim 3.2(a) and Claim 3.3(a) follow from Claim 3.1(a), because H̃n is C∞- dense
in each fiber {(x, y)} ×G, and Ĥn is C∞-dense in each fiber {x} ×G.

Next we want to prove Claim 3.1(b). Let g ∈ Hn(x, y), and suppose γ1, . . . , γn are
g-geodesics that satisfy properties (i)-(iv).

For the purpose of defining C1 distances on M between the given geodesics γi and
nearby curves γ̃i, we extend the domain of γi to [0, Li + 1]. The distance between
tangent vectors of γi and tangent vectors of γ̃i will be measured with respect to the
natural metric on TM induced by g. If we consider geodesics as curves in TM , then
they are solutions to a system of first order ordinary differential equations whose
coefficients are continuous functions of the metric and its first derivatives. For any
ε > 0 there exists a C1 neighborhood N1 of g in G and a δ = δ(ε) > 0 such that: if
ĝ ∈ N1 and γ̃i is a ĝ-geodesic with γ̃i(0) = γi(0) and |γ̃′i(0) − γ′i(0))| < δ, then the
C1 distance on M between γ̃i|[0, Li + 1] and γi|[0, Li + 1] is less than ε. We choose
ε > 0 such that if the C1 distance between γ̃i|[0, Li + 1] and γi|[0, Li + 1] is less than
ε, |Li − L̃i| < ε, and γ̃i(L̃i) = y, then conditions (i)-(iii) hold with γi replaced by γ̃i,
and Li replaced by L̃i.

By (iv), y is not g-conjugate to x along any of γ1, . . . , γn. We choose open neighbor-
hoods U1, . . . , Un of L1γ

′
1(0), . . . , Lnγ′n(0) in TxM , respectively, and an open neigh-

borhood U of y in M , so that
expx,g : Ui → U

is a diffeomorphism, for i = 1, . . . , n. By replacing U and Ui by smaller open neigh-
horhoods, if necessary, we may assume that if γ̃′i(0)L̃i ∈ Ui, then |Li − L̃i| < ε and
|γ̃′i(0)− γ′i(0)| < δ.

If Bi ⊂ Ui is an open ball centered at Liγ
′
i(0) with Bi ⊂ Ui, then y /∈ expx,g(∂Bi)

and the topological degree of expx,g |∂Bi is nonzero at y. Any continuous map fi :
Bi → U that is sufficiently close to expx,g |Bi in the C0 topology also satisfies y /∈
fi(∂Bi) , and the topological degree of fi|∂Bi is nonzero at y. This implies y ∈ fi(Bi).
(See, for instance, Theorem 1.1 of [4].) Now we choose a C1-open neighborhood
N2 ⊂ N1 of g such that if g̃ ∈ N2, then expx,g̃ is sufficiently C0-close to expx,g

on Bi, i = 1, . . . , n, so that there exist yi ∈ Bi with expx,g̃ yi = y. For g̃ ∈ N2,
let γ̃i, i = 1, . . . , n, be g̃-geodesics defined on [0, L̃i] such that γ̃′i(0)L̃i = yi. Then
conditions (i)-(iii) hold for γi, Li, g replaced by γ̃i, L̃i, g̃, respectively. Thus there
exists a C1-open neighborhood Gn of Hn such that conditions (i)-(iii) hold for all
g̃ ∈ Gn.

This finishes the proof of Claim 3.1(b), and thus the proof of Theorem 1.1(1). The
proofs of Claims 3.2(b) and 3.3(b) are similar to the proof of Claim 3.1(b), except
we do not assume that γ̃i(0) = γi(0). This completes the proof of statements (1), (2),
and (3) of Theorem 1.1.

Now suppose that M has dimension at least three. We indicate the changes that
are needed in the above proof to sharpen “fails to have the finite blocking property”
to “is strongly insecure” in (1), (2), and (3). We let T (x, y, n, g) be the statement
obtained from statement S(x, y, n, g) by replacing condition (iii) by

(iii′) The sets γ1((0, L1)), . . . γn((0, Ln)) are pairwise disjoint.
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and adding the condition
(v) If x 6= y, then γ1, . . . , γn are non-self-intersecting; and if x = y, then γ1, . . . , γn

have no self-intersection points except x.

The argument proceeds as before, with T (x, y, n, g) replacing S(x, y, n, g) throughout.
Once we obtain a metric ĝ ∈ N and a ĝ-geodesic γ̂ : [0, L] → M from x to y such
that γ1, . . . , γn−1 are ĝ-geodesics and tr(γ̂) ∩ [tr(γ1) ∪ · · · ∪ tr(γn−1)] is a finite set,
then we change the previous definition of Z to Z = tr(γ1)∪ · · · ∪ tr(γn−1), and apply
Lemma 2.9 instead of Lemma 2.8. �
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