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ON RATES IN MEAN ERGODIC THEOREMS

Alexander Gomilko, Markus Haase, and Yuri Tomilov

Abstract. We create a general framework for the study of rates of decay in mean

ergodic theorems. As a result, we unify and generalize results due to Assani, Cohen,
Cuny, Derriennic, and Lin dealing with rates in mean ergodic theorems in a number

of cases. In particular, we prove that the Cesàro means of a power-bounded operator
applied to elements from the domain of its abstract one-sided ergodic Hilbert transform

decay logarithmically, and this decay is best possible under natural spectral assumptions.

1. Introduction

In recent years considerable emphasis has been put on the study of convergence
rates in limit theorems arising in probability and ergodic theory, see e.g. [13, 12, 10]
and the references therein. The basic result of interest here is of course the ergodic
theorem in its two forms regarding almost everywhere convergence and convergence
in norm. The latter is the famous “Mean Ergodic Theorem” of von Neumann (1931),
subsequently generalized by Riesz, Yosida, Kakutani, Lorch and Eberlein towards a
general theory of (norm-)convergence of the Cesàro averages

(1.1) An(T )x :=
1
n

∑n−1

k=0
T kx, x ∈ X,

for a bounded linear operator T on a Banach space X [19, Chapter 2]. A natural
assumption on the operator T in this context is that T is power-bounded, i.e., that
supn∈N ‖Tn‖ < ∞. For a power-bounded operator T it is simple operator theory to
show that for x, y ∈ X

An(T )x → 0 ⇐⇒ x ∈ ran(I − T )

and
An(T )x → y =⇒ y ∈ ker(I − T ).

It follows that ker(I − T ) ⊕ ran(I − T ) is precisely the subspace of X on which the
Cesàro averages converge strongly, and the operator T is called mean ergodic if this is
already the whole space X. A mean ergodic theorem gives conditions under which this
is the case, and Lorch’s famous generalization of von Neumann’s theorem simply says
that every power-bounded operator on a reflexive space is mean ergodic [19, Chapter
2, Theorem 1.2].
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In this paper we shall be concerned with the study of convergence rates for An(T )x,
where T is a power-bounded operator. If An(T )x → y then An(T )x− y = An(T )(x−
y), and hence in the study of rates for the convergence of Cesàro averages one can
restrict oneself to the convergence to zero on the space ran(I − T ). Since one can
always consider the restriction of T to this (obviously T -invariant) subspace, often it
is no loss of generality in assuming that X = ran(I − T ) in the first place. However,
we shall always make this assumption explicit when it is needed. Let us collect some
known facts.

Proposition 1.1. Let T be a power-bounded operator on a Banach space X. Then
the following statements hold:

a) If ‖An(T )x‖ = o(1/n) then x = 0.

b) If x ∈ ran(I − T ) then ‖An(T )x‖ = O(1/n), and the converse is true if X is
reflexive.

c) If there exists a sequence (rn)n≥1 of positive numbers such that rn ↘ 0 and
‖An(T )x‖ = O(rn) for every x ∈ X, then I − T is invertible.

Part a) is due to Butzer and Westphal [5]. It tells us that we cannot expect better
convergence rates than O(1/n). The first assertion in part b) is trivial, and the second
is due to Browder [4] (but appears also in [5]). The proof of c) rests on the principle
of uniform boundedness, by virtue of which one first concludes that An(T ) → 0 in
norm. This yields ker(I − T ) = {0}, and T is a so-called uniformly ergodic operator.
Dunford [15] has shown that for such operators ran(I − T ) must be closed, cf. [20],
whence finally X = ran(I−T ) = ran(I−T ), and I−T is invertible. Uniformly ergodic
operators are quite special, and Derriennic [13, p.144] remarks that a T induced by an
ergodic measure preserving transformation on a non-atomic measure space is never
uniformly ergodic. Hence by Proposition 1.1 there are plenty of examples where the
Cesàro averages fail to converge with a uniform rate. For intricate results on the
failing of rates see also the recent work [3].

The absence of a global uniform convergence rate leads naturally to the problem
of identifying elements x of X for which one has a specified rate for An(T )x and of
describing a possible rate if such elements are given. Results in this direction have
importance for almost everywhere convergence theorems, see e.g. [2, 6, 8, 9, 10, 11, 14],
and central limit theorems for Markov chains, see e.g. [12] and the references therein.

Polynomial rates of decay were studied thoroughly in [14] in case of arbitrary
Banach space contractions while in the special case of unitary and normal contractions
on Hilbert spaces more general rates were investigated in [2] and [9]. For instance,
it was proved in [14] that for a power-bounded and mean ergodic operator T and
s ∈ (0, 1) one has

(1.2) ‖An(T )x‖ = o(n−s) as n →∞,

for every x ∈ ran(I−T )s. Moreover, it was shown there that under the same assump-
tions the condition x ∈ ran(I − T )s is equivalent to the strong and also to the weak
convergence of the series ∑∞

n=0
α(−s)

n Tnx,

where (1− z)−s =
∑

n≥0 α
(−s)
n zn is the power series representation of (1− z)−s.
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Towards logarithmic rates it was proved in [9] that if T is a normal contraction on
a Hilbert space, then

(1.3) HT x :=
∑∞

k=1

T kx

k
converges =⇒ ‖An(T )x‖ = O(1/ log n),

but for more general operators T the validity of (1.3) remained an open problem.
(Note that it was proved in [1] that the converse implication in (1.3) does not, in
general, hold even for unitary T .) The operator HT appearing here (with its natural
domain) is called the one-sided ergodic Hilbert transform, and was studied thoroughly
in [2, 8, 9, 7, 14]. It was also an open question for some years whether in general one has
−HT = log(I−T ) if ran(I−T ) = X, where the latter operator is the generator of the
C0-semigroup ((I−T )s)s≥0. It was solved (in the affirmative) recently, independently
in [7] and [16].

The main result of the present paper is that the implication (1.3) holds for every
power-bounded operator T on a Banach space (Section 4). Moreover, this is actually
only a special case within a general approach to establishing rates in the mean ergodic
theorem (Section 5).

2. Preliminaries

2.1. Some Notations and Definitions. For a closed linear operator A on a com-
plex Banach space X we denote by dom(A), ran(A), ker(A), and σ(A) the domain,
the range, the kernel, and the spectrum of A, respectively. The norm-closure of the
range is written as ran(A). The space of bounded linear operators on X is denoted
by L(X). The open unit disc is denoted by D = {z ∈ C | |z| < 1}, the torus by
T = {z ∈ C | |z| = 1}, and N = {1, 2, 3, . . . } is the set of natural numbers. For
positive sequences (rn)n≥0 and (sn)n≥0 we write rn ∼ sn if there is c > 0 such that
rn/c ≤ sn ≤ crn for all n ∈ N. Finally, δm,n denotes the Kronecker function on
integers m,n ≥ 0, i.e. δm,n = 1 if m = n and δm,n = 0 otherwise.

2.2. Functional Calculus. We denote by A1
+(D) the algebra of holomorphic func-

tions on D that have absolutely summable Taylor coefficients:

A1
+(D) :=

{
g
∣∣ g(z) =

∑
k≥0

αkzk,
∑

k≥0
|αk| < ∞

}
with the norm

‖g‖A1
+

:= ‖α‖1 =
∑

k≥0
|αk| for g(z) =

∑
k≥0

αkzk ∈ A1
+(D).

It is well-known (and easy to see) that for each power-bounded operator T on X the
assignment

g =
∑

k≥0
αkzk 7→ g(T ) :=

∑
k≥0

αkT k

is a continuous algebra homomorphism (a functional calculus) of A1
+(D) into L(X),

satisfying

(2.1) ‖g(T )‖ ≤
(

sup
n≥0

‖Tn‖
)
‖g‖A1

+(D) (g ∈ A1
+(D)).

For this functional calculus one has a spectral mapping theorem; however, we need
only the following weaker statement, which we prove for the convenience of the reader.
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Lemma 2.1 (Spectral inclusion theorem). Let g ∈ A1
+(D) and let T ∈ L(X) be a

power-bounded operator on X. Then

g(σ(T )) = {g(λ) | λ ∈ σ(T )} ⊆ σ(g(T )).

Proof. Let λ ∈ σ(T ). Since T is power-bounded, |λ| ≤ 1. Then

g(λ)− g(T ) = lim
n→∞

∑n

k=1
αk(λk − T k) in L(X).

Hence if g(λ)− g(T ) is invertible then for large n ∈ N also∑n

k=1
αk(λk − T k) = (λ− T )

∑n

k=1
αk

∑k−1

j=0
λk−jT j

is invertible. This implies that λ− T is invertible, contradicting our assumption. �

Lemma 2.2. Let f =
∑∞

k=0 αkzk be a holomorphic function on D, and let T be a
power-bounded operator on X. Suppose that x ∈ X is such that

y :=
∑∞

k=0
αkT kx converges weakly in X.

If 1/f ∈ A1
+(D), then (1/f)(T )y = x.

Proof. Let C > 0 be such that
∥∥∑m

k=n αkT kx
∥∥ ≤ C for all 0 ≤ n ≤ m. Write

1/f(z) =
∑∞

j=0 βjz
j , i.e.,

n∑
j=0

αn−jβj = δn0, n ≥ 0.

Since
∑M

j=0 βjT
j → (1/f)(T ) in operator norm, it follows that(

M∑
j=0

βjT
j

)(
M∑

k=0

αkT kx

)
→ (1/f)(T )y weakly, as M →∞.

On the other hand, fix ε > 0 and find M0 ∈ N such that
∑

j>M0
|βj | ‖T j‖ ≤ ε. Then

for M > M0 write(
M∑

j=0

βjT
j

)(
M∑

k=0

αkT kx

)
=

M∑
n=0

(
n∑

j=0

αn−jβj

)
Tnx +

M∑
j=0

βjT
j

M∑
k=M−j+1

αkT kx

= x +
M0∑
j=0

βjT
j

M∑
k=M−j+1

αkT kx +
M∑

j=M0+1

βjT
j

M∑
k=M−j+1

αkT kx.

In the last sum, the second summand tends weakly to zero as M → ∞, since
(
∑m

k=0 αkT kx)m≥0 is weakly Cauchy; the third has norm less than Cε. �
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2.3. Admissible functions. A holomorphic function f(z) :=
∑∞

k=0 αkzk on D (or,
equivalently, the sequence (αk)k≥0) is called admissible if f has no zeroes in D and

1
f(z)

= γ0 −
∑∞

k=1
γkzk (z ∈ D)

with γk ≥ 0 for all k ≥ 0.
We shall review briefly the basic analytic properties of admissible functions. Using

induction and the identities linking the Taylor coefficients of f and g := 1/f one finds
that if f is admissible, then α0 > 0 and hence γ0 = α−1

0 > 0; moreover αk ≥ 0 for
all k ≥ 1. In particular, f(t) is positive and increasing for 0 ≤ t < 1, and this yields
that

∑∞
k=1 γk ≤ γ0. In particular, g has absolutely summable Taylor coefficients, i.e.,

g ∈ A1
+(D). So two cases can occur, described by the equivalences

(2.2)
∑

k≥1
γk < γ0 ⇐⇒ g(1) > 0 ⇐⇒ f(1) < ∞ ⇐⇒ f ∈ A1

+(D)

and

(2.3)
∑

k≥1
γk = γ0 ⇐⇒ g(1) = 0 ⇐⇒ f(1) = ∞ ⇐⇒ f 6∈ A1

+(D),

where f(1) := limt↑1 f(t).
We remark that every function g that satisfies the natural conditions

g(z) = γ0 −
∑∞

k=1
γkzk, γk ≥ 0 (k ≥ 1),

∑∞

k=1
γk ≤ γ0, γ0 > 0,

can be written as g = 1/f for some admissible function f . (This follows from the fact
that 1 is an extremal point of D.) This allows one to construct admissible functions
by virtue of their inverses. A much harder question is whether a function f given by
its Taylor expansion is admissible. The best known criterion is the following result of
Kaluza [18] (see also [17, p. 68, Theorem 22]).

Proposition 2.3 (Kaluza). Let α = (αk)k≥0 be a positive and decreasing sequence.
Suppose that α is log-convex, i.e. α0 > 0 and α2

k ≤ αk−1αk+1, k ≥ 1, and let f(z) :=∑∞
k=0 αkzk, z ∈ D. Then f is admissible.

Examples 2.4. 1) From Kaluza’s theorem it is immediate that the function

f(z) = 2− log(1− z) = 2 +
∑∞

n=1
zn/n

is admissible. This fact will be used later.

2) Consider the functions fs(z) := (1− z)−s, s ∈ (0, 1). They are admissible, since
the binomial series yields

gs(z) = 1/fs(z) = (1− z)s =
∑∞

n=0
α(s)

n zn

with α
(s)
0 = 1 and α

(s)
n =

(
s
n

)
(−1)n ≤ 0 for n ∈ N. (One can also use Kaluza’s

theorem here.)
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3. Estimating Rates in Terms of Taylor Coefficients

The main idea behind the proof of (1.3) is to note that by Lemma 2.2 one has
dom(HT ) ⊆ ran(g(T )) for g = 1/f and f(z) = 2− log(1− z) is admissible. In view of
the possible generalizations in Section 5 we shall therefore investigate the asymptotic
behaviour of the Cesàro means An(T ) on spaces of the form ran(g(T )), where g = 1/f
for some admissible function f .

First we note that the case f(1) < ∞ is uninteresting here, since then f ∈ A1
+(D)

and ran(g(T )) = X is the whole space; and according to the discussion in the in-
troduction one cannot expect a general convergence rate for (An(T )x)n≥1. So it is
reasonable to restrict the considerations to the case that f(1) = ∞, i.e., g(1) = 0.
This means that one has

(3.1) g(z) = γ0 −
∑∞

k=1
γkzk, γk ≥ 0 (k ≥ 1),

∑∞

k=1
γk = γ0 > 0,

which will be our standard assumptions for g. We note first the following fact.

Lemma 3.1. Let f be admissible with f(1) = ∞, so that g := 1/f satisfies (3.1).
Then ran(g(T )) ⊆ ran(I − T ) for every power-bounded operator T on X.

Proof. We have

g(T ) = lim
n→∞

∑n

k=1
γk(I − T k) = lim

n→∞
(I − T )

∑n

k=1
γk

∑k−1

j=0
T j .

�

By Lemma 3.1 and the mean ergodic theorem, one has An(T )x → 0 as n → ∞
whenever x ∈ ran(g(T )). We shall see below that this convergence even happens with
a certain rate, which is identified in the following lemma.

Lemma 3.2. Let f be admissible such that f(1) = ∞, and let g = 1/f , i.e., g satisfies
(3.1). Then

‖An · g‖A1
+(D) = 2rn (n ∈ N),

where An(z) :=
1
n

∑n−1

k=0
zk, (n ∈ N, z ∈ D), and

(3.2) rn = rn[g] :=
1
n

∑n

k=1
kγk +

∑
k>n

γk =
∑∞

k=1
min(k/n, 1)γk.

Proof. If n = 1 then clearly ‖A1 · g‖A1
+(D) = 2

∑
k≥1 γk = 2r1. For z ∈ D and n ≥ 2

we have

hn(z) := nAn(z)g(z) =
(
1 + z + · · ·+ zn−1

)
g(z) =

(
n−1∑
j=0

zj

)
·

(
γ0 −

∞∑
k=1

γkzk

)

= γ0 +
n−1∑
k=1

(
γ0 −

k−1∑
j=0

γk−j

)
zk −

∞∑
k=n

(
n−1∑
j=0

γk−j

)
zk

=
n−1∑
k=0

( ∞∑
j=k+1

γj

)
zk −

∞∑
k=n

(
k∑

j=k−n+1

γj

)
zk.
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Since hn(1) = ng(1) = 0, we must have∑∞

k=n

∑k

j=k−n+1
γj =

∑n−1

k=0

∑∞

j=k+1
γj

and hence

‖hn‖A1
+(D) =

n−1∑
k=0

∞∑
j=k+1

γj +
∞∑

k=n

k∑
j=k−n+1

γj = 2
n−1∑
k=0

∞∑
j=k+1

γj

= 2
∞∑

j=1

(
min(j,n)−1∑

k=0

1

)
γj = 2

∞∑
j=1

min(j, n)γj = 2nrn.

�

Observe that the sequence of functions un := min(·/n, 1) decreases to zero point-
wise on R+, hence rn ↘ 0 by the second equality in (3.2) and the monotone conver-
gence theorem.

Theorem 3.3. Let g(z) = γ0 −
∑∞

k=1 γkzk be as in (3.1), let r = r[g] be as in (3.2),
and let T be a power-bounded operator on X. If x ∈ ran(g(T )), then

‖An(T )x‖ = O(rn) as n →∞;

and if in addition nrn →∞ and T is mean ergodic, then

‖An(T )x‖ = o(rn) as n →∞.

Proof. The first assertion follows from Lemma 3.2 and the functional calculus estimate

‖An(T )g(T )‖ ≤ M ‖Ang‖A1
+(D) ≤ 2Mrn (n ∈ N),

where M := supn≥0 ‖Tn‖. If (I − T )y = 0, then g(T )y = g(1)y = 0. And if y =
(I − T )z ∈ ran(I − T ), then

r−1
n An(T )g(T )y = r−1

n An(T )g(T )(I − T )z = (nrn)−1g(T )(I − Tn)z → 0

since nrn →∞. As supn r−1
n ‖An(T )g(T )‖ < ∞, it follows that r−1

n An(T )g(T )y → 0
for all y ∈ ran(I−T )⊕ker(I−T ). The latter direct sum equals X by mean ergodicity
of T . �

4. The One-Sided Ergodic Hilbert Transform

Let T be a power-bounded operator on X. Recall from the Introduction that the
(unbounded) operator HT , defined by

dom(HT ) :=
{

x ∈ X |
∑∞

k=1

T kx

k
converges

}
, HT x :=

∑∞

k=1

T kx

k
is called the one-sided ergodic Hilbert transform associated with T . This operator
has recently obtained greater attention [8, 9, 7, 11, 16]. In particular, it was conjec-
tured that for x ∈ dom HT one would have a logarithmic decay of the Cesàro means
(An(T )x)n≥1. The following theorem shows that this is indeed the case; it sharpens
and generalizes (1.3) proved in [9, Proposition 3.4] for normal contractions on Hilbert
spaces.

Theorem 4.1. Let T be a power-bounded operator on X with M := supn≥0 ‖Tn‖.
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a) If x ∈ X is such that z :=
∑∞

k=1(1/k)T kx converges weakly in X, then

‖An(T )x‖ ≤ 2eM

2 + log n
‖z + 2x‖ (n ≥ 1),

where M := supn≥0 ‖Tn‖. Moreover,

‖An(T )x‖ = o(1/ log n) as n →∞.

b) Suppose that T is mean ergodic and z = 1 is an accumulation point of

σ(T ) ∩ {z ∈ D | arg(1− z) ≤ θ}

for some θ ∈ [0, π/2). Then for any sequence (εn)n≥1 with εn ↘ 0 there is
x ∈ dom(HT ) such that

‖An(T )x‖ 6= O(εn/ log n) as n →∞.

We note that for fixed x ∈ X the weak convergence of the series
∑∞

k=1(1/k)T kx
is equivalent to its strong convergence, cf. [7, Theorem 3.2] or [16, Theorem 6.2]; and
the strong convergence clearly implies limn→∞An(T )x = 0 by Kronecker’s Lemma,
cf. [17, p. 73, Theorem 26]. The novelty of Theorem 4.1 is that a specific rate for this
latter convergence is identified and that this rate is recognized as optimal under mild
spectral conditions.

