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REMARKS ON A1-HOMOTOPY GROUPS
OF SMOOTH TORIC MODELS

Aravind Asok

Abstract. We extend previous results on A1-homotopy groups of smooth proper toric
varieties to the case of smooth proper toric models, i.e., smooth proper equivariant

compactifications of possibly non-split tori, in characteristic 0.

1. Statement of results

Fix a field k having characteristic 0, and let Smk denote the category of schemes
that are separated, smooth and have finite type over k. Suppose X is a smooth proper
k-scheme. Let H(k) denote the A1-homotopy category of k-schemes as constructed
in [8, §3.2]. Assume X(k) is non-empty, and fix x ∈ X(k). One can study the
A1-homotopy sheaves of groups πA1

i (X, x) (the Nisnevich sheaves of groups on Smk

denoted aπA1

i (X, x) on [8, p. 110]). Our aim in this short note is to show that
the “geometric” decomposition of A1-homotopy sheaves of groups of smooth proper
“split” toric varieties, i.e., equivariant compactifications of Gm

×n, studied in [1] and
[9] extends to “non-split” toric varieties, i.e., equivariant compactifications of tori
T over k. We will refer to equivariant compactifications of tori T over k as toric
T -models [6, §5].

Let k denote a fixed algebraic closure of k and let Gk denote the Galois group
of k over k. For a k-scheme Y , let Yk denote the variety obtained by extending
scalars to k. Suppose X is a smooth proper toric T -model. One knows that Pic(Xk)
is a finitely generated Gk-module, and we denote the associated dual k-torus—the
Neron-Severi torus—by TNS(X). With any toric T -model, one can associate a fan Σ
in X∗(Tk) that is Gk-invariant. Cox’s construction [5] realizing any “split” smooth
proper toric variety as a geometric quotient of an open subscheme of affine space by
a free action of TNS(X) can be generalized to the non-split case: if X is a smooth
proper toric T -model, there are a TNS(X)-torsor f : U → X and an open immersion
U ↪→ An

k (n = dimT + dim TNS(X)) [6, Proposition 5.6]. Let H1
ét(TNS(X)) denote

the Nisnevich sheafification of the presheaf (on Smk) U 7→ H1
ét(U, TNS(X)).

Theorem 1.1. Assume k is a field having characteristic 0 and T is a k-torus. Suppose
X is a smooth proper toric T -model, and let x denote the k-rational point of X
corresponding to 1 ∈ T (k). The TNS(X)-torsor f : U → X above is an A1-cover. In
particular, if x̃ is any lift of x, there is a short exact sequence (of Nisnevich sheaves
of groups)

1 −→ πA1

1 (U, x̃) −→ πA1

1 (X, x) −→ TNS(X) −→ 1,
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and, for each integer i > 1, there are isomorphisms πA1

i (U, x̃) ∼→ πA1

i (X, x). Finally,
f induces a morphism of sheaves πA1

0 (X) → H1
ét(TNS(X)) that is an isomorphism on

sections over finitely generated separable extensions L/k.

Remark 1.2. There are examples of k-tori T and smooth proper toric T -models X for
which πA1

0 (X)(k) is non-trivial. Thus, over non separably closed fields, we have the
interesting phenomenon that a smooth proper A1-disconnected space can have A1-
connected covering spaces! For a manifestation of this phenomenon for non-proper
smooth varieties, one can consider the morphism Am \ 0 → Am \ 0/µn [1, Remark
3.13].

2. Torus torsors as A1-covering spaces

The word space, will mean “object of ∆◦ShvNis(Smk)” (the category of simplicial
Nisnevich sheaves on Smk); we use caligraphic letters (e.g., X ,Y) to denote such
objects. We set [X ,Y]s := homHs((Smk)Nis)(X ,Y), where Hs((Smk)Nis) is as on [8,
p. 49] and [X ,Y]A1 := homH(k)(X ,Y). A morphism f : X → Y of k-spaces is an
A1-cover (cf. [7, Section 4.1]) if it has the unique right lifting property with respect
to morphisms that are simultaneously A1-weak equivalences and monomorphisms of
sheaves, i.e., A1-acyclic cofibrations.

Proposition 2.1. Let T be a multiplicative group over a field k having characteristic
0. If X is a smooth scheme, and π : U → X is a T -torsor locally trivial in the étale
topology, then π is an A1-cover and, in particular, an A1-fibration.

Let BT denote the simplicial classifying space of T viewed as a Nisnevich sheaf of
groups, and let BTét denote the simplicial classifying space of T viewed as an étale
sheaf of groups. Let α : (Smk)ét → (Smk)Nis be the morphism of sites induced by
the identity functor. Set BétT := Rα∗BTét; see [8, §4.1] for more details.

Lemma 2.2 (cf. [2, Lemma 4.2.4]). The space BétT is A1-local.

Proof. By adjunction, one has canonical bijections

homHs((Smk)Nis)(U,BétT ) ∼−→ homHét
s (k)(U,BTét).

Choosing a fibrant model for BTét, and using [8, §2 Proposition 3.19 and §4 Propo-
sition 1.16], to check that BétT is A1-local, it suffices to prove that that the maps

Hi
ét(U, T ) −→ Hi

ét(U × A1, T )

are bijections for i = 0, 1. For i = 0, this a consequence of étale descent: if k′/k
is a separable extension splitting T , then it suffices to observe that any morphism
U × A1 → Gm

×n factors through a morphism U → Gm
×n. For i = 1 one could

apply [2, Lemma 4.3.7 and Proposition 4.4.3]. For a direct proof, observe that [4,
Lemma 2.4], establishes the result for affine X (Grothendieck showed that étale and
flat cohomology coincide Ibid. p.159). We reduce the case of general X to the affine
case by comparing the exact sequences of low degree terms for the Leray spectral
sequences associated with an open affine cover u : U → X and the corresponding
cover u× id : U × A1 → X × A1. �
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Proof of Proposition 2.1. After Lemma 2.2, the proof is essentially [7, Lemma 4.5(2)];
here are the details. Start with an A1-acyclic cofibration j : A → B fitting into a
diagram

A
s0 //

j

��

U

π

��
B // X.

Now, since BétT is A1-local, the natural maps [B, BétT ]s → [A, BétT ]s and [B, T ]s →
[A, T ]s are bijections. The pullback of π to A admits a section and is therefore a
trivial torsor. By the first bijection just mentioned, it follows that the pullback of
π to B is also trivial, and thus also admits a section, which we denote by s. The
composite morphism j ◦ s need not be equal to s0, but if it is not, then there is an
element t0 ∈ [A, T ]s such that t0 · s = s0. By the second bijection mentioned at the
beginning of this paragraph, the element t0 determines a unique element t of [B, T ]s.
The product t−1 · s is a new section of π pulled back to B. By construction this new
section gives back s0 upon restriction to A and thus provides the necessary (unique)
lift. �

Proof of Theorem 1.1. We return to the notation of the introduction: X is a smooth
proper toric T -model, TNS(X) is the associated Neron-Severi torus and f : U → X is
the TNS(X)-torsor constructed in [6, Proposition 5.6].

Since X is proper, it follows from, e.g., [5, Lemma 1.4] that U has complement
of codimension ≥ 2 in the affine space in which it sits since the same thing is true
upon passing to a separable closure. Since k has characteristic 0 and is thus infinite,
it follows that U is even connected by lines. (In fact, [1, Proposition 5.12] gives
conditions guaranteeing that this complement has codimension ≥ d, depending only
on the fan of Xk.) In any case, we can choose a point x̃ lifting x.

By Proposition 2.1, π is an A1-cover and thus an A1-fibration. Consider the long
exact sequence in A1-homotopy groups of π, which exists by a formal argument in
the theory of model categories (cf. [1, Remark 3.2]). The higher (i > 1) homotopy
(sheaves of) groups of BétTNS(X) are trivial, and πA1

1 (BétTNS(X)) = TNS(X) (again,
see [8, §4 Proposition 1.16]). We then have a long exact sequence of groups (and
pointed sets)

1 −→πA1

1 (U, x̃) −→ πA1

1 (X, x) −→ TNS(X)

−→πA1

0 (U) −→ πA1

0 (X) −→ πA1

0 (BétTNS(X)),

and for each i > 1, we have isomorphisms πA1

i (U, x̃) ∼→ πA1

i (X, x).
For the case i = 0, observe that the morphism X → BétTNS(X) classifying f

induces the morphism πA1

0 (X) → πA1

0 (BétTNS(X)). Using the A1-weak equivalence
X → SingA1

∗ (X), there is an induced epimorphism πs
0(SingA1

∗ (X)) → πA1

0 (X) by [8, §2
Corollary 3.22]. Again using the fact that X is proper, we conclude πs

0(SingA1

∗ (X))(L)
is X(L)/R.

Since BétTNS(X) is A1-local, πA1

0 (BétT ) = H1
ét(TNS(X)). Taking sections over

finitely generated separable extensions L/k determines a morphism of functors (on
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field extensions)
X(L)/R −→ H1

ét(L, TNS(X))
that coincides with the “obvious” such morphism gotten by restricting the TNS(X)-
torsor f : U → X to L-points of X. The torus TNS(X) is flasque (see, e.g., [3,
Proposition 6]) so [3, §5 Corollaire 1] implies that the restriction map X(L)/R →
H1

ét(L, TNS(X)) is a bijection. It follows that πA1

0 (X) → H1
ét(TNS(X)) is an isomor-

phism on sections over separable finitely generated L/k. �

Remark 2.3. The statement in Theorem 1.1 involving πA1

0 provides an alternate proof
of [2, Theorem 2.4.3] in the special case of smooth proper toric models. Furthermore,
this statement can be strengthened slightly. Indeed, the multiplication morphism
T ×T → T gives rise to a rational map X×X → X. Resolving indeterminacy, we get
a morphism X ′ → X ×X (that is a composite of blow-ups). One can check that this
induces a composition on πA1

0 (X)(L) for any L/k (coinciding with the composition
on R-equivalence classes). The map of the proposition is in fact a homomorphism of
abelian groups. One would like to show that πA1

0 (X) can be equipped with the struc-
ture of a Nisnevich sheaf of abelian groups and that the map πA1

0 (X) → H1
ét(TNS(X)

is an isomorphism of sheaves.
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