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FROM OSCILLATORY INTEGRALS TO
COMPLETE EXPONENTIAL SUMS

James Wright

Abstract. In [8], Phong and Stein establish a sharp and stable bound for (one dimen-

sional) scalar oscillatory integrals with a polynomial phase φ in terms of root clusters
of the derivative φ′. In this note we prove an analogous result for complete exponential

sums. When one considers only singleton clusters, the corresponding estimate for ex-

ponential sums was established by Loxton and Vaughan in [5]. Considering all possible
clusters containing a particular root allows one to obtain bounds for exponential sums

which are stable under perturbations of the phase.

1. Introduction

There is a striking similarity between certain problems in euclidean harmonic analysis,
for example the Fourier restriction problem or establishing smoothing estimates for
Radon-like transforms, and the corresponding problem in the setting of the ring of
integers modulo n, Z/nZ. Such problems have been extensively studied in the setting
of finite fields (see for example, [6] and [1]) and have served as good models for
the original euclidean problems. However a difference one finds when passing from
the euclidean setting to the finite field setting is the lack of scales at one’s disposal.
Moving from finite fields, say Z/pZ where p is prime, to the ring Z/nZ for general
n, the various divisors of n serve as different scales. By introducing an appropriate
“absolute value” or “norm” for integers mod n, euclidean scaling arguments can be
made to work in this setting and one sees that euclidean problems are modeled more
closely in Z/nZ than in the finite field setting.

In this note we continue exploring this similarity (see also [10], [3], [11] and [12]) in the
context of estimates for oscillatory integrals in the euclidean setting on the one hand
and estimates for complete exponential sums in elementary number theory on the
other hand. More specifically we will establish an analogous estimate for exponential
sums of a very useful and sharp estimate for oscillatory integrals due to Phong and
Stein [8]: suppose that φ ∈ R[X] is polynomial with real coefficients whose derivative
φ′(x) = a0

∏
(x−zj)ej hasm distinct roots {z1, . . . , zm}. By a root cluster C we simply

mean a subset C ⊂ {z1, . . . , zm} of the roots and we write S(C) =
∑

j:zj∈C ej as the
number of roots in this cluster, counted with multiplicities. Given a real parameter
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λ, a root zj of φ′ and root cluster C containing zj , we define

Eλ(zj ; C) =
[ |λ|−1

|a0

∏
zk /∈C(zj − zk)ek |

]1/[S(C)+1]

which will arise as a cluster estimate for the oscillatory integral

Iλ =
∫ b

a

e2πiλφ(x)ψ(x) dx;

here ψ is smooth and has compact support if either endpoint a or b is infinite. In [8]
the following estimate for Iλ was proved:

(1) |Iλ| ≤ C max
1≤j≤m

min
zj∈C

Eλ(zj ; C)

where the minimum is taken over all root clusters C containing zj and C depends
only on the degree d =

∑
ej of φ′, ‖ψ‖L∞ and ‖ψ′‖L∞ . This estimate is stable under

perturbations of the phase φ. It is also a sharp estimate when all the roots of φ′

are real. When a root zj is complex, there is an improved cluster estimate E′
λ(zj ; C)

(smaller than Eλ(zj ; C)), giving rise to a better bound in (1). This uses the fact that
when zj = aj + ibj is complex, the absolute value | · | of the factor (x− zj) in φ′ has
the bound |x − zj | ∼ max(|x − aj |, |bj |), and in particular the uniform bound from
below |x− zj | ≥ |bj | holds which can be exploited in the oscillatory integral estimate
for Iλ.

When we pass to exponential sums where our polynomial phase φ ∈ Z[X] now has
coefficients in the integers Z, non-archimedean absolute values | · |′ on the integers
Z will play the analogous role of the archimedean absolute value | · | on the reals R.
Unlike the archimedean case, where | · | extends uniquely to C with the above uniform
bounds on the factors |x − zj |, the analogous bounds for |x − zj |′ for extensions of
non-archimedean absolute values | · |′ to fields K containing the roots of φ′ do not
hold (or at least are not easy to come by) uniformly for x ∈ Z. Nevertheless we will
prove an analogue of (1) for complete exponential sums.

Let us begin with a polynomial φ ∈ Z[X] and consider the exponential sum

S(φ;N) =
1
N

∑
xmod N

e2πiφ(x)/N

where N ∈ N is a fixed positive integer. Due to the multiplicative nature of S(φ;N),
the study of these sums can be reduced to understanding S(φ;N) when N = pα

is a power of a fixed prime p. This allows us to employ a single absolute value in
our analysis, the so-called p-adic absolute value | · |, defined on integers x ∈ Z by
|x| = p−t where pt appears in the prime factorisation of x. Henceforth | · | will either
denote the p-adic absolute value or some other absolute value, archimedean or non-
archimedean (we also call a non-archimedean absolute value a valuation), the context
will always be clear. Furthermore, it is sometimes convenient to use additive notation
for valuations; in the case of the p-adic valuation | · | on Z, this is defined as the
nonnegative integer ordp(x) so that |x| = p−ordp(x). For our sum S(φ; pα), it is the
roots of the derivative φ′(x) = a0

∏
(x− ξj)ej which play a key role; here {ξ1, . . . , ξm}

enumerate the distinct roots of φ′, lying in some finite field extension K of the p-adic
field Qp, the completion of Q with respect to the p-adic valuation | · |. The p-adic
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valuation | · | or ordp extends uniquely to a valuation on K; we write this extension
as | · | and ordp in the multiplicative and additive form respectively. Therefore, with
respect to this extension, the cluster estimate Ep−α(ξj ; C) makes sense in this discrete
setting;

(2) Ep−α(ξj ; C) :=
[ p−α

|a0

∏
ξk /∈C(ξj − ξk)ek |

]1/[S(C)+1]

where C ⊂ {ξ1, . . . , ξm} is a fixed root cluster of φ′ containing ξj . The absolute value
| · | is now non-archimedean and p−α plays the role of the real parameter λ (here we
note |p−α| = pα).

Our main result is the following estimate.

Theorem 1.1. For any polynomial φ ∈ Z[X] of degree at least 2, we have

(3) |S(φ; pα)| ≤ mp2 max
1≤j≤m

min
ξj∈C

Ep−α(ξj ; C)

where the minimum is taken over all root clusters C containing ξj.

1.2. Remarks.

• As we will see, the proof of Theorem 1.1 is elementary and conceptually sim-
ple. This is the most significant feature of the result. To prove (3) it suffices
to assume that p2 maxj minC Ep−α(ξj ; C) < 1; otherwise there is nothing to
prove. We will see that this assumption forces α ≥ 2 and so there will be no
need to appeal to the estimates of A. Weil for exponential sums over finite
fields.

• Improvements on the factormp2 are possible. A slight variant of the argument
establishing (3), now using the estimates of A. Weil, easily shows thatmp2 can
be replaced by 2(d − 1)2p3/2. See Section 6 where further improvements are
discussed. It is likely that the factor mp2 can be replaced by some constant C
depending only on the degree of φ, at least for large p. This is the case if the
minimum minEp−α(ξj ; C) in (3) over all clusters C containing ξj is replaced
by Ep−α(ξj ; {ξj}), thus restricting ones attention to just singleton clusters (a
result due to Loxton and Vaughan, [5]; see the last remark below), or if one
considers only the biggest root cluster consisting of all roots of φ′ (essentially
reducing to a classical result of Hua). We do not make any effort here to
optimise the estimate.

• The classical estimate of Hua [2] mentioned above is the following. If φ(x) =
bdx

d + · · ·+ b1x, then |S(φ; pα)| ≤ Cdp
−α/d whenever gcd(bd, . . . , b1, pα) = 1.

To see how this estimate is related to (3), suppose φ′(x) = a0

∏
(x− ξj)ej as

before and observe that for each 1 ≤ j ≤ m,

min
ξj∈C

Ep−α(ξj ; C) ≤ Ep−α(ξj ; Cg) = p−α/d

whenever p does not divide the top coefficient a0. Here Cg = {ξ1, . . . , ξm}.
Now if p divides a0 but does not divide the next coefficient, then a sim-
ple combinatorial argument shows that minξj∈C Ep−α(ξj ; C) ≤ p−α/(d−1) ≤
p−α/d for each j. Interestingly this combinatorial reasoning continues to
hold only if p does not divide a top coefficient ak for some k ≤ (d − 1)/2,
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showing that minξj∈C Ep−α(ξj ; C) ≤ p−α/d for each j in these cases. For
k > (d − 1)/2, not only does the reasoning break down but the estimate
maxj minξj∈C Ep−α(ξj ; C) ≤ p−α/d is false in general. Nevertheless the proof
of Theorem 1.1 below shows that (3) holds if the maximum in (3) is taken
only over those 1 ≤ j ≤ m such that |ξj | ≤ 1. In this case one can show

max
j:|ξj |≤1

min
ξj∈C

Ep−α(ξj ; C) ≤ p−α/d

whenever gcd(bd, . . . , b1, pα) = 1 which corresponds to the classical Hua esti-
mate. See the final section, Section 7.

• To establish the estimate (3), we will begin by writing the sum S(φ; pα) as an
“oscillatory integral” over the compact group Zp of p-adic integers. This will
allow us to follow closely a euclidean argument establishing (1). We present
this argument in Section 2 where we will see how the oscillatory integral Iλ
is efficiently controlled by a certain sublevel set of φ′. In our discrete setting
this translates to controlling the exponential sum S(φ; pα) by the number of
solutions to a certain polynomial congruence given by φ′.

The principle of controlling S(φ; pα) by N(φ′; ps) := p−s#{φ′ ≡ 0 mod ps},
the normalised number of solutions to the polynomial congruence φ′ ≡ 0 mod
ps, for some choice of s is well known and has been used previously. For
instance if α = 2β ≥ 2 is an even integer, then |S(φ, pα)| ≤ N(φ′; pβ) is an
elementary estimate and has been used in [7] and [4]. Our use of this principle
lies deeper, the choice of s not only depends on α but also on the roots of
φ′. See Section 5. We emphasise that the implementation of the principle is
nevertheless elementary.

• The estimate (3) in Theorem 1.1 can be rewritten using the additive form
ordp of the extension to K of the p-adic valuation on Z. Let

δp(ξj ; C) := ordp

(
a0

∏
k:ξk /∈C

(ξj − ξk)ek
)

and

θj = θj(α) := max
ξj∈C

(α− δp(ξj ; C))
S(C) + 1

where the maximum is taken over all root clusters C containing the root ξj .
Then (3) can be reformulated as

(4) |S(φ; pα)| ≤ mp−minj [θj(α)]+2.

If one considers only singleton clusters C = {ξj}, then

p−minj θj(α) ≤ p−(α−δ)/(e+1)

where δ = maxj δp(ξj ; {ξj}) and e = maxj ej . If d is the degree of φ, then the
estimate

(5) |S(φ; pα)| ≤ (d− 1)p−(α−δ)/(e+1)

when p > d was established in [5]. Considering only singleton clusters has the
disadvantage that the corresponding bound can be unstable; the estimate (5)
can change drastically if two close by roots of φ′ are perturbed to coincide.
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This is rectified by considering all possible clusters containing a particular
root.

• Nevertheless it is likely that the argument in [5] to prove (5) can be used to
establish the estimate (3) or (4), even with improvements on the factor p2.
We were unaware of [5] when Theorem 1.1 was proved and we thank Trevor
Wooley for pointing out this reference to us. The argument we give follows
a harmonic analysts perspective and hopefully therefore accessible to non-
experts in number theory. We refer the reader to [5] for further background
and references.

1.3. Examples. In many cases root clusters with more than a single element can
realise the max min occuring in the estimate (3) of Theorem 1.1. For instance if
φ′(x) =

∏
(x− ξj)ej and α is small in the sense that

pα/d ≤ max
1≤j≤m

∏
k 6=j

|ξj − ξk|ek ,

then the root cluster Cg = {ξ1, . . . , ξm} containing all the roots determines the esti-
mate; namely, maxminEp−α(ξj ; C) = p−α/d where d = degree(φ). This is the case
corresponding to the exponential sum estimate due to Hua discussed above.

However, fixing the roots of φ′ and letting α tend to ∞, it is the singleton root clusters
which dictate the estimate and the behaviour of the exponential sum. See [5] where
several examples are given and discussed in this situation. On the other hand when
α is small or in a middle range with respect to root separations measured in terms of
the p-adic valuation (or thinking of α as being fixed and perturbing the roots of φ′ so
that they “cluster” near a given root), then larger sized root clusters can dominate.

For instance consider the example

φ′(x) = a(x− ξ1)e1(x− ξ2)e2(x− ξ3)e3

of a polynomial φ ∈ Z[X] of degree d = e1 +e2 +e3 +1 with three distinct roots ξ1, ξ2
and ξ3. Suppose that the root ξ1 is equidistant from the roots ξ2 and ξ3; that is,

s := ordp(ξ1 − ξ2) = ordp(ξ1 − ξ3).

Then necessarily the distance between ξ2 and ξ3 must be shorter; that is, t :=
ordp(ξ2 − ξ3) ≥ s. Let’s fix the multiplicities of the roots so that e2 ≤ e1 ≤ e3.

In this case, δ = maxj δj(ξj ; {ξj}) = τ +e1s+e3t where τ = ordp(a) and the estimate
(5) (if p > d) becomes

|S(φ; pα)| ≤ (d− 1)p−(α−τ−e1s−e3t)/(e3+1).

As t gets large (equivalently, as ξ3 → ξ2), this estimate blows up and in the limit we
arrive at a phase φ̃ with φ̃′(x) = a(x− ξ1)e1(x− ξ2)e∗ where e∗ = e2 + e3. If instead
we consider all clusters containing a particular root, then it is the cluster C = {ξ2, ξ3}
which plays the key role and we have

min
1≤j≤3

θj(α) = θ2(α) = (α− δp(ξ2; C))/(S(C) + 1) = (α− τ − se1)/(e2 + e3 + 1)

when ds ≤ α− τ ≤ se1 + t(e2 + e3 + 1). The estimate (3) or (4) is then

|S(φ; pα)| ≤ 3p2p−(α−τ−se1)/(e2+e3+1).
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In the limit, for φ̃, it is the cluster C̃ = {ξ2} which now dominates and we have

min
1≤j≤2

θ̃j(α) = θ̃2(α) = (α− δp(ξ2; C̃))/(S(C̃) + 1) = (α− τ − se1)/(e∗ + 1).

The estimate (3) or (4) in this case remains unchanged

|S(φ̃; pα)| ≤ 3p2p−(α−τ−se1)/(e2+e3+1),

illustrating the stability of the estimate.

1.4. A generalisation. As the proof of Theorem 1.1 is elementary, it lends itself to
generalisation. Let o be any ring endowed with a discrete valuation so that |x| ≤ 1 for
every x ∈ o. If ō denotes the completion with respect to | · | with π a prime element
generating the maximal ideal, we make the finiteness assumption that the residue
class field ō/πō is finite, say with q = pf elements where p is prime. The valuation | · |
on o extends uniquely to ō and we take the valuation normalised so that |π| = q−1.
We denote by L the field of fractions of ō and our finiteness hypothesis on the residue
class field implies that L is a local field. Hence L is a finite field extension of the
p-adic field Qp (in the characteristic 0 case) or the field Fp((π)) of Laurent series with
coefficients in the field Fp of integers modulo p (in the positive characteristic case); in
the latter case we can be more explicit, namely L = Fq((π)) where q = pf is defined
above as the number of elements in the residue class field. If n is the degree of L over
Qp or Fp((π)), then n = ef where f , defined above, is the residual degree and the
exponent e is the ramification index of this extension. In the characteristic 0 case,
viewing Z as a subring of o or ō, we have p = πeu for some unit u in ō.

Elements x ∈ ō have a unique power series representation x =
∑

j≥0 xjπ
j with the xj

lying in a fixed set of representations of the elements of the field ō/πō. It is easy to
see that the prime element π and representations {xj} in ō of the residue class field
of ō can be chosen from the ring o itself.

We identify each element x̄ = x+πso in the factor ring o/πso (which can be expressed
geometrically as the ball Bq−s(x) := {y ∈ o : |y − x| ≤ q−s} centred at x with radius
q−s) with the truncated expansion x0+x1π+· · ·+xs−1π

s−1 of x, uniquely determined
by x̄. Let χ′ be a non-principal additive character on the factor ring o/παo and φ̄ a
polynomial with coefficients in o/παo. With the above identifications, the character
sum

(6) Sχ(φ;πα) := q−α
∑

x̄∈o/παo

χ′(φ̄(x̄)) = q−α
∑

x≤πα

χ(φ(x))

where χ is a non-principal additive character of o which is equal to 1 on παo and
φ ∈ o[X] (the coefficients aj of φ being some choice of representation in o of the
corresponding coefficient āj of φ̄); here we use the nonstandard notation

∑
x≤πα to

indicate the finite sum over elements in o of the form x = x0 + x1π+ · · ·+ xα−1π
α−1

where each xj varies over the q representations in o of the elements in the residue
class field.

And vice-versa. Starting with a non-principal additive character χ on o which is equal
to 1 on παo and a polynomial φ ∈ o[X], we could have defined Sχ(φ;πα) by the right
side of (6). The character χ gives rise to a unique additive character χ′ on the factor
ring o/παo so that the sums in (6) are equal. The coefficients of the polynomial φ̄
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being reduced mod παo from the coefficients of φ. Finally we will assume that χ or χ′

is a primitive character in that there is an x ∈ o with |x| = q−α+1 such that χ(x) 6= 1.
If no such x exists then χ would restrict to a non-principal character on the factor
ring o/πα−1o.

Let φ′(x) = a0

∏
(x− ξj)ej be the factorisation of the derivative φ′ in terms of its m

distinct roots {ξ1, . . . , ξm}, lying in some finite field extension K of L. Our discrete
valuation | · | on o extends uniquely to K which we continue to denote by | · |. This
allows us to define Eq−α(ξj ; C) exactly as in (2) using the valuation | · | on K, the set
C ⊂ {ξ1, . . . , ξm} being a root cluster containing ξj . Then Theorem 1.1 extends in
the following way.

Theorem 1.5. Suppose we are in the above setting. If o has characteristic 0, suppose
that either p > degree(φ) ≥ 2 or p > e. If o has positive characteristic, suppose that
p > degree(φ) ≥ 2. Then

(7) |Sχ(φ;πα)| ≤ mq2 max
1≤j≤m

min
ξj∈C

Eq−α(ξj ; C)

where the minimum is taken over all root clusters C containing ξj.

Remarks:

• If the extension L is unramified, then there is no restriction when the charac-
teristic is 0 since p is prime and so p ≥ 2 > 1 = e in this case. Hence Theorem
1.5 is a strict generalisation of Theorem 1.1. Improvements on the factor q2

are also possible here; see Section 6.
• A basic example to keep in mind is a general Dedekind domain o where

discrete valuations arise in a natural way. To any nonzero prime ideal p of
o we associate a discrete valuation ordp defined on o so that pordp(x) is the
p factor in the prime ideal decomposition of the principal ideal xo generated
by x ∈ o. When the residue class field o/p is finite, say with q elements, then
via the isomorphism o/p → ō/πō, we see that the multiplicative valuation
|x| := q−ordp(x), extended uniquely to ō, is automatically normalised with
|π| = q−1 or ordp(π) = 1.

2. Euclidean considerations and motivations

Here we give a quick proof of the estimate (1), reducing matters to a sublevel set
estimate which can be found in [9] (in fact we will give a proof of this sublevel set
estimate, in an abstract setting, in Section 4). This proof is slightly different from
the one given in [8] but is more easily adapted to treating character sums. Recall
that we want to bound Iλ =

∫
e2πiλφ(x)ψ(x)dx where φ is a real polynomial and

φ′(x) = a0

∏
(x − zj)ej where {z1, . . . , zm} lists the m distinct roots (lying in C) of

φ′. Set

δ = δ(λ) =
[
λ−S(C∗)|a0

∏
zk /∈C∗

(zj∗ − zk)ek |
]1/[S(C∗)+1]



238 JAMES WRIGHT

where j∗ and C∗, a root cluster containing zj∗ , is a choice where the max min is
attained in

max
1≤j≤m

min
zj∈C

Eλ(zj ; C) = max
1≤j≤m

min
zj∈C

[ |λ|−1

|a0

∏
zk /∈C(zj − zk)mk |

]1/[S(C)+1]

.

For any δ′ > 0, define

r(δ′) = max
1≤j≤m

min
zj∈C

rC,j(δ′) where rC,j(δ′) :=
[ δ′

|a0

∏
zk /∈C(zj − zk)mk |

]1/S(C)

.

One easily checks that r(δ) = maxj minzj∈C Eλ(zj ; C) for our δ = δ(λ) defined above.

Now we simply split (we drop reference to the cut-off ψ for convenience)

Iλ =
∫
{x:|φ′(x)|≤δ}

e2πiλφ(x)dx +
∫
{x:|φ′(x)|>δ}

e2πiλφ(x)dx := I + II

For I we use the trivial estimate |I| ≤ |{x : |φ′(x)| ≤ δ}| and this sublevel set has the
desired bound Cd r(δ) according to Theorem 1 in [9]. For II, the region of integration
splits into O(d) intervals, and on each of these intervals, a simple integration by parts
argument gives a bound O(1/|λ|δ) which in turn gives the desired bound from our
definition of δ.

The bound O(1/|λ|δ) obtained by integrating by parts only occurs in a small neigh-
borhood of the set {x : |φ′(x)| ≤ δ}, a bound which improves by continued integration
by parts away from this neighborhood. The same will occur in our discrete setting
for character sums Sχ(φ;πα). In the next section we will see that by passing to the
completion ō, we can represent Sχ by an “oscillatory integral” over ō; namely

Sχ(φ;πα) =
∫

ō

ψ(π−αφ(x)) dµ(x)

for some additive character ψ of the field of fractions L of ō. We will estimate Sχ in
the same way as Iλ above by splitting Sχ as∫

{x:|φ′(x)|≤δ}
ψ(π−αφ(x))dµ(x) +

∫
{x:|φ′(x)|>δ}

ψ(π−αφ(x))dµ(x) := I + II

where δ = δ(qα) is the analogue of δ(λ) in the discrete setting (formally replace λ
with qα and the archimedean absolute value on C with the non-archimedean absolute
value | · | in the definition for δ(λ) above).

Using the non-archimedean analogue of the sublevel set estimate in [9] which can be
found in [11] gives the favourable bound

I ≤ µ({x : |φ′(x)| ≤ δ}) ≤ m max
j

min
C3ξj

Eq−α(ξj ; C).

For II we would like to “integrate-by-parts” to achieve a bound O(1/qαδ) which
matches the above bound for I by the definition of δ. As in the euclidean setting
we might expect to get better (rapid decay) estimates as we move away from the
set {|φ′(x)| ≤ δ}. In fact in the discrete setting this expectation is quantified more
exactly; we will find a precise neighborhood N of {|φ′(x)| ≤ δ} outside of which the
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rapid decay is 0. That is, ∫
ō\N

ψ(π−αφ(x)) dµ(x) = 0.

The measure of the neighborhood N will satisfy

µ(N ) ≤ mq2 max
J

min
C3ξj

Eq−α(ξj ; C),

giving the desired estimate (7) in Theorem 1.5. Improvements to this estimate are
made by establishing any nontrivial bound for the integral

(8)
∫
N\{|φ′(x)|≤δ}

ψ(π−αφ(x)) dµ(x).

Such an improvement will be discussed in Section 6.

3. Passing to the completion

Recall that the setting of Theorem 1.5 is a general ring o with a discrete valuation
| · | so that |x| ≤ 1 for every x ∈ o. If ō denotes the completion of o with respect to
| · | and π a prime element, we assume that the residue class field ō/πō is finite with
q = pf elements where p is prime.

It will be convenient for us to pass to the completion ō. This will enable us to write
our character sum as an “oscillatory integral” over a local field, to write the number
of solutions to a polynomial congruence as the measure of a sublevel set, etc... This
allows us in turn to carry over heuristics from the euclidean setting more easily. Since
the residue class field ō/πō is finite, the ring ō is then the compact ring of integers of
the local field L, the quotient field of ō. We then have at our disposal a Haar measure
dµ on L which we normalise so that µ(ō) = 1. The discrete valuation | · |, initially
defined on o, extends uniquely to a valuation on L which we continue to denote by
| · |.
Let us start with solutions to a polynomial congruence g ≡ 0 mod πso where g ∈ o[X].
By a solution we mean an element x̄ = x + πso in the factor ring o/πso where
g(x) ∈ πso. We use the notation N(g;πs) = q−s#{g ≡ 0 mod πso} to denote the
normalised number of solutions to this congruence. Passing to the completion ō, the
number of solutions, considered now as elements x̄ = x+πsō in the factor ring ō/πsō,
remains the same. We have

(9) N(g;πs) = µ
(
{z ∈ ō : |g(z)| ≤ q−s}

)
.

In fact the right hand side of (9) is equal to∫
ō

1{|g(z)|≤q−s}(y) dµ(y) =
∑

x′≤πsō

∫
Bq−s (x′)

1{|g(z)|≤q−s}(y) dµ(y)

= q−s#{x′ ≤ πsō : |g(x′)| ≤ q−s} = N(g;πs).

Here Br(z) = {y ∈ L : |y−z| ≤ r} denote balls in L arising from the valuation | · | and
the second equality follows since |g(y)| ≤ q−s if and only if |g(x′)| ≤ q−s for elements
y ∈ Bq−s(x′). Recall the nonstandard notation x′ ≤ πsō we are using to indicate the
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elements of the form x′ = x0 + x1π + · · ·+ xs−1π
s−1 where each xj varies over the q

representations in o of the elements in the residue class field.

A similar identity holds for character sums. Starting with a non-principal additive
character χ on o with χ ≡ 1 on παo and a polynomial φ ∈ o[X] defining the character
sum Sχ(φ;πα), we can find a non-principal additive character ψ on L with ψ ≡ 1 on
ō so that

(10) Sχ(φ;πα) =
∫

ō

ψ(π−αφ(x)) dµ(x).

Furthermore if χ is a primitive character, then ψ above will also be non-trivial on
{z ∈ L : |z| ≤ q}. In fact χ lifts to a non-principal character χ̄ on ō which is equal
to 1 on παō. The characters of ō arise as x → ψ0(yx) for some y =

∑−1
j=−m xjπ

j

and some fixed non-principal character ψ0 on L which is 1 on ō and non-trivial on
{z ∈ L : |z| ≤ q}. Hence χ̄(x) = ψ0(y′x) for some y′ satisfying |y′| = qα. In fact
since ψ0 is non-trivial on Bq(0) we can find an x with |y′x| = q so that χ̄(x) 6= 1
and hence |x| ≥ q−α+1 implying |y′| ≤ qα. On the other hand since χ is a primitive
character, we can find a v with |v| = q−α+1 so that ψ0(y′v) = χ̄(v) 6= 1. This implies
that |y′|q−α+1 = |y′v| ≥ q and so |y′| ≥ qα.

Therefore the character ψ(z) := ψ0(y′παz) on L has the properties ψ(π−αx) = χ̄(x)
on ō, ψ ≡ 1 on ō and ψ is non-trivial on Bq(0). Furthermore∫

ō

ψ(π−αφ(y))dµ(y) =
∑

x′≤παō

∫
Bq−α (x′)

ψ(π−αφ(y))dµ(y) =
∑

x′≤παō

ψ(π−αφ(x′))

= q−α
∑

x′≤παō

χ̄(φ(x′)) = q−α
∑

x≤παo

χ(φ(x)) = Sχ(φ;πα)

which establishes (10).

4. Polynomial congruences and sublevel sets

In [11] a sharp bound for the number of solutions to general polynomial congruences
was proved which will play a key role in the proof of Theorem 1.1 and Theorem
1.5. This bound relies on the following structural statement about sublevel sets for
polynomials which is valid in any ring A with a valuation | · |, not necessarily discrete.
Since the proof is elementary and short we reproduce it for the convenience of the
reader.

Proposition 4.1. [11] Suppose A is a commutative ring with a valuation | · | and let
P (x) = a0

∏
(x− ξj)ej be a polynomial in A[X] with distinct roots ξ1, . . . , ξm lying in

some field extension K. Then

(11)
{
x ∈ A : |P (x)| ≤ δ

}
=

m⋃
j=1

[Brj
(ξj) ∩A]

Here

rj = min
C3ξj

rC,j(δ) = min
C3ξj

[ δ

|ad

∏
ξk /∈C(ξj − ξk)ek |

]1/S(C)
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where the minimum is taken over all root clusters C containing ξj. Also Br(z) = {y ∈
K : |y − z| ≤ r} is the ‘ball’ centred at z ∈ K with radius r where the valuation | · |
on K is any extension of the original valuation on A.

Remark: Proposition 4.1 is a slight extension of a result of Phong, Stein and Sturm
[9] where an upper bound on the measure of polynomial sublevel sets is given when
A = R. However their argument gives an upper set inclusion in (11) in the setting of
the reals. As the proof below will show, there is an analogous statement of Proposition
4.1 valid in archimedean settings as well (R or C for example) but then the equality
of sets is replaced by two set inclusions and a few factors of 2 appear in the definition
of rC,j .

Proof. This will be done by establishing two set inclusions. Set Aj := {x ∈ A :
|x− ξj | = mink(|x− ξk|)} and note that{

x ∈ A : |P (x)| ≤ δ
}
⊂

m⋃
j=1

{
x ∈ Aj : |P (x)| ≤ δ

}
.

Now fix j, 1 ≤ j ≤ m, and observe that when x ∈ Aj ,

|P (x)| ≥
∣∣a0

∏
ξk /∈C

(ξj − ξk)ek
∣∣ · ∣∣ ∏

ξk∈C

(x− ξk)ek
∣∣

for any cluster C containing ξj since |ξj − ξk| ≤ max(|ξj −x|, |x− ξk|) = |x− ξk| when
x ∈ Aj . Therefore for x ∈ Aj , if also |P (x)| ≤ δ, then

|x− ξj |S(C) ≤ |
∏

ξk∈C

(x− ξk)ek | ≤ r
S(C)
C,j

for any cluster C containing ξj and this gives{
x ∈ Aj : |P (x)| ≤ δ

}
⊂

⋂
C:ξj∈C

[
BrC,j

(ξj) ∩A
]

= Brj
(ξj) ∩A,

establishing the first set inclusion.

For the second set inclusion, if x lies in the set on the right in (11), then there is a j,
1 ≤ j ≤ m, so that x ∈ Brj (ξj) = ∩ξj∈CBrC,j

(ξj) where the intersection is taken over
all root clusters C containing ξj . Next we consider a particular cluster containing ξj ,
depending on x; namely

Cx := {ξk : |ξj − ξk| ≤ |x− ξj |}
and so in particular |x− ξj | ≤ rCx,j . Therefore

|P (x)| =
∣∣a0

∏
ξk /∈Cx

(ξj − ξk)ek
∣∣ ∣∣ ∏

ξk∈Cx

(x− ξk)ek
∣∣

since |x − ξk| = |ξk − ξj + ξj − x| = |ξk − ξj | for ξk /∈ Cx. On the other hand, when
ξk ∈ Cx, |x− ξk| ≤ max(|x− ξj |, |ξj − ξk|) = |x− ξj | and hence

|P (x)| ≤
∣∣a0

∏
ξk /∈Cx

(ξj − ξk)ek
∣∣ |x− ξj |S(Cx) ≤ δ

since, as we observed earlier, |x− ξj | ≤ rCx,j . This completes the proof of the propo-
sition. �
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Returning to our setting of a subring o of the ring of integers of a discrete valuation | · |
whose residue class field o/πo is finite, we now give a simple proof of the result in [11]
on the number N(f ;πs) of solutions to a polynomial congruence f ≡ 0 mod πso. The
bounds on N(f ;πs) are most conveniently expressed in terms of the additive form
ord(x) = − logq(|x|) (so that |x| = q−ord(x)) of the valuation. Given a polynomial
f(x) = a0

∏
(x − ξj)ej ∈ o[X] whose m distinct roots {ξ1, . . . , ξm} lie in K, a finite

field extension of the field of fractions L of the completion ō with respect to | · |. Our
valuation extends uniquely to K and we continue to denote the valuation for y ∈ K
as |y| or ord(y).

For each root ξj and root cluster C containing ξj , we define

δ(ξj ; C) := ord
(
a0

∏
k:ξk /∈C

(ξj − ξk)ek
)

and

ϑj = ϑj(s) := max
ξj∈C

(s− δ(ξj ; C))
S(C)

where the maximum is taken over all root clusters C containing the root ξj . Recall
S(C) =

∑
k:ξk∈C ek. We pick out a special set of indices I := {1 ≤ j ≤ m : Bq−ϑj (ξj)∩

o 6= ∅} where we continue to use the ball notation Br(z) = {y ∈ K : |y − z| ≤ r}.

Theorem 4.2. [11] With the notation as above, if minj∈I ϑj ≤ s, we have

(12) q−minj∈I ϑj−1 ≤ N(f ;πs) ≤ mq−minj∈I ϑj

where the minimum minj∈I ϑj is interpreted as ∞ if I = ∅.

Proof. From the discussion in Section 3 it suffices to pass to the completion ō and
establish the bounds

(13) q−minj∈I ϑj−1 ≤ µ
(
{z ∈ ō : |f(z)| ≤ q−s}

)
≤ mq−minj∈I ϑj .

From Proposition 4.1 we have

(14) {z ∈ ō : |f(z)| ≤ q−s} =
m⋃

j=1

[Brj
(ξj) ∩ ō]

where

rj = min
C3ξj

rC,j(q−s) = min
C3ξj

[ q−s

|a0

∏
ξk /∈C(ξj − ξk)ek |

]1/S(C)

= q−ϑj(s).

We note that by the non-archimedean nature of | · |, we have I = {1 ≤ j ≤ m :
Brj (ξj)∩ō 6= ∅}. We will need to estimate µ(Br(ξ)∩ō

)
. Again by the non-archimedean

property of | · |, if Br(ξ) ∩ ō 6= ∅, we can find a y ∈ ō so that Br(ξ) ∩ ō = {x ∈ ō :
|x− y| ≤ r}. Therefore, if q−t ≤ r < q−t+1, we have

(15) µ
(
Br(ξ) ∩ ō

)
= q−t

whenever Br(ξ) ∩ ō 6= ∅. This follows by the translation-invariance and dilation
property of µ as well as our normalisation µ(ō) = 1.
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Hence by (15), (14) immediately gives us the upper bound in (13). For the lower
bound, (14) implies that

max
j∈I

µ
(
Brj

(ξ) ∩ ō
)
≤ µ

(
{z ∈ ō : |f(z)| ≤ q−s}

)
and this gives the lower bound in (13) by (15). This completes our simplified proof
of Theorem 4.2.

�

5. Controlling character sums – a general principle

In this section we give the details to our plan for bounding the character sum Sχ(φ;πα)
defined in (6) which was outlined in the second half of Section 2.

We begin by recalling some notation introduced previously. The distinct roots of φ′,
{ξ1, . . . , ξm}, lie in some field extension K of the field of fractions L of ō and we write
φ′(x) = a0

∏
(x− ξj)ej . Our valuation | · | (or ord in additive form) extends uniquely

to K and we define

Eq−α(ξj ; C) =
[ q−α

|a0

∏
zk /∈C(zj − zk)ek |

]1/[S(C)+1]

= q−(α−δ(ξj ;C))/(S(C)+1)

where
δ(ξj ; C) = ord

(
a0

∏
k:ξk /∈C

(ξj − ξk)ek
)

and C ⊂ {ξ1, . . . , ξm} is a root cluster containing ξj .

Following the discussion in Section 2 we set

δ(qα) =
[
q−αS(C∗)|a0

∏
ξk /∈C∗

(ξj∗ − ξk)ek |
]1/[S(C∗)+1] = q−[αS(C∗)+δ(ξj∗ ;C∗)]/[S(C∗)+1]

where j∗ and C∗, a root cluster containing ξj∗ , is a choice where the max min is
attained in

max
1≤j≤m

min
ξj∈C

Eq−α(ξj ; C) = max
1≤j≤m

min
ξj∈C

q−(α−δ(ξj ;C))/(S(C)+1) = q−minj θj(α).

Here θj(α) = maxC3ξj
(α− δ(ξj ; C))/(S(C) + 1) where the maximum is taken over all

root clusters C containing ξj .

For any δ′ > 0, define

r(δ′) = max
1≤j≤m

min
ξj∈C

rC,j(δ′) where rC,j(δ′) :=
[ δ′

|a0

∏
ξk /∈C(ξj − ξk)ek |

]1/S(C)

.

As before one checks that r(δ) = maxj minξj∈C Eq−α(ξj ; C) for our δ = δ(qα) defined
above. Furthermore we note that δr(δ) = q−α.

From Section 3 we can find a non-principal character ψ on L with ψ = 1 on ō and
which is non-trivial on B′

q(0) = {x ∈ ō : |x| ≤ q} such that

Sχ(φ;πα) =
∫

ō

ψ(π−αφ(x)) dµ(x).
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We use the notation B′ to denote balls in ō ⊂ L to distinguish from balls in the field
extension K which we denote by B without the dash. In the above integral we will
consider a certain neighborhood N of the sublevel set {x ∈ ō : |φ′(x)| ≤ δ} where
δ = δ(qα). By (11) or (14) we have

(16) {x ∈ ō : |φ′(x)| ≤ δ} =
m⋃

j=1

[Brj
(ξj) ∩ ō]

where rj = rj(δ) = minC3ξj
rC,j(δ). Let r = r(δ) = maxj rj and let t be the integer

satisfying q−t ≤ r(δ) < q−t+1. Since the estimate (7) is trivial when q2r(δ) ≥ 1, we
may assume that t ≥ 3 in what follows. We will see that this will imply that α ≥ 2.

Let J denote those j, 1 ≤ j ≤ m, such that {x ∈ K : |x − ξj | < q−t+3} ∩ ō is
nonempty. For each j ∈ J we fix a yj ∈ ō in this intersection. We will assume
initially that J 6= ∅ and then discuss how the argument below can be modified to
give the desired result in the case when J = ∅.
When J is nonempty, our neighborhood is simply

N =
⋃

j∈J
B′

q−t+2(yj)

and our basic claim is

(17)
∫

ō\N
ψ(π−αφ(x)) dµ(x) = 0.

Since µ(N ) ≤ mq2r(δ) = mq2 maxj minC3ξj
Eq−α(ξj ; C), the claim (17) will imply the

desired estimate (7), completing the proof of Theorem 1.5 in this case. Since each
rj ≤ r < q−t+1 < q−t+3, we see that for each Brj (ξj) ∩ ō arising in the sublevel
decomposition (16) which is nonempty, we have j ∈ J and Brj

(ξj) ∩ ō ⊂ B′
q−t+2(yj).

This shows that N does indeed contain the sublevel set {x : |φ′(x)| ≤ δ}.
Our assumption that t ≥ 3 means that q−t+2 ≤ q−1. Since N is a finite union of
pairwise disjoint balls in ō of radii q−t+2, the complement ō\N is also a finite disjoint
union of balls of radii q−t+2. For each such fixed ball B′

q−t+2(y) in this complement,
we will show

(18) Iy :=
∫

B′
q−t+2 (y)

ψ(π−αφ(x)) dµ(x) = 0

from which (17) follows. We may write

Iy = ψ(π−αφ(y))q−t+2

∫
|w|≤1

ψ(π−αg(w)) dµ(w)

where g(w) = φ(y + qt−2w)− φ(y). For any 1 ≤ j ≤ m, we have

(19) |y − ξj | ≥ q−t+3.

In fact when j /∈ J , we have |x− ξj | ≥ q−t+3 for all x ∈ ō and in particular (19) holds
in this case. For j ∈ J , (19) will follow from |y − yj | ≥ q−t+3 which in turn follows
since B′

q−t+2(y) ∩B′
q−t+2(yj) = ∅. In fact since |yj − ξj | < q−t+3, we have

|y − ξj | = |y − yj + yj − ξj | = |y − yj | ≥ q−t+3,
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establishing (19) in this case as well.

For z ∈ B′
q−t+2(y), we have |z − ξj | = |y − ξj + z − y| = |y − ξj | which follows from

(19) since |y − ξj | ≥ q−t+3 > q−t+2 ≥ |z − y|. This implies that

|φ′(z)| = |a0

∏
(z − ξj)ej | = |a0

∏
(y − ξj)ej | = |φ′(y)|

is constant for z ∈ B′
q−t+2(y). Hence |g′(w)| = q−t+2|φ′(y + qt−2w)| is constant for

|w| ≤ 1. Since y /∈ N and N contains the sublevel set {x : |φ′(x)| ≤ δ}, we have
|φ′(y)| > δ and so |g′(0)| = q−t+2|φ′(y)| > qδr(δ) = q−α+1. As observed above, |g′(w)|
is constant as w varies over |w| ≤ 1 and so if we define σ by q−σ = |g′(0)| = |g′(w)|,
then σ ≤ α− 2.

The polynomial g(w) = a1w + a2w
2 + . . . + adw

d has no constant term and |a1| =
|g′(0)| = q−σ. Momentarily we will use our hypothesis that p > d or p > e in
the characteristic 0 case (in the positive characteristic case we require p > d) to
show that |ak| ≤ |a1| for all k ≥ 1. This will allow us to consider the polynomial
f := π−σg ∈ ō[X] with the property |f ′(w)| = 1 for all |w| ≤ 1 and write

Iy = ψ(π−αφ(y))q−t+2

∫
|w|≤1

ψ(π−(α−σ)f(w)) dµ(w).

The integral on the right vanishes since it can be decomposed as∫
|w|≤1

ψ(π−(α−σ)f(w))dµ(w) =
∑

z≤πs−1

∫
B′

q−s+1 (z)

ψ(π−sf(u))dµ(u)

where s = α − σ ≥ 2. From the facts that s ≥ 2 and ψ = 1 on B′
1(0) it follows,

by writing u = z + πs−1w with |w| ≤ 1 and expanding f(u) = f(z) + f ′(z)πs−1w +
O(π2s−2), that ψ(π−sf(u)) = ψ(π−sf(z))ψ(π−1f ′(z)w). Hence each integral in the
above sum is equal to

ψ(π−sf(z))q−s+1

∫
|w|≤1

ψ(π−1f ′(z)w)dµ(w)

which vanishes since ψ̃(w) := ψ(π−1f ′(z)w) is a non-principal additive character on
the compact ring B′

1(0). Here we use the facts that |f ′(z)| = 1 for each z and ψ is
non-trivial on B′

q(0).

It remains to show that |ak| ≤ |a1| for each coefficient of g. First we observe that
φ(k)(y) is a finite sum of terms of the form mφ′(y)/

∏
(y − ξj`

) where m ∈ N and the
product is a (k−1)-fold product of factors y−ξj , each having a bound |y−ξj`

| ≥ q−t+3

by (19). Since g(k)(0) = (q−t+2)kφ(k)(y) and by the non-archimedean nature of | · |,
we have

(20) |g(k)(0)| ≤
(q−t+2

q−t+3

)k−1

|g′(0)| ≤ q−k+1|g′(0)| = q−k+1|a1|.

However k!ak = g(k)(0). First consider the positive characteristic case where our
hypothesis is p > d. Then ō = Fq[[π]] is the ring of power series in π with coefficients
in Fq and q = pf . An element x ∈ Fq[[π]] satisfies |x| = q−m if and only if x =
xmπ

m + xm+1π
m+1 + · · · with xm 6= 0. In this case if j ∈ N and p 6 | j, then

jx = jxmπ
m + · · · with |jx| = |x|. Hence for any k ≤ d, we have p 6 | k! and so

|ak| = |k!ak| = |g(k)(0)| ≤ |a1|.
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Turning now to the case where o has characteristic 0, our hypothesis is less restrictive;
requiring either p > d or p > e. If pθ‖k!, we have |k!| = q−eθ where e is the ramification
index. Therefore if p > d, then θ = 0 from which |ak| = |k!ak| ≤ |a1| as before. Now
suppose p ≤ d but p ≥ e+ 1. Then from

θ = bk/pc+ bk/p2c+ · · · < k/(p− 1),

we have eθ < ke/(p−1) which in turn is less than or equal to k exactly when e+1 ≤ p.
Hence eθ ≤ k − 1 implying that |ak| ≤ q−k+1+eθ|a1| ≤ |a1|. Therefore in all cases,
|ak| ≤ |a1| for every k ≥ 1.

Finally we discuss the case when J = ∅. In this case we have for each 1 ≤ j ≤ m,
|x − ξj | ≥ q−t+3 for all x ∈ ō. Let I denote the set of indicies 1 ≤ j ≤ m for
which Brj

(ξj) ∩ ō 6= ∅. For each j ∈ I we fix a yj in this intersection so that
Brj

(ξj) ∩ ō = B′
rj

(yj). Our modified neighborhood is N = ∪j∈IB
′
q−t+2(yj) which is

the empty set if I = ∅. We still have

µ(N ) ≤ mq2r(δ) = mq2 max
j

min
C3ξj

Eq−α(ξj ; C)

and the desired result will follow if (17) holds with the modified neighborhood N .
Now one can run the argument above to establish (17) in this case using the key
fact that |x− ξj | ≥ q−t+3 (which now automatically holds for all x ∈ ō) to show the
constancy of |φ′(x)| over all balls of radius q−t+2 in the complement ō \ N (or over
all balls of radius q−t+2 in ō in the case that I is empty) and that the estimate (20)
still holds.

6. A slight improvement

In this section we modify the argument in the previous section, using the estimates
of A. Weil for character sums over finite fields, to give a slight improvement; namely
we reduce the factor q2 to q3/2. One can make further improvements.

We continue to use the notation employed in the previous section. We may assume
that t ≥ 2; otherwise the trivial estimate for Sχ(φ;πα) suffices. We begin with the
case that the index set J is nonempty. In this case we still have the basic claim
(17) from the previous section. Note that (17) trivially holds in the case t = 2 since
then N = ō as J is assumed to be nonempty. Hence the original oscillatory integral
representing our character sum is equal to

(21)
∫
N
ψ(π−αφ(x)) dµ(x) = Sχ(φ;πα).

Instead of estimating this integral trivially by µ(N ) as we did in the previous section,
one can look for improvements by providing any nontrivial estimate for the integral
(8) mentioned at the end of Section 2. A naive way of doing this is the following.

Let K denote those indicies 1 ≤ k ≤ m such that {x ∈ K : |x− ξk| < q−t+2} ∩ ō 6= ∅
and for each k ∈ K choose a zk in this intersection. We note that J ⊂ K (and so, in
particular, K is not empty in the present case) and therefore M⊂ N where

M :=
⋃

k∈K

B′
q−t+1(zk).
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This is still a neighborhood of {x ∈ ō : |φ′(x)| ≤ δ} since Brk
(ξk) ∩ ō ⊂ B′

q−t+1(zk)
for every k ∈ K. When k /∈ K, Brk

(ξk) ∩ ō = ∅.
For each ball B′

q−t+1(y) in the complement N \M we will estimate the integral

Iy :=
∫

B′
q−t+1 (y)

ψ(π−αφ(x)) dµ(x)

by |Iy| ≤ (d− 1)q−tq1/2 ≤ (d− 1)q1/2r(δ) using the A. Weil estimate. Since there are
at most mq such balls and since µ(M) ≤ mq−t+1 ≤ mqr(δ), we have by (21)

|Sχ(φ;πα)| ≤ mqr(δ)[(d− 1)
√
q + 1] ≤ 2(d− 1)2q3/2r(δ),

the claimed bound.

We can write the integral Iy as

ψ(π−αφ(y))q−t+1

∫
|w|≤1

ψ(π−αg(w))dµ(w)

where now g(w) = φ(y+qt−1w)−φ(y). Arguing as in the previous section we see that
|g′(w)| = |g′(0)| for all |w| ≤ 1 which follows from the fact that for all z ∈ B′

q−t+1(y),
|z − ξj | = |y − ξj | ≥ q−t+2 for every 1 ≤ j ≤ m. Furthermore we have σ ≤ α − 1
where q−σ = |g′(0)| and |ak| ≤ |a1| for all the coefficients ak of g.

As before we can then write

Iy = ψ(π−αφ(y))q−t+1

∫
|w|≤1

ψ(π−(α−σ)f(w)) dµ(w)

where f = π−σg ∈ ō[X] and this integral vanishes if σ ≤ α − 2. This leaves the case
when σ = α − 1 and here Iy can be written as a character sum over the finite field
o/πo so that we can apply the A. Weil estimate |Iy| ≤ (d− 1)q−tq1/2. This gives the
slightly improved bound claimed above in the case J 6= ∅.
Now suppose that J is empty. Here we proceed exactly as in the previous section,
introducing the same set of indicies I and for each j ∈ I, a point yj ∈ Brj

(ξj) ∩ ō.
From the previous section we have∫

ō\N
ψ(π−αφ(x)) dµ(x) = 0

where N = ∪j∈IB
′
q−t+2(yj). One simply proceeds exactly as before to see that we

can bound the integral

Iy :=
∫

B′
q−t+1 (y)

ψ(π−αφ(x)) dµ(x)

by |Iy| ≤ (d− 1)q1/2r(δ) for every ball B′
q−t+1(y) in N \ ∪j∈IB

′
q−t+1(yj). From this,

the same estimate for Sχ(φ;πα) as above follows. We leave the details to the reader.
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7. A final remark - an estimate of Hua

In [3] an estimate on the number of ‘global’ solutions to a polynomial congruence was
given, generalising a result of Hua on the number of classical solutions to a polynomial
congruence. In exactly the same way, using the arguments from the previous sections
and an elementary combinatorial inequality found in [3], one can prove the following
global oscillatory integral estimate: suppose that φ(x) = adx

d+ad−1x
d−1+· · ·+a1x ∈

Z[X] has degree at least 2. Then, uniformly in R > 0,

(22)
∣∣∫
{x∈Qp:|x|≤R}

ψ(p−αφ(x)) dµ(x)
∣∣ ≤ mp2p−α/d

whenever p > d and p 6 | ad−k for some k ≤ (d − 1)/2. This estimate can fail if the
smallest such k is larger than (d−1)/2. If R = 1 the oscillatory integral above reduces
to the complete exponential sum S(φ; pα).

Finally we come back to the discussion of Hua’s estimate |S(φ; pα)| ≤ Cdp
−α/d in the

remarks following the statement of Theorem 1.1. The estimate of Hua holds whenever
gcd(ad, . . . , a1, p

α) = 1. An analogous estimate holds in the setting of Theorem 1.5.
The combinatorial inequality in [3] mentioned above can be used to show that

max
1≤j≤m

min
ξj∈C

Ep−α(ξj ; C) ≤ p−α/d

if p 6 | ad−k for some k ≤ (d−1)/2; furthermore this estimate fails in general. However
if the maximum above is taken only over those j such that |ξj | ≤ 1, then the estimate
always holds. In fact we have

Lemma 7.1. If p > d, and gcd(ad, . . . , a1, p
α) = 1, then

(23) max
j:|ξj |≤1

min
C:ξj∈C

Ep−α(ξj ; C) ≤ p−α/d.

As remarked earlier, the proof of Theorem 1.1 (and Theorem 1.5) remains valid if the
maximum in (3) or (7) is taken only over those j such that |ξj | ≤ 1.

Proof. If φ′(x) = b0x
n + b1x

n−1 + · · · + bn where n = d − 1, suppose that p 6 | bk for
some 0 ≤ k ≤ n and p|bj for all j < k. As mentioned earlier, if k = 0, we can use the
cluster C = {ξ1, . . . , ξm} of all roots to verify (23) in this case. Hence we may suppose
that k ≥ 1. In this case we will verify that for each j such that |ξj | ≤ 1,

(24) min
C:ξj∈C

Ep−α(ξj ; C) ≤ p−α/d

holds. Without loss of generality suppose that j = 1; in particular, |ξ1| ≤ 1. Let
us enumerate {y1, . . . , yn} the roots of φ′ with multiplicities such that y1 = ξ1 (so
|y1| ≤ 1).

To establish (24) (for j = 1) we use an elementary observation from [3]; namely,

min
C:ξ1∈C

[ p−α

|b0
∏

ξk /∈C(ξ1 − ξk)ek |

]1/S(C)+1

= min
L:1∈L

[ p−α

|b0
∏

`/∈L(y1 − y`)|

]1/(|L|+1)

where the minimum on the right-hand side is taken over all subsets L ⊂ {1, 2, . . . , n}
containing 1. We define a parameter θ via pθ‖b0 (recall that we are assuming k ≥ 1
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and so θ ≥ 1). Since the left-hand side is equal to the left-hand side of (24) (for
j = 1), it suffices to prove

max
1∈L:|L|=n−k

∣∣∣∏
j /∈L

(y1 − yj)
∣∣∣ ≥ pθ

which by the non-archimedean property of | · | follows from

(25)
∣∣∣ ∑
1∈L:|L|=n−k

∏
j /∈L

(y1 − yj)
∣∣∣ = pθ.

The sum in (25), when expanded, can be written as

(26)
∣∣∣ ∑
1∈L:|L|=n−k

∏
j /∈L

(y1 − yj)
∣∣∣ =

k∑
m=0

(−1)k−mym
1

∑
2≤j1<···<jk−m

yj1 · · · yjk−m
.

We now express this in terms of the elementary symmetric polynomials in y1, . . . , yn.

If
Sq(X1, . . . , Xn) =

∑
j1<···<jq

Xj1 · · ·Xjq

denotes the qth elementary symmetric polynomial in n variables X1, . . . , Xn, then
|Sq(y1, . . . , yn)| = pθ|bq| where we recall that θ is defined by pθ‖b0. Our assumption
p 6 | bk means that |Sk(y1, . . . , yn)| = pθ > 1 and our other assumptions p|bj for all
j < k translate to |Sj(y1, . . . , yn)| < pθ.

The following identity involving elementary symmetric polynomials in n variables will
be useful for us. For any 1 ≤ q ≤ n,

(27)
∑

2≤j1<···<jq

Xj1 · · ·Xjq
=

q∑
`=0

(−1)`X`
1 Sq−`(X1, . . . , Xn).

By convention we set S0 = 1 and when q = n, the left side is interpreted as 0.
The identity is easily verified; to the left-hand side of (27) simply add on (and then
subtract off) q-tuples Xj1 · · ·Xjq

with j1 = 1, etc... Writing the left-hand side of (27)
as S≥2

q (X1, . . . , Xn), the identity (27) can be reshuffled a bit and written as

Sq(X1, . . . , Xn) = S≥2
q (X1, . . . , Xn) +

q∑
`=1

(−1)`+1X`
1Sq−`(X1, . . . , Xn)

for each 1 ≤ q ≤ n. When q = n the sum S≥2
n is empty and interpreted as 0. Applying

this when q = k < n and Xj = yj , 1 ≤ j ≤ n, we see from our assumptions (|y1| ≤ 1,
|Sk(y1, . . . , yn)| = pθ, |Sj(y1, . . . , yn)| < pθ for j < k) and the non-archimedean nature
of | · | that

(28) |Sk(y1, . . . , yn)| = |S≥2
k (y1, . . . , yn)| = pθ.

The case k = n leads to a contradiction. Hence we may assume that 1 ≤ k ≤ n− 1.
Furthermore, applying (27) for q < k, we see that

(29)
∣∣ ∑
2≤j1<···<jk−m

yj1 · · · yjk−m

∣∣ < pθ
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for every 1 ≤ m ≤ k. Finally, the right-hand side of (26) can be written as

(−1)kS≥2
k (y1, . . . , yn) +

k∑
m=1

(−1)k−mym
1

∑
2≤j1<···<jk−m

yj1 · · · yjk−m

which by (28) and (29) has valuation | · | equal to pθ, completing the proof of (25)
and hence the lemma. �
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