Proof. The proof of part a) proceeds in several steps. In the first step we replace the
operator HT by 2I + HT and consider the admissible function f(z) := 2− log(1− z).
Let us write

g(z) = 1/f(z) =
1

2− log(1− z)
=

1
2
−
∑∞

n=1
γnzn.

By admissiblility of f one has γn ≥ 0 for all n ≥ 1. And since f(1) = ∞ one also has∑∞
n=1 γn = 1/2.
Now suppose that z =

∑∞
n=1(1/n)Tnx weakly and let y := 2x + z. In the second

step we observe that then x = g(T )y by Lemma 2.2. It follows that we can estimate

‖An(T )x‖ = ‖An(T )g(T )y‖ = ‖(Ang)(T )y‖ ≤ M ‖y‖ ‖Ang‖A1
+(D)

by the functional calculus.
In the third step we apply Lemma 3.2 to obtain

‖Ang‖A1
+(D) = 2rn with rn =

∑∞

k=1
min(k/n, 1)γk (n ∈ N),

This yields the estimate ‖An(T )x‖ ≤ 2M ‖y‖ rn, but the rate (rn)n∈N is not very
explicit. Thus in the fourth step we prove that

(4.1)
rn

e
≤ 1

2 + log n
≤ 2rn (n ∈ N).

To this aim, write zn := 1− 1/n and note that

g(zn) =
1

2− log(1− zn)
=

1
2 + log n

(n ∈ N).
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To establish (4.1) write

g(z) =
1
2
−

∞∑
k=1

γkzk =
∞∑

k=1

γk −
∞∑

k=1

γkzk

=
∞∑

k=1

γk(1− zk) =
n∑

k=1

γk(1− z)
k−1∑
j=0

zj +
∞∑

k=n+1

γk(1− zk),

so that |g(z)| ≤ |1− z|
∑n

k=1
γkk + 2

∑∞

k=n+1
γk for |z| ≤ 1. Inserting zn = 1− 1/n

yields |g(zn)| ≤ 2rn. For the converse estimate we use that zj
n ≥ zk

n for j ≤ k and
hence

g(zn) =
∞∑

k=1

γk(1− zk
n) ≥

n∑
k=1

γk(1− zk
n) + (1− zn

n)
∑
k>n

γk.

Now, for 1 ≤ k ≤ n one has 1− zk
n = (1− zn)

∑k−1

j=0
zj
n ≥ (k/n)zn−1

n and one can

see by elementary calculus that zn−1
n ≥ 1/e for n ≥ 2.

At this stage, the first part of Theorem 4.1.a is proved. For the second part note
that

nrn ∼
n

2 + log n
→∞ as n →∞.

Hence r−1
n An(T )g(T )(I−T ) = (nrn)−1g(T )(I−Tn) → 0 in norm. A density argument

yields r−1
n An(T )g(T )w → 0 for all w ∈ ran(I − T ). But since An(T )x → 0, one has

x ∈ ran(I−T ), and since this space is T -invariant, it follows that also y ∈ ran(I−T ).
This completes the proof of Theorem 4.1.a.

Towards the proof of part b) we apply the spectral inclusion theorem (Lemma 2.1)
to the function Ang, and obtain the estimate

‖An(T )g(T )‖ = ‖(Ang)(T )‖ ≥ sup
λ∈σ((Ang)(T ))

|λ| ≥ sup
λ∈σ(T )

|(Ang)(λ)| .

By hypothesis there is an infinite set J ⊆ N such that for each n ∈ J one has
cos θ ≥ 1/n and one finds zn ∈ σ(T ) such that

arg(1− zn) ≤ θ and
1
2n

≤ |1− zn| ≤
1
n

.

Using the elementary inequality

1− |z| ≥ 1− |z|2 ≥ |1− z| (2 cos θ − |1− z|), (z ∈ D, arg(1− z) ≤ θ)

we conclude that

1− |zn| ≥
1
2n

(2 cos θ − 1
n

) ≥ cos θ

2n
for each n ∈ J . Hence

sup
λ∈σ(T )

|(Ang)(λ)| ≥ |An(zn)g(zn)| = |1− zn
n |

n |1− zn|
|g(zn)|

≥ 1− |zn|n

n |1− zn|
|g(zn)| ≥ cos θ

2e
· n

n
· cos θ

2e
rn =

(
cos θ

2e

)2

rn
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for each n ∈ J . Consequently, if (εn)n≥1 is any positive sequence such that εn → 0,
then the family of operators 1

εnrn
An(T )g(T ), n ∈ N, is not uniformly norm bounded.

By the principle of uniform boundedness there must exist a vector y ∈ X such that

sup
n∈N

1
εnrn

‖An(T )g(T )y‖ = ∞.

Hence, with x = g(T )y ∈ ran g(T ) we have

‖An(T )x‖ 6= O(εnrn) as n →∞,

as was to be shown. To obtain Theorem 4.1.b in its actual formulation, one has to
use that dom(HT ) = ran(g(T )) for a mean-ergodic operator T [16, Theorem 5.6]. �

5. Generalization via Admissible Functions

The arguments of the previous section can be adapted to generalize Theorem 4.1
towards other convergence rates. If f is an admissible function and g = 1/f , then
Theorem 3.3 yields the rate of decay (rn)n≥1 for ‖An(T )g(T )‖ in terms of the Taylor
coefficients of g. However, in situations of interest these are often unknown, so it
seems desirable to be able to read off the rn (or at least their asymptotic behaviour)
from the values of f or g at certain points as in the previous section. The following
lemma helps to achieve this.

Lemma 5.1. Let 0 < α ≤ 1 and n ∈ N. If z ∈ D is such that

|1− z| ≤ 1
n

and 1− |z| ≥ α

n

then 1− |z|k ≥ (α/e) min(k/n, 1) for all k ≥ 1.

To prove the lemma it suffices to observe that if k ≥ n then 1− |z|k ≥ 1− |z|n and
for 1 ≤ k ≤ n one has

1− |z|k = (1− |z|)
∑k−1

j=0
|z|j ≥ (αk/n) (1− |1− z|)n−1 ≥ αk

en
.

Let g(z) = γ0−
∑∞

k=1 γkzk satisfy our standard assumptions (3.1), and let r = r[g]
as in (3.2). Then we can write

g(z) =
∞∑

k=1

γk(1− zk) =
n∑

k=1

γk(1− z)
k−1∑
j=0

zj +
∞∑

k=n+1

γk(1− zk)

for all z ∈ D and all n ≥ 1. Hence if we know that |1− w| ≤ β/n for some w ∈ D,
n ∈ N and β > 0, then we can estimate

|g(w)| ≤
n∑

k=1

γk |1− w|
k−1∑
j=0

|w|j +
∞∑

k=n+1

γk

∣∣1− wk
∣∣

≤ β
n∑

k=1

(k/n)γk + 2
∞∑

k=n+1

γk ≤ max(β, 2) rn.
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And if we know that |1− w| ≤ 1/n and 1− |w| ≥ α/n, then

|g(w)| ≥ Re g(w) =
∞∑

k=1

γk(1− Re zk) ≥
∞∑

k=1

γk(1− |z|k) ≥ (α/e)rn

by Lemma 5.1. So by choosing w = wn in a suitable way, we are able to read off the
rate r = r[g] from the values |g(wn)|, as it is stated in the next theorem.

Theorem 5.2. Let f be admissible such that f(1) = ∞, let g = 1/f and let r = r[g]
be the associated rate sequence as in (3.2). If 0 < α ≤ 1 and (wn)n∈N ⊆ D are such
that |1− wn| ≤ 1/n and 1− |wn| ≥ α/n for all n, then

(1/2) |g(wn)| ≤ rn ≤ (e/α) |g(wn)| (n ∈ N).

Combining Lemma 2.2 with Theorems 3.3 and 5.2 we then obtain the following
corollary.

Corollary 5.3. Let f(z) =
∑

k≥0 αkzk be an admissible function with f(1) = ∞. Let
T be a power-bounded operator on X, let M := supn≥0 ‖Tn‖, and let x ∈ X be such
that

y :=
∑∞

k=0
αkT kx converges weakly.

Then x = (1/f)(T )y and ‖An(T )x‖ ≤ 2eM

f(1− 1/n)
‖y‖ (n ∈ N). If in addi-

tion n/f(1− 1/n) →∞ as n →∞, then

‖An(T )x‖ = o
(

1
f(1− 1/n)

)
as n →∞.

Proof. We apply Lemma 2.2 to conclude that x = g(T )y. Then the estimate

‖An(T )x‖ ≤ 2eM

f(1− 1/n)
‖y‖

follows readily from the proof of Theorem 3.3 and from Theorem 5.2. Now suppose
that n/f(1 − 1/n) → ∞. Then, by Theorem 5.2, nrn → ∞. Furthermore, x ∈ Y :=
ran(I − T ) (Lemma 3.1) and Y is T -invariant, so y ∈ Y as well. This means that we
can suppose without loss of generality that T is mean ergodic. Hence the second part
of Theorem 3.3 yields that

‖An(T )x‖ = o(rn) = o(1/f(1− 1/n)) as n →∞,

again by Theorem 5.2. �

Thus Theorem 3.3 gives an asymptotic estimate for the Cesàro averages An(T )x,
when x ∈ ran(g(T )), and Theorem 5.2 allows to identify rn ∼ g(1−1/n), for instance.
The obvious question now is, under which conditions on T the rate r[g] is actually
optimal on ran(g(T )). That an extra condition is needed is readily seen by letting
T = 0. It seems therefore reasonable to require that T has spectrum on a set where
we can reconstruct the rate r[g] from values of g. The following is the best we can do
at this moment. Its proof follows the lines of the proof of Theorem 4.1.b above.
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Theorem 5.4. Let f be an admissible function on D such that f(1) = ∞, let g = 1/f
and let r[g] = (rn)n≥1 the associated rate sequence. Let T be a power-bounded operator
on X. Suppose that z = 1 is an accumulation point of σ(T )∩{z ∈ D | arg(1−z) ≤ θ}
for some θ ∈ [0, π/2). Then for any sequence (εn)n≥1 with εn ↘ 0 there is some
x ∈ ran(g(T )) such that

‖An(T )x‖ 6= O(εnrn) as n →∞.

Theorem 4.1 on logarithmic rates can formally be obtained from Theorems 3.3, 5.2
and 5.4 by considering f(z) = 2− log(1− z) as above. Moreover, one can also deduce
results on polynomial rates obtained originally by a different method in [14, Theorem
2.11 and Corollary 2.15]. Indeed, fix s ∈ (0, 1) and consider the function

fs(z) = (1− z)−s =
∑∞

n=0
α(−s)

n zn.

Then fs is admissible (see Example 2.4.2). By Theorem 5.2 one has rn ∼ 1/fs(1 −
1/n) = n−s; from Theorem 3.3 it follows that

‖An(T )x‖ = O(n−s) as n →∞
for every x ∈ ran(I − T )s and every power-bounded operator T on a Banach space.
And since s ∈ (0, 1), one has nrn ∼ n1−s →∞, whence if T is moreover mean ergodic,
then

‖An(T )x‖ = o(n−s) as n →∞
for every x ∈ ran(I − T )s. Lemma 2.2 finally shows that if y :=

∑
n≥0 α

(−s)
n Tnx is

weakly convergent, then x = (I − T )sy.
Apart from these known facts, Theorem 5.4 adds a (previously unknown) condition

on T under which the rate n−s is optimal for An(T ) on ran(I − T )s. This is true,
e.g., if T is a non-invertible isometry, like the one-sided shift on `p, 1 ≤ p ≤ ∞.
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