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EXTREMAL SASAKIAN METRICS ON S3-BUNDLES OVER S2

Charles P. Boyer

Abstract. In this note I prove the existence of extremal Sasakian metrics on S3-bundles

over S2. These occur in a collection of open cones that I call a bouquet.

1. Introduction

It is well known that the S3-bundles over S2 are classified by π1(SO(4)) = Z2. So
there are exactly two such bundles, the trivial bundle S2 × S3 and one non-trivial
bundle X∞ (in Barden’s notation [Bar65]). They are distinquished by their second
Stiefel-Whitney class w2 ∈ H2(M,Z2).

There are infinitely many Sasaki-Einstein metrics1 on S2 × S3 which belong to a
toric contact structure [GMSW04b, GMSW04a, CLPP05, MS05]. These, of course,
are all extremal, but they have c1(D) = 0 where D is the contact bundle. There is a
more or less obvious constant scalar curvature extremal Sasakian metric on S2 × S3

which is not Sasaki-Einstein and has first Chern class c1(D) = 2(k1 − k2)α for every
pair (k1, k2) of relatively prime positive integers. Here α is a generator of H2(S2 ×
S3,Z), and without loss of generality we can assume that k1 > k2. We recover the
well known Kobayashi-Tanno homogenous Einstein metric in the case (k1, k2) = (1, 1).
The Sasakian structures are constructed from the Kähler form ωk1,k2 = k1ω1+k2ω2 on
S2×S2 with the product complex structure, where ω1(ω2) are the standard symplectic
forms on the first (second) factor. The metric corresponding to this Kähler form
has constant scalar curvature. One then forms the S1-bundle over S2 × S2 whose
cohomology class is [ωk1,k2 ]. The constant scalar curvature Kähler metrics lifts to a
constant scalar curvature Sasakian metric on S2 × S3 which is homogeneous, hence
toric. So there is a three dimensional Sasaki cone κ as described in [BGS09], and by
the openness theorem of [BGS08] there is an open set of extremal Sasakian metrics
in κ. I want to emphasize that although extremal quasi-regular Sasakian metrics are
always lifts of extremal Kählerian orbifold metrics, it is NOT true that the openness
theorem for extremal Sasaki metrics is obtained by simply lifting the openness theorem
[LS93, LS94] for extremal Kähler metrics. In this note I shall prove that there are
many other extremal Sasakian metrics on S2 × S3 belonging to the same contact
structure.

In contrast to the situation of S2 × S3, until now there are no known extremal
Sasakian metrics on X∞. Here I also show that X∞ admits many extremal Sasakian
structures belonging to the same contact structure.
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2. Review of Extremal Sasakian Metrics

Recall [BG08] that a Sasakian structure S = (ξ, η,Φ, g) on a smooth manifold M is
a contact metric structure such that ξ preserves the underlying almost CR structure
(D, J) defined by D = ker η and J = Φ|D, and the almost CR structure is integrable.
Now we deform the contact 1-form by η 7→ η(t) = η + tζ where ζ is a basic 1-form
with respect to the characteristic foliation Fξ defined by the Reeb vector field ξ. Here
t lies in a suitable interval containing 0 and such that η(t)∧dη(t) 6= 0. This gives rise
to a family of Sasakian structures S(t) = (ξ, η(t),Φ(t), g(t)) that we denote by S(ξ, J̄)
where J̄ is the induced complex structure on the quotient bundle ν(Fξ) = TM/Lξ

by the trivial line bundle generated by ξ. As the notation suggests we always assume
that S(0) = (ξ, η(0),Φ(0), g(0)) = S.

Note that this deforms the contact structure (hence, the CR structure) from D

to Dt = ker η(t), but they are isomorphic as complex vector bundles and isotopic as
contact structures by Gray’s theorem (cf. [BG08]). In fact, each choice of 1-form
defines a splitting TM = Lξ + D and an isomorphism D ≈ ν(Fξ) of complex vector
bundles. The complex structure J on D defines a further splitting of the complexified
bundle D⊗C = D1,0 +D0,1, and the usual Dolbeault type complexes with transverse
Hodge theory holds [BG08], and the same for Dt.

We assume that M is compact of dimension 2n + 1 with a Sasakian structure S,
and note that the associated Riemannian metric is uniquely determined by η and Φ
as

g = dη ◦ (Φ⊗ 1l)⊕ η ⊗ η.

Following [BGS08] we let sg denote the scalