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THE SUPERCRITICAL GENERALIZED KDV EQUATION:
GLOBAL WELL-POSEDNESS IN THE ENERGY SPACE AND

BELOW

Luiz G. Farah, Felipe Linares, and Ademir Pastor

Abstract. We consider the generalized Korteweg-de Vries (gKdV) equation ∂tu +

∂3
xu + µ∂x(uk+1) = 0, where k ≥ 5 is an integer number and µ = ±1. In the fo-

cusing case (µ = 1), we show that if the initial data u0 belongs to H1(R) and satis-

fies E(u0)sk M(u0)1−sk < E(Q)skM(Q)1−sk , E(u0) ≥ 0, and ‖∂xu0‖sk

L2‖u0‖1−sk

L2 <

‖∂xQ‖sk

L2‖Q‖
1−sk

L2 , where M(u) and E(u) are the mass and energy, then the correspond-

ing solution is global in H1(R). Here, sk =
(k−4)

2k
and Q is the ground state solution

corresponding to the gKdV equation. In the defocusing case (µ = −1), if k is even,

we prove that the Cauchy problem is globally well-posed in the Sobolev spaces Hs(R),

s >
4(k−1)

5k
.

1. Introduction

Consider the Initial Value Problem (IVP) associated with the supercritical gener-
alized Korteweg-de Vries (gKdV) equation, i.e.,

(1.1)

{
∂tu+ ∂3

xu+ µ∂x(uk+1) = 0, x ∈ R, t > 0,
u(x, 0) = u0(x),

where µ = ±1.
Local well-posedness of the Cauchy problem (1.1) (with k ≥ 1) has been studied

by many authors in recent years. We refer the reader to Kenig, Ponce, and Vega [17],
[18] for a complete set of sharp results.

Our main interest here is on global well-posedness. Let us briefly recall the best
results available in the literature. For k = 1 and k = 2, global well-posedness was
established by Colliander, Keel, Staffilani, Takaoka, and Tao [6] for data, respectively,
in Hs(R), s > −3/4 and Hs(R), s > 1/4, and by Guo [12] for data, respectively, in
H−3/4(R) and H1/4(R). These results show to be sharp in view of the work of Kenig,
Ponce, and Vega [19] (see also [1], [4], [28]).

The case k = 3 was dealt with by Grünrock, Panthee, and Silva [10], where the
authors showed global well-posedness in Hs(R), s > −1/42. It should be pointed
out that for k = 3, Tao [27] established a local existence result in Ḣ− 1

6 (R), the
critical (scale-invariant) space, therefore for small data the solutions extend globally.
For recent progress in this case we refer to Koch and Marzuola [21]. Under “sharp

Received by the editors September 14, 2010.
The first author was partially supported by CNPq and FAPEMIG/Brazil.

The second author was partially supported by CNPq/Brazil.
The third author was partially supported by CNPq/Brazil.

357



358 L. G. FARAH, F. LINARES, A. PASTOR

smallness condition”, the critical case k = 4 was studied by Fonseca, Linares, and
Ponce in [9]. There it was established global well-posedness in Hs(R), s > 3/4. Farah
[8] used the I-method of [6], to further lower the regularity of the initial data to
s > 3/5. Recently, Miao, Shao, Wu, and Xu [25], improved the latter result to initial
data in Hs(R), s > 6/13. Their method of proof combines the I-method with a
multilinear correction analysis. For k = 4, Kenig, Ponce, and Vega [17] showed local
well-posedness for data in L2 (the critical space in this case), which for small data
yield global solutions. Finally, we should mention that for k = 4, Merle [24] and
Martel and Merle [23] proved the existence of real-valued solutions of (1.1) in H1(R)
corresponding to data in u0 ∈ H1(R) with ‖u0‖L2 > ‖Q‖L2 that blow-up. For k > 4
it is an outstanding open problem.

As far as we are concerned, for k ≥ 5, no global results below the energy space
are available. Not even a precise description of the conditions to obtain H1 global
solutions. These facts motivate the present study.

To start with the local results, using a scaling argument let us motivate what
should be the Sobolev spaces to studying (1.1). Note if u is a solution of (1.1),
then, for any λ > 0, uλ(x, t) = λ2/ku(λx, λ3t) is also a solution with initial data
uλ(x, 0) = λ2/ku0(λx). Moreover,

‖uλ(·, 0)‖Ḣs = λs+2/k−1/2‖u0‖Ḣs .

Thus, for each k fixed, the scale-invariant Sobolev space is Ḣsk , sk = (k − 4)/2k.
Therefore, the natural Sobolev spaces to studying (1.1) are Hs, s > sk = (k− 4)/2k.
Actually, this question has already been addressed by Kenig, Ponce, and Vega [17].
More precisely, they show the following.

Theorem 1.1. Let k > 4 and s > sk = (k − 4)/2k. Then for any u0 ∈ Hs(R) there
exist T = T (‖u0‖Hs) > 0 (with T (ρ; s) →∞ as ρ→ 0) and a unique strong solution
u(·) of the IVP (1.1) satisfying:

(1.2) u ∈ C([−T, T ] : Hs(R)),

(1.3) ‖u‖L5
xL10

T
+ ‖Ds

xu‖L5
xL10

T
<∞

(1.4) ‖ux‖L∞x L2
T

+ ‖Ds
xux‖L∞x L2

T
<∞,

and

(1.5) ‖Dγk
t Dαk

x Dβk
t u‖L

pk
x L

qk
T
<∞

where

(1.6) αk =
1
10
− 2

5k
, βk =

3
10
− 6

5k
, γk = γk(s) =

s− sk

3

(1.7)
1
pk

=
2
5k

+
1
10
,

1
qk

=
3
10
− 4

5k
.

Furthermore, given T ′ ∈ (0, T ) there exists a neighborhood V of u0 in Hs(R) such
that the map u0 7→ ũ(t) from V into the class defined by (1.2)-(1.4) with T ′ instead
of T is smooth.
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The method to prove Theorem 1.1 combines smoothing effects and Strichartz-type
estimates together with the Banach contraction principle. As a matter of fact, the
original theorem stated in [17] differs slightly in the function spaces. Here, we will
give a skech of the proof of Theorem 1.1 in this function spaces setting.

Remark 1.2. It should be observed that in [17] the authors also showed a local result
for initial data in Ḣsk(R), sk as above, but T = T (u0), that is, the existence time T
depends on u0 itself and not on ‖u0‖Ḣsk (see also [1]) and that this is global for small
real or complex-valued data.

Once Theorem 1.1 is established, a natural question presents itself: can the real so-
lutions be extended globally-in-time? Such a question has mathematical and physical
interest and it has been widely studied in the past few years.

By observing that the flow of the gKdV equation is conserved by the quantities

(1.8) Mass ≡M(u(t)) =
∫
u2(t) dx

and

(1.9) Energy ≡ E(u(t)) =
1
2

∫
(∂xu)2(t) dx−

µ

k + 2

∫
uk+2(t) dx,

one can partially answer this question for solutions in H1(R) if the initial data is
small (see [17, Theorem 2.15]). Note that the case where µ = −1 and k even is, in
some sense, special. Indeed, we have the following result.

Corollary 1.3. Let k > 4 and s > sk = (k − 4)/2k. If µ = −1 and k is even, for
u0 ∈ H1 of arbitrary size, there exists a unique strong solution u(·) of the IVP (1.1)
satisfying

u ∈ C(R : H1(R)) ∩ L∞(R : H1(R)).

We have two main goals in this paper. The first one is to make precise the H1-size
of the initial data to construct global H1 solutions when µ = 1 or µ = −1 and k odd.
The second one is to loosen the regularity requirements on the initial data which
ensure global-in-time solutions for the IVP (1.1) when µ = −1 and k even. Below we
also explain why we cannot apply the same method when µ = 1 or µ = −1 and k odd
(see Remark 5.9).

We consider first the focusing case µ = 1 or the defocusing case µ = −1 with k
odd. In these cases, it is not clear how large is the size of the initial data in H1 to
obtain global solutions. The next theorem shows us how small the initial data should
be.

Theorem 1.4. Let u0 ∈ H1(R). Let k > 4 and sk = (k − 4)/2k. Suppose that

(1.10) E(u0)skM(u0)1−sk < E(Q)skM(Q)1−sk , E(u0) ≥ 0.

If

(1.11) ‖∂xu0‖sk

L2‖u0‖1−sk

L2 < ‖∂xQ‖sk

L2‖Q‖1−sk

L2 ,

then for any t as long as the solution exists,

(1.12) ‖∂xu(t)‖sk

L2‖u0‖1−sk

L2 = ‖∂xu(t)‖sk

L2‖u(t)‖1−sk

L2 < ‖∂xQ‖sk

L2‖Q‖1−sk

L2 ,
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where Q is unique positive even solution of the elliptic equation

∆Q−Q+Qk+1 = 0.

This in turn implies that H1 solutions exist globally in time.

To prove Theorem 1.4, we follow closely the arguments in Holmer and Roudenko
[13], which were inspired by those introduced by Kenig and Merle [15].

Next we consider the defocusing case µ = −1 with k even. Our main result is the
following.

Theorem 1.5. Let µ = −1 and assume that k is even. Let u0 ∈ Hs(R), s > 4(k−1)
5k .

Then, the local solution in Theorem 1.1 can be extended to any time interval. More-
over, for all T > 0, the solution satisfies

(1.13) sup
t∈[0,T ]

{
‖u(t)‖2Hs

}
≤ C(1 + T )

(1+4/k)(1−s)
5s−4(k−1)/k

+,

where the constant C depends only on s and ‖u0‖Hs .

Remark 1.6. Note that when k = 4 we recover the result proved in Farah [8].

Here we use the approach introduced by Colliander, Keel, Staffilani, Takaoka and
Tao in [5], the so-called I-method. We also explain why the refined approach intro-
duced by the same authors in [6] cannot be used to improve our global result stated
in Theorem 1.5 (see Remark 5.2).

Note that when u0 ∈ Hs(R) with s < 1 in (1.1), the energy (1.9) could be infinite,
and so the conservation law (1.9) is meaningless. To overcome this difficulty, by
following the I-method scheme, we introduce a modified energy functional which
is also defined for less regular functions. Unfortunately, this new functional is not
strictly conserved, but we can show that it is almost conserved in time. When one
is able to control its growth in time explicitly, this allows to iterate a modified local
existence theorem to continue the solution to any time T .

The plan of this paper is as follows. In the next section we introduce some notation
and preliminaries. In Section 3 we prove Theorem 1.1. Next, in Section 4, we show
Theorem 1.4. The result of global well-posedness in Theorem 1.5 is proved in Section
5.

2. Notation and Preliminaries

Let us start this section by introducing the notation used throughout the paper.
We use c to denote various constants that may vary line by line. Given any positive
numbers a and b, the notation a . b means that there exists a positive constant c
such that a ≤ cb. Also, we denote a ∼ b when, a . b and b . a. We use a+ and a−
to denote a+ ε and a− ε, respectively, for arbitrarily small ε > 0.

We use ‖ · ‖Lp to denote the Lp(R) norm. If necessary, we use subscript to inform
which variable we are concerned with. The mixed norm Lq

tL
r
x of f = f(x, t) is defined

as

‖f‖Lq
t Lr

x
=

(∫
‖f(·, t)‖q

Lr
x
dt

)1/q

,

with the usual modifications when q = ∞ or r = ∞. The Lr
xL

q
t norm is similarly

defined.
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We define the spatial Fourier transform of f(x) by

f̂(ξ) =
∫

R
e−ixξf(x)dx

and the space-time Fourier transform of u(x, t) by

ũ(ξ, τ) =
∫

R

∫
R
e−i(xξ+tτ)u(x, t)dtdx.

Note that the derivative ∂x is conjugated to multiplication by iξ by the Fourier trans-
form.

The set of Schwartz functions is represented by S(R). We shall also define Ds and
Js to be, respectively, the Fourier multipliers with symbols |ξ|s and 〈ξ〉s = (1 + |ξ|)s.
Thus, the norm in the Sobolev space Hs(R) is given by

‖f‖Hs ≡ ‖Jsf‖L2
x

= ‖〈ξ〉sf̂‖L2
ξ
.

We also define the spaces Xs,b(R× R) on R× R through the norm

‖F‖Xs,b(R×R) = ‖〈τ − ξ3〉b〈ξ〉sF̃‖L2
ξ,τ
.

These spaces were introduced in the study of nonlinear dispersive wave problems by
Bourgain [2].

For any interval I, we define the localized Xs,b(I × R) spaces by

‖u‖Xs,b(I×R) = inf
{
‖w‖Xs,b(R×R) : w(t) = u(t) on I

}
.

We often abbreviate ‖u‖Xs,b
and ‖u‖XI

s,b
, respectively, for ‖u‖Xs,b(R×R)and ‖u‖Xs,b(I×R).

Let us introduce now some useful lemmas and inequalities. In what follows, U(t)
denotes the group associated with the linear KdV equation, that is, for any u0, U(t)u0

is the solution of the linear problem

(2.14)

{
∂tu+ ∂3

xu = 0, x ∈ R, t ∈ R,
u(x, 0) = u0(x).

We begin by recalling the results necessary to prove Theorem 1.1 and some linear
estimates in Bourgain’s spaces which will be needed later.

Lemma 2.1. Let p, q, and α be such that

(2.15)
1
p

+
1
2q

=
1
4
, α =

2
q
− 1
p
, 1 ≤ p, q ≤ ∞, −1

4
≤ α ≤ 1.

Then

(2.16) ‖Dα
xU(t)u0‖Lp

xLq
t

. ‖u0‖L2
x
.

In particular, for (p, q, α) = (2,∞, 1), the dual version of (2.16) reads as follows:

‖∂x

∫ t

0

U(t− t′)g(·, t′)dt′‖L2
x

. ‖g‖L1
xL2

t
.

Proof. See [20, Proposition 2.1]. �
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Lemma 2.2. Let pi, qi, αi, i = 1, 2, satisfy the relations in (2.15). Then

‖Dα1
x

∫ t

0

U(t− t′)g(·, t′)dt′‖L
p1
x L

q1
t

. ‖D−α2
x g‖

L
p′2
x L

q′2
t

,

where p′2 and q′2 are the Hölder conjugate of p2 and q2 respectively.

Proof. See [20, Proposition 2.2]. �

Lemma 2.3. If g ∈ S(R2), then

‖g‖
L

5k/4
x L

5k/2
t

.
∥∥∥Dαk

x Dβk
t g

∥∥∥
L

pk
x L

qk
t

,

where αk, βk, pk, and qk are defined as in (1.6)-(1.7).

Proof. See [17, Lemma 3.15]. �

Lemma 2.4. Let sk, αk, βk, pk, and qk be as in Theorem 1.1. Let α ≥ 0, β ≥ 0, and
u0 ∈ S(R). Then∥∥∥Dα

xD
β/3
t Dαk

x Dβk
t U(t)u0

∥∥∥
L

pk
x L

qk
t

.
∥∥Dα+β

x Dsk
x u0

∥∥
L2

x
.

Proof. See [17, Lemmas 3.14 and 3.16]. �

Lemma 2.5. Let s ≥ sk. Let pk and qk be as in Theorem 1.1. The following estimate
is fulfilled∥∥Ds

x(uk∂xu)
∥∥

L
5/4
x L

10/9
t

.
∥∥∥Dαk

x Dβk
t u

∥∥∥k

L
pk
x L

qk
t

‖Ds
x∂xu‖L∞x L2

t

+
∥∥∥Dαk

x Dβk
t u

∥∥∥k−1

L
pk
x L

qk
t

‖u‖
L

5k/4
x L

5k/2
t

‖Ds
x∂xu‖L∞x L2

t
.

Proof. See proof of Proposition 6.1 in [17]. �

Lemma 2.6. Let 0 < α < 1 and p, p1, p2, q, q1, q2 ∈ (1,∞) with 1
p = 1

p1
+ 1

p2
and

1
q = 1

q1
+ 1

q2
. Then,

(i)
‖Dα

x (fg)− fDα
x g − gDα

xf‖Lp
xLq

T
. ‖Dα

xf‖L
p1
x L

q1
T
‖g‖L

p2
x L

q2
T
.

The same still holds if p = 1 and q = 2.
(ii)

‖Dα
xF (f)‖Lp

xLq
T

. ‖Dα
xf‖L

p1
x L

q1
T
‖F ′(f)‖L

p2
x L

q2
T

Proof. See [17, Theorems A.6, A.8, and A.13].
�

Next, we introduce some inequalities to prove a variant of Theorem 1.1. These
tools will be used in Section 5.

Lemma 2.7 (Strichartz estimates). The following inequalities hold.
(i)

(2.17) ‖u‖X0,− 1
2 ++

. ‖u‖
L

5/4+
x L

10/9+
t

,

where a+ + = a+ 2ε for sufficiently small ε > 0.
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(ii)

(2.18) ‖u‖Lp
x,t

. ‖u‖X
α(p), 1

2 +
,

where p > 8 and α(p) =
(

1
2
+

) (
p− 8
p

)
.

Remark 2.8. Note that the numbers ε > 0 that appear implicitly in the fractions
1/2 + +, 5/4+ or 10/9+ can be chosen arbitrarily.

Proof. Recall the Strichartz estimates (see [16])

(2.19) ‖u‖L8
x,t

. ‖u‖X0, 1
2 +

and
‖u‖L5

xL10
t

. ‖u‖X0, 1
2 +
.

By duality
‖u‖X0,− 1

2−
. ‖u‖

L
5/4
x L

10/9
t

,

which interpolated with the trivial estimate

‖u‖X0,0 . ‖u‖L2
x,t

yields (2.17).
Interpolation between (2.19) and ‖u‖L∞x,t

. ‖u‖X 1
2 +, 1

2 +
gives us (2.18). �

Lemma 2.9. The following inequalities hold.

(i)

(2.20)
∥∥∥Dαk−

x Dβk−
t u

∥∥∥
L

pk+
x L

qk+
t

. ‖u‖X
sk+, 1

2 +

and

(2.21) ‖u‖
L

5k/4+
x L

5k/2+
t

.
∥∥∥Dαk−

x Dβk−
t u

∥∥∥
L

pk+
x L

qk+
t

.

(ii)

(2.22) ‖Ds
xu‖L

p3
x L

q3
t
≤ c‖u‖1−θ1

L
5k/4
x L

5k/2
T

‖Ds
x∂xu‖θ1

L∞x L2
T

and

(2.23) ‖∂xu‖L
p2
x L

q2
t
≤ c‖u‖1−θ2

L
5k/4
x L

5k/2
T

‖Ds
x∂xu‖θ2

L∞x L2
T
,

where

(2.24)
1
p2

+
1
p3

=
4
5k
,

1
q2

+
1
q3

=
1
2

+
2
5k

and θ1 =
s

1 + s
, θ2 =

1
1 + s

, both θ1 and θ2 are in (0, 1) with θ1 + θ2 = 1.
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Proof. Recall that from Lemmas 2.3 and 2.4,∥∥∥Dαk
x Dβk

t u
∥∥∥

L
pk
x L

qk
t

. ‖u‖X
sk, 1

2 +

and
‖u‖

L
5k/4
x L

5k/2
t

.
∥∥∥Dαk

x Dβk
t u

∥∥∥
L

pk
x L

qk
t

.

Interpolating, respectively, with ‖u‖L∞x,t
. ‖u‖X 1

2 +, 1
2 +

and ‖u‖L∞x,t
. ‖u‖L∞x,t

we ob-

tain (2.20) and (2.21). Moreover, an interpolation yield (2.22) and (2.23). �

Next we recall some linear estimates in Bourgain’s spaces which will be needed
later. Let ϕ be a cutoff function satisfying ϕ ∈ C∞0 (R), 0 ≤ ϕ ≤ 1, ϕ ≡ 1 in [−1, 1],
supp(ϕ) ⊆ [−2, 2]. For 0 < T < 1 define ϕT (t) = ϕ(t/T ).

Lemma 2.10 (Linear estimates). Let − 1
2 < b′ ≤ 0 ≤ b ≤ b′ + 1 and 0 < T ≤ 1 then

(i) ‖ϕ(t)U(t)u0‖Xs,b
≤ ‖u0‖Hs ;

(ii)
∥∥∥ϕT (t)

∫ t

0
U(t− t′)g(·, t′)dt′

∥∥∥
Xs,b

≤ T 1−(b−b′) ‖g‖Xs,b′
.

Proof. See [2] and [18]. �

Finally, we have the following refined Strichartz estimate in the case of differing
frequencies.

Lemma 2.11. Let ψ1, ψ2 ∈ X0, 1
2+ be supported on spatial frequencies |ξi| ∼ Ni,

i = 1, 2. If max{|ξ1|, |ξ2|} . min {|ξ1 − ξ2|, |ξ1 + ξ2|} for all ξi ∈ supp(ψ̂i), i = 1, 2,
then

(2.25) ‖ψ1Dxψ2‖L2
x,t

. ‖ψ1‖X0, 1
2 +
‖ψ2‖X0, 1

2 +
.

Proof. See [8, Lemma 2.1] (see also Bourgain [3] and Grünrock [11]). �

We now give some useful notation for multilinear expressions. If n ≥ 2 is an even
integer, we define a (spatial) n-multiplier to be any function Mn(ξ1, . . . , ξn) on the
hyperplane

Γn ≡ {(ξ1, . . . , ξn) ∈ Rn : ξ1 + · · ·+ ξn = 0},
which we endow with the standard measure δ(ξ1 + · · · + ξn), where δ is the Dirac
delta.

If Mn is an n-multiplier and f1, . . . , fn are functions on R, we define the n-linear
functional Λn(Mn; f1, . . . , fn) by

Λn(Mn; f1, . . . , fn) =
∫

Γn

Mn(ξ1, . . . , ξn)
n∏

j=1

f̂j(ξj).

We will often apply Λn to n copies of the same function u in which case the
dependence upon u may be suppressed in the notation: Λn(Mn;u, . . . , u) may simply
be written as Λn(Mn).

If Mn is symmetric, so does the n-linear functional Λn(Mn).
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As an example, suppose that u is an R-valued function. By Plancherel’s theorem,
we can rewrite the energy (1.9) in terms of n-linear functionals as

E(u(t)) = −1
2
Λ2(ξ1ξ2)−

µ

k + 2
Λk+2(1).

The time derivative of a symmetric n-linear functional can be calculated explicitly
if we assume that the function u satisfies a particular PDE. The following statement
may be directly verified by using the generalized KdV equation (1.1).

Proposition 2.12. Suppose u satisfies the generalized KdV equation (1.1) and that
Mn is a symmetric n-multiplier. Then
(2.26)
d

dt
Λn(Mn)=Λn(Mnαn)− inµΛn+k(Mn(ξ1, . . . , ξn−1, ξn + · · ·+ξn+k)(ξn + · · ·+ξn+k)),

where αn ≡ i(ξ31 + · · ·+ ξ3n).

3. Local well-posedness

Our aim in this section is to establish Theorem 1.1. We use the contraction mapping
principle. Define the metric spaces

XT = {u ∈ C([0, T ];Hs(R)) : |||u|||s <∞}

and
Xa

T = {u ∈ XT : |||u|||s ≤ a},
where

|||u|||s =‖u‖L∞T Hs
x

+ ‖u‖L5
xL10

T
+ ‖Ds

xu‖L5
xL10

T

+ ‖∂xu‖L∞x L2
T

+ ‖Ds
x∂xu‖L∞x L2

T
+ ‖Dγk

t Dαk
x Dβk

t u‖L
pk
x L

qk
T
.

(3.27)

The parameters T and a will be appropriately chosen later. On XT consider the
integral operator

(3.28) Φ(u)(t) := U(t)u0 − µ

∫ t

0

U(t− t′)∂x(uk+1)(t′)dt′.

We only give the details to estimate the ‖ · ‖L∞T Hs–norm. From group properties
and Lemma 2.1,

‖Φ(u)‖L2
x
≤ ‖u0‖L2

x
+ ‖∂x

∫ t

0

U(t− t′)uk+1(t′)dt′‖L2
x

. |u0‖L2
x

+ ‖uk+1‖L1
xL2

T

. ‖u0‖L2
x

+ ‖u‖k

L
5k/4
x L

5k/2
T

‖u‖L5
xL10

T
.

Now, from Lemma 2.3 and Sobolev’s inequality it follows that

‖Φ(u)‖L2
x
≤ ‖u0‖L2

x
+ ‖Dαk

x Dβk
t u‖k

L
pk
x L

qk
T
‖u‖L5

xL10
T

. ‖u0‖L2
x

+ T kγk‖Dγk
t Dαk

x Dβk
t u‖k

L
pk
x L

qk
T
‖u‖L5

xL10
T

≤ ‖u0‖L2
x

+ T kγk |||u|||k+1
s .

(3.29)
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Next, we estimate the Ḣs-norm. Group properties and applications of Lemma 2.1
yield

‖Ds
xΦ(u)‖L2

x
≤ ‖Ds

xu0‖L2
x

+ ‖∂x

∫ t

0

U(t− t′)Ds
x(uk+1)dt′‖L2

x

. ‖u0‖L2
x

+ ‖Ds
x(uk+1)‖L1

xL2
T
.

By applying Lemma 2.6 and then Lemma 2.3, we deduce

‖Ds
x(uk+1)‖L1

xL2
T

. ‖uk‖
L

5/4
x L

5/2
T

‖Ds
xu‖L5

xL10
T

+ ‖uDs
x(uk)‖L1

xL2
T

. ‖u‖k

L
5k/4
x L

5k/2
T

‖Ds
xu‖L5

xL10
T

+ ‖u‖
L

5k/4
x L

5k/2
T

‖Ds
x(uk)‖L

p0
x L

q0
T

. ‖Dαk
x Dβk

t u‖k
L

pk
x L

qk
T
‖Ds

xu‖L5
xL10

T

+ ‖Dαk
x Dβk

t u‖L
pk
x L

qk
T
‖Ds

xu‖L5
xL10

T
‖uk−1‖L

p1
x L

q1
T
,

(3.30)

where

1
p1

=
1
p0
− 1

5
=1− 4

5k
− 1

5
=

4(k − 1)
5k

and
1
q1

=
1
q0
− 1

10
=

1
2
− 2

5k
− 1

10
=

4(k − 1)
10k

.

On the other hand, from Lemma 2.3,

(3.31) ‖uk−1‖L
p1
x L

q1
T

. ‖u‖k−1

L
5k/4
x L

5k/2
T

. ‖Dαk
x Dβk

t u‖k−1
L

pk
x L

qk
T

.

Sobolev’s inequality and (3.31) then imply

‖Ds
x(uk+1)‖L1

xL2
T

. ‖Dαk
x Dβk

t u‖k
L

pk
x L

qk
T
‖Ds

xu‖L5
xL10

T

. T kγk‖Dγk
t Dαk

x Dβk
t u‖k

L
pk
x L

qk
T
‖Ds

xu‖L5
xL10

T
.

Therefore,

(3.32) ‖Ds
xΦ(u)‖L2

x
≤ ‖Ds

xu0‖L2
x

+ T kγk |||u|||k+1
s .

To estimate the remainder norms in (3.27) we will make use of Lemmas 2.1, 2.2,
2.5 and 2.3 to lead to

|||Φ(u)|||s ≤ c‖u0‖Hs + cT kγk |||u|||k+1
s .

Choose a = 2c‖u0‖Hs and T > 0 such that

cakT kγk <
1
20
.

This implies that Φ : Xa
T → Xa

T is well defined. To finish the proof we need to prove
that Φ is also a contraction; but, the argument is analogue to the previous one. The
rest of the proof follows in a standard way.

Remark 3.1. From the proof of Theorem 1.1 it follows that

T ∼ ‖u0‖−1/γk

Hs = ‖u0‖−3/(s−sk)
Hs .

This is in agreement with the case k = 4, where T ∼ ‖u0‖−3/s
Hs (see [9]).
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4. Global well-posedness in H1

In this section, we intend to show Theorem 1.4. We begin by recalling the classical
result obtained by Nagy [26] (see also Weinstein [29]), regarding the best constant of
the Gagliardo-Nirenberg inequality.

Theorem 4.1. Let k > 0, then the Gagliardo-Nirenberg inequality

(4.33) ‖u‖k+2
Lk+2(R)

≤ Kk+2
opt ‖∇u‖

k
2
L2(R)‖u‖

2+ k
2

L2(R),

holds, and the sharp constant Kopt > 0 is explicitly given by

(4.34) Kk+2
opt =

k + 2
2‖ψ‖k

L2

,

where ψ is the unique non-negative, radially-symmetric, decreasing solution of the
equation

(4.35)
k

4
∆ψ −

(
1 +

k

4

)
ψ + ψk+1 = 0.

Proof. See [26] and [29]. �

Before proceeding to our main result, we will establish a relation between the solu-
tion ψ of (4.35) and the unique non-negative, radially-symmetric, decreasing solution,
Q, of the equation

(4.36) ∆Q−Q+Qk+1 = 0.

Remark 4.2. Recall that for the critical generalized KdV equation, that is, equation
(1.1) with k = 4, µ = 1, we have global solutions if ‖u0‖L2 < ‖Q‖L2 , and u0 ∈ Hs(R),
s > 6/13, where Q is the solution of (4.36) with k = 4 (see [25], [8], [9], and [29]).

First, we note that if ψ is a solution of (4.35) then λψ(ωx), where λ =
(

4
k+4

)1/k

and ω =
(

k
k+4

)1/2

, is a solution of (4.36). Therefore, by uniqueness, we have

Q(x) = λψ(ωx).

A simple calculation shows that

‖Q‖2L2 =
λ2

ω
‖ψ‖2L2 .

Combining this last relation with (4.34) yields

Kk+2
opt =

2(k + 2)(k + 4)
k−4
4

(k)
k
4 ‖Q‖k

L2

.(4.37)

Moreover, by multiplying (4.36) by Q, integrating, and applying integration by parts,
we obtain ∫

Qk+2 dx = ‖Q‖2L2 + ‖∂xQ‖2L2 .
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On the other hand, by multiplying (4.36) by x∂xQ, integrating, and applying
integration by parts, we obtain the Pohozhaev-type identity

2
k + 2

∫
Qk+2 dx = ‖Q‖2L2 − ‖∂xQ‖2L2 .

Combining the last two relations, we obtain

(4.38)
(k + 4)
2(k + 2)

∫
Qk+2 dx = ‖Q‖2L2 and ‖Q‖2L2 =

k + 4
k

‖∂xQ‖2L2 .

Now we are ready to prove the main global result of this section.

Proof of Theorem 1.4. We proceed as follows: write the Ḣ1-norm of u(t) using the
quantities M(u(t)) and E(u(t)). Then we use the sharp Gagliardo-Nirenberg inequal-
ity (4.33) to yield

‖∂xu(t)‖2L2 = 2E(u0) +
2

k + 2
‖u(t)‖k+2

Lk+2

≤ 2E(u0) +
2

k + 2
Kk+2

opt ‖u0‖
k+4
2

L2 ‖∂xu(t)‖
k
2
L2 .

(4.39)

Let X(t) = ‖∂xu(t)‖2L2 , A = 2E(u0), and B = 2
k+2K

k+2
opt ‖u0‖

k+4
2

L2 , then we can write
(4.39) as

(4.40) X(t)−BX(t)k/4 ≤ A, for t ∈ (0, T ),

where T is given by Theorem 1.1.
Now let f(x) = x − B xk/4, for x ≥ 0. The function f has a local maximum at

x0 =
( 4
kB

)4/(k−4)

with maximum value f(x0) =
k − 4
k

( 4
kB

)4/(k−4)

. If we require
that

(4.41) 2E(u0) < f(x0) and X(0) < x0,

the continuity of X(t) implies that X(t) < x0 for any t as long as the solution exists.
Using relations (4.38), we have

E(Q) =
k − 4

2(k + 4)
‖Q‖2L2 .

Therefore, a simple calculation shows that conditions (4.41) are exactly the inequal-
ities (1.10) and (1.11). Moreover the inequality X(t) < x0 reduces to (1.12). The
proof of Theorem 1.4 is thus completed. �

5. Global well-posedness in Hs, s < 1: µ = −1 and k even

In this section, we prove Theorem 1.5. As we mentioned in the introduction, we
follow the “almost conservation law” scheme introduce in [5]–[7].
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5.1. Modified energy functional. To start with, we introduce a substitute notion
of “energy” that could be defined for less regular functions and that has very low
increment in time. Given s < 1 and a parameter N � 1, define a multiplier operator
IN : Hs → H1 such that

ÎNf(ξ) ≡ mN (ξ)f̂(ξ),
where the multiplier mN (ξ) is a non-decreasing in |ξ|, smooth and radially symmetric
function defined as

mN (ξ) =


1 , if |ξ| ≤ N,(
N

|ξ|

)1−s

, if |ξ| ≥ 2N.

To simplify the notation, we omit the dependence of N in IN and denote it only
by I. Note that the operator I is smoothing of order 1− s. Indeed we have

(5.42) ‖u‖Xs0,b0
≤ c‖Iu‖Xs0+1−s,b0

≤ cN1−s‖u‖Xs0,b0
,

for any s0, b0 ∈ R.
Our substitute energy will be defined by E1(u) = E(Iu). Obviously this energy

makes sense even if u is only in Hs(R). Thus, in terms of n-linear functionals we have

(5.43) E1(u) = −1
2
Λ2(m1ξ1m2ξ2)−

µ

k + 2
Λk+2(m1 . . .mk+2),

where mj = m(ξj).
Thus, using the derivation law (2.26), we obtain
d

dt
E1(u)

= −1
2

[
Λ2(m1ξ1m2ξ2α2)− 2µiΛk+2(m1ξ1m(ξ2 + · · ·+ ξk+2)(ξ2 + · · ·+ ξk+2)2)

]
− µ

k + 2
[Λk+2(m1 . . .mk+2αk+2)

+µ2iΛ2k+2(m1 . . .mk+1m(ξk+2 + · · ·+ ξ2k+2)(ξk+2 + · · ·+ ξ2k+2))
]

= −1
2
Λ2(m1ξ1m2ξ2(ξ31 + ξ32))

+
µi

k + 2
Λk+2((m2

1ξ
3
1 + · · ·+m2

k+2ξ
3
k+2)−m1 . . .mk+2(ξ31 + · · ·+ ξ3k+2))

+ µ2iΛ2k+2(m1 . . .mk+1m(ξk+2 + · · ·+ ξ2k+2)(ξk+2 + · · ·+ ξ2k+2)),

where we have used the identity ξ1 + · · ·+ ξk+2 = 0 and symmetrizing.

Remark 5.1. Observe that if m = 1, the Λk+2 term vanish trivially. On the other
hand, the terms Λ2 and Λ2k+2 are also zero, since we have the restriction ξ1 + ξ2 = 0
in the first and symmetrization in the later. This reproduces the Fourier proof of the
energy conservation (1.9).

As one particular instance of the above computations and the Fundamental The-
orem of Calculus, we have

E1(u)(t)− E1(u)(0) =
∫ t

0

d

dt
E1(u)(t′)dt′ =(5.44)



370 L. G. FARAH, F. LINARES, A. PASTOR

=
µi

k + 2

∫ t

0

Λk+2((m2
1ξ

3
1 + · · ·+m2

k+2ξ
3
k+2)−m1 . . .mk+2(ξ31 +. . .+ ξ3k+2))(t

′)dt′

+ µ2i

∫ t

0

Λ2k+2(m1 . . .mk+1m(ξk+2 + · · ·+ ξ2k+2)(ξk+2 + · · ·+ ξ2k+2))(t′)dt′.

Most of our arguments here consist in showing that the quantity E1(u) is almost
conserved in time.

Remark 5.2. We can think about E1(u) as the first generation of a family of modified
energies. One can also define the “second energy”

(5.45) E2(u) = −1
2
Λ2(m1ξ1m2ξ2)−

µ

k + 2
Λk+2(Mk+2(ξ1, . . . , ξk+2)),

where Mk+2 is an arbitrary symmetric (k + 2)-multiplier.
Thus, applying the derivation law (2.26), and choosing

Mk+2(ξ1, . . . , ξk+2) =
m2

1ξ
3
1 + · · ·+m2

k+2ξ
3
k+2

ξ31 + · · ·+ ξ3k+2

we can force the term Λk+2, that shows up in the expression of d
dtE

2(u), to be zero.
Unfortunately the multiplier Mk+2 is not well defined in the set Γk+2. In fact, given
N � 1, we can find numbers ξ1, . . . , ξk+2 such that the denominator of Mk+2 is zero
and the numerator is different from zero (see [8, Proposition 3.1 and Remark 3.2]).
Therefore, the refined approach introduced in [6] cannot be used in our setting.

5.2. Almost conservation law. This subsection presents a detailed analysis of the
expression (5.44). The analysis identifies some cancelations in the pointwise upper
bound of some multipliers depending on the relative size of the frequencies involved.
Our aim is to prove the following almost conservation property.

Proposition 5.3. Let s > 1/2, N � 1 and u ∈ Hs(R) be a solution of (1.1) on
[T, T + δ] so that Iu ∈ H1(R). Then the following estimate holds

(5.46)
∣∣E1(u)(T + δ)− E1(u)(T )

∣∣ . N−2+

(
‖Iu‖k+2

Xδ

1, 1
2 +

+ ‖Iu‖2k+2
Xδ

1, 1
2 +

)
.

Remark 5.4. The exponent −2+ on the right hand side of (5.46) is directly tied

to the restriction s >
3 + 2(1/2− 2/k)

5
in our main theorem. If one could replace

the increment N−2+ by N−α+ for some α > 0 the argument we give in Section 5.3

implies global well-posedness of (1.1) for all s >
3 + α(1/2− 2/k)

3 + α
.

Proof. We start with the estimate for the Λk+2 term. Instead of estimating each
multilinear expression separately, we shall exploit some cancelation between the two
multipliers. Using symmetrization and the fact that ξ1 + · · ·+ ξk+2 = 0 this term can
be rewritten as

Λk+2((m2
1ξ

3
1 + · · ·+m2

k+2ξ
3
k+2)−m1 . . .mk+2(ξ31 + · · ·+ ξ3k+2))

= (k + 2)
∫

Γn

(
m(ξ2 + · · ·+ ξk+2)
m(ξ2) · · ·m(ξk+2)

− 1
)
ξ31 Îu(ξ1) · · · ̂Iu(ξk+2).
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Therefore, our aim is to obtain the following inequality

Term . N−2+
k+2∏
i=1

‖Iφi‖Xδ

1, 1
2 +
,

where

Term ≡

∣∣∣∣∣
∫ δ

0

∫
Γn

(
m(ξ2 + · · ·+ ξ6)
m(ξ2) · · ·m(ξ6)

− 1
)
ξ31

̂Iφ1(ξ1, t′) · · · ̂Iφk+2(ξk+2, t′)dt′
∣∣∣∣∣ .

We estimate Term as follows. Without loss of generality, we assume that the
Fourier transforms of all these functions are non-negative. First, we bound the sym-
bol in the parentheses pointwise in absolute value, according to the relative sizes
of the frequencies involved. After that, the remaining integrals are estimated using
Plancherel’s formula, Hölder’s inequality and Lemma 2.11. To sum over the dyadic
pieces at the end we need to have extra factors N0−

j , j = 1, . . . , k + 2, everywhere.
We decompose the frequencies ξj , j = 1, . . . , k + 2, into dyadic blocks Nj . By the

symmetry of the multiplier

(5.47)
m(ξ2 + · · ·+ ξk+2)
m(ξ2) · · ·m(ξk+2)

− 1

in ξ2, . . . , ξk+2, we may assume that

N2 ≥ · · · ≥ Nk+2.

Moreover, we can assume N2 & N , because otherwise the symbol is zero. The
condition

∑k+2
i=1 ξi = 0 implies N1 . N2. We split the different frequency interaction

into several cases, according to the size of the parameter N in comparison to the Ni’s.

Case A: N2 & N � N3 ≥ · · · ≥ Nk+2.

The condition
∑k+2

i=1 ξi = 0 implies N1 ∼ N2. By the mean value theorem,∣∣∣∣m(ξ2)−m(ξ2 + · · ·+ ξk+2)
m(ξ2)

∣∣∣∣ .
|∇m(ξ2)(ξ3 + · · ·+ ξk+2)|

m(ξ2)
.
N3

N2
.

Therefore, Lemma 2.11 and the Sobolev embedding imply that

Term .
N3

1N3

N2
‖Iφ1Iφ3‖L2(R×[0,δ]) ‖Iφ2Iφ4‖L2(R×[0,δ])

k+2∏
i=5

‖Iφi‖L∞

.
N3

1N3

N2N2
1N

2
2 〈N3〉〈N4〉

∏k+2
i=5 〈Ni〉1/2−

k+2∏
i=1

‖Iφi‖Xδ

1, 1
2 +

. N−2+N0−
max

k+2∏
i=1

‖Iφi‖Xδ

1, 1
2 +
,

where Nmax = max{N1, · · · , Nk+2}.
The remaining cases N2 � N3 & N and N3 ≥ · · · ≥ N6 (Case B) and N2 ∼ N3 &

N and N3 ≥ · · · ≥ N6 (Case C) can be done using the same arguments as in Farah
[8] (just put the remaining terms Iφj , j = 7, · · · , k+ 2 in L∞x,t and apply the Sobolev
embedding).
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Now we turn to the estimate of the Λ2k+2 term. Before we start let us fix some
notation. We write N∗

1 ≥ N∗
2 ≥ N∗

3 for the highest, second highest and third highest
values of the frequencies N1, . . . , N2k+2. It is clear that

(5.48) |m1 . . .mk+1m(ξk+2 + · · ·+ ξ2k+2)(ξk+2 + · · ·+ ξ2k+2)| . N∗
1 .

Again we perform a Littlewood-Paley decomposition of the functions u.

Case A: N∗
1 ∼ N∗

2 ∼ N∗
3 & N.

In view of (5.48) and the fact that m3(N∗
1 )N∗3−

1 & N3−, we have∣∣∣∣∣
∫ T+δ

T

Λ2k+2(m1 . . .mk+1m(ξk+2 + · · ·+ ξ2k+2)(ξk+2 + · · ·+ ξ2k+2))(t′)dt′
∣∣∣∣∣

.
N∗0−

1

N2−

∫∫
|JIu|3|u|2k−1

.
N∗0−

1

N2− ‖JIu‖3L8‖u‖2k−1
L8(2k−1)/5

.
N∗0−

1

N2− ‖Iu‖3Xδ

1, 1
2 +
‖u‖2k−1

Xδ

α(8(2k−1)/5), 1
2 +

,

where we have applied Hölder inequality, (2.19) and (2.18).
Note that α(8(2k − 1)/5) = (k − 3)/(2k − 1)+. Therefore the inequality (5.42)

implies
‖u‖Xδ

α(8(2k−1)/5), 1
2 +

. ‖Iu‖Xδ

1, 1
2 +
,

for all s > (k − 3)/(2k − 1) (since α(8(2k − 1)/5) + 1− s ≤ 1).
So, in this case∣∣∣∣∣

∫ T+δ

T

Λ2k+2(m1 . . .mk+1m(ξk+2 + · · ·+ ξ2k+2)(ξk+2 + · · ·+ ξ2k+2))(t′)dt′
∣∣∣∣∣

.
N∗0−

1

N2− ‖Iu‖2k+2
Xδ

1, 1
2 +

.

Case B: N∗
1 ∼ N∗

2 � N∗
3 .

Let uj ≡ u(Nj). Again, the inequality m2(N∗
1 )N∗2−

1 & N2− and (5.48) implies
that∣∣∣∣∣

∫ T+δ

T

Λ2k+2(m1 . . .mk+1m(ξk+2 + · · ·+ ξ2k+2)(ξk+2 + · · ·+ ξ2k+2))(t′)dt′
∣∣∣∣∣

.
N∗0−

1

N1− ‖JIu1u3‖L2‖JIu2

2k+2∏
j=4

uj‖L2

.
N∗0−

1

N2− ‖JIu1‖L2‖u3‖L2‖JIu2‖L8‖u‖2k−1
L8(2k−1)/3

.
N∗0−

1

N2− ‖Iu‖2k+2
Xδ

1, 1
2 +

,
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where we have applied Hölder inequality, Lemma 2.11, (2.19) and (2.18) with α(8(2k−
1)/3) = (k − 2)/(2k − 1)+ < 1/2. This concludes the proof of Proposition 5.3. �

5.3. Proof of Theorem 1.5. Before proceeding to the proof of Theorem 1.5 we
will first establish local well-posedness for the generalized KdV equation (1.1) in the
Bourgain spaces Xs,b. As in Theorem 1.1, by the Duhamel’s principle, we need to
find a solution for the following integral equation

(5.49) u(t) = U(t)u0 +
∫ t

0

U(t− t′)∂x(uk+1)(t′)dt′.

To work in the Xs,b spaces we consider another version of (5.49), that is,

(5.50) u(t) = ϕ(t)U(t)u0 + ϕT (t)
∫ t

0

U(t− t′)∂x(uk+1)(t′)dt′.

Note that the integral equation (5.50) is defined for all (x, t) ∈ R2. Moreover if u
is a solution of (5.50) than ũ = u|[0,T ] will be a solution of (5.49) in [0, T ].

The proof proceeds by the usual fixed point argument. Applying Lemma 2.10, we
have for all s > sk,

‖u‖Xs,1/2+
=

∥∥∥∥ϕ(t)U(t)u0 + ϕT (t)
∫ t

0

U(t− t′)∂x(uk+1)(t′)dt′
∥∥∥∥

Xs,1/2+

. ‖u0‖Hs + T ε
∥∥∂x(uk+1)

∥∥
Xs,−1/2++

,

for sufficiently small ε > 0.
Thus, the crucial nonlinear estimate for the local existence is given in the following

lemma.

Lemma 5.5. For s > sk = (k − 4)/2k, we have

(5.51) ‖∂x(uk+1)‖X
s,− 1

2 ++
. ‖u‖k+1

X
s, 1

2 +
.

Proof. By the fractional Leibniz rule in Lemma 2.6, inequality (2.17), and Hölder’s
inequality, we obtain

‖∂x(uk+1)‖X
s,− 1

2 ++
= ‖Js∂x(uk+1)‖X0,− 1

2 ++
. ‖Js∂x(uk+1)‖

L
5/4+
x L

10/9+
t

. ‖Js(uk)‖
L

p1+
x L

q1+
t
‖∂xu‖L

p2
x L

q2
t

+ ‖uk‖
L

5/4+
x L

5/2+
t

‖Js∂xu‖L∞x L2
t

. ‖uk−1‖
L

5k/4(k−1)+
x L

5k/2(k−1)+
t

‖Jsu‖L
p3
x L

q3
t
‖∂xu‖L

p2
x L

q2
t

+ ‖u‖k−1

L
5k/4
x L

5k/2
t

‖u‖
L

5k/4+
x L

5k/2+
t

‖Js∂xu‖L∞x L2
t
,

where p2 and p3 are defined as in (2.24).
Therefore, an application of inequalities (2.22) and (2.23) followed by inequalities

(2.20) and (2.21) yield the desired estimate (5.51). �

Remark 5.6. As a consequence, one can recover all the well known range of existence
for the local theory in terms of the Xs,b spaces.
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Next, we consider the following modified equation{
Iut + Iuxxx − I(uk+1)x = 0, x ∈ R, t > 0,
Iu(x, 0) = Iu0(x).

(5.52)

Clearly if Iu ∈ H1(R) is a solution of (5.52), then u ∈ Hs(R) is a solution of
(1.1) in the same time interval. Therefore, we need to prove that, in fact, the above
modified equation has a global solution.

Applying the interpolation lemma (see [7, Lemma 12.1]) to (5.51), we obtain

‖∂xI(uk+1)‖X1,−1/2++ . ‖Iu‖k+1
X1,1/2+

.

where the implicit constant is independent of N . Now, standard arguments invok-
ing the contraction-mapping principle give the following variant local well-posedness
result.

Theorem 5.7. Assume sk < s < 1. Let u0 ∈ Hs(R) be given. Then there exists a
positive number δ such that the IVP (5.52) has a unique local solution Iu ∈ C([0, δ] :
H1(R)) such that

(5.53) ‖Iu‖Xδ

1, 1
2 +

. ‖Iu0‖H1 .

Moreover, the existence time can be estimated by

δ ∼ 1
‖Iu0‖σ

H1

,

where σ > 0.

Now, we have all tools to prove our global result stated in Theorem 1.5.

Proof of Theorem 1.5. Let u0 ∈ Hs(R) with sk < s < 1. Our goal is to construct
a solution to (5.52) (and therefore to (1.1)) on an arbitrary time interval [0, T ]. We
rescale the solution by writing uλ(x, t) = λ−2/ku(x/λ, t/λ3). We can easily check
that u(x, t) is a solution of (1.1) on the time interval [0, T ] if and only if uλ(x, t) is
a solution to the same equation, with initial data u0,λ = λ−2/ku0(x/λ), on the time
interval [0, λ3T ].

Since k is even we have
∫
uk+2(x, t)dx > 0, for all t > 0, therefore for µ = −1

(5.54) ‖∂xIuλ(t)‖2L2 . E(Iuλ)(t).

On the other hand

E(Iu0,λ) . ‖∂xIu0,λ‖2L2 + ‖Iu0,λ‖k+2
Lk+2

.
(
N2(1−s)λ−2(s−1/2+2/k) + λ−(k+2)(2/k−1/(k+2))

)
(1 + ‖u0‖Hs)k+2

.

where in the last inequality we have used that

(5.55) ‖∂xIu0,λ‖L2 . N1−s‖|ξ|sû0,λ‖L2 = N1−sλ−(s−1/2+2/k)‖u0‖Ḣs .

and, by Sobolev’s embedding,

(5.56) ‖Iu0,λ‖Lk+2 . ‖D1/2−1/k+2
x Iu0,λ‖L2 . λ−(2/k−1/(k+2))‖u0‖Hs ,

for all s > 1/2− 1/k + 2.
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Now, we apply our variant local existence Theorem 5.7 on [0, δ], where δ ∼
‖Iu0,λ‖−σ

H1 , σ > 0, to conclude that

(5.57) ‖Iuλ‖Xδ

1, 1
2 +

. ‖Iu0,λ‖H1 .

The choice of the parameter N = N(T ) will be made later, but we select λ now by
requiring

N2(1−s)λ−2(s−1/2+2/k) (1 + ‖u0‖Hs)k+2
< 1 =⇒ λ ∼ N

1−s
s−1/2+2/k .

In this case E(Iu0,λ) ≤ 1 and ‖Iu0,λ‖H1 ≤ 1.

Remark 5.8. Note that 2/k − 1/(k + 2) > 0.

From now on, we drop the λ subscript on u. By the almost conservation law stated
in Proposition 5.3 and (5.55)-(5.57), we have

E1(1) ≤ E1(0) + cN−2+ < 1 + cN−2+ < 2.

We iterate this process M times obtaining

(5.58) E1(M) ≤ E1(0) + cMN−2+ < 1 + cMN−2+ < 2,

as long as MN−2+ . 1, which implies that the lifetime of the local results remains
uniformly of size 1. We take M ∼ N2−. This process extends the local solution to
the time interval [0, N2−]. Now, we choose N = N(T ) so that

N2− > λ3T ∼ N3( 1−s
s−1/2+2/k )T =⇒ N2−3 1−s

s−1/2+2/k
− > T.

Therefore, if s >
4(k − 1)

5k
then T can be taken arbitrarily large which conclude our

global result.
Finally, we need to establish the polynomial bound (1.13). Undoing the scaling,

we have

‖∂xIuλ(λ3T0)‖2L2 =
1

λ1+4/k
‖∂xIu(T0)‖2L2 .

Let T0 ∼ N2−3 1−s
s−1/2+2/k

−, therefore our uniform bound (5.58) together with (5.42),
(1.8), and (5.54) imply

‖u(T0)‖2Hs . ‖Iu(T0)‖2H1 . ‖Iu(T0)‖2L2 + ‖∂xIu(T0)‖2L2

. ‖u0‖2L2 + λ1+4/k‖∂xIuλ(λ3T0)‖2L2

. ‖u0‖2L2 +N (1+4/k)( 1−s
s−1/2+2/k )

. (1 + T0)
(1+4/k)(1−s)
5s−4(k−1)/k

+(1 + ‖u0‖Hs)2.

The proof of Theorem 1.5 is thus completed. �

Remark 5.9. It is not clear how to apply the I-method when µ = 1 or µ = −1
and k odd. In these cases, we may not have inequality (5.54). Therefore, to perform
the interactions explained above we need to verify the hypotheses of Theorem 1.4 for
the modified solution Iu(t) at each step. However, the only available estimate in the
homogeneous Hs-Sobolev space is the following

‖∂xIut‖L2 . N1−s‖u(t)‖Ḣs .



376 L. G. FARAH, F. LINARES, A. PASTOR

Since, at the end of the argument we need to take N large, inequalities (1.10)-(1.12)
are not satisfied during all the interactions.
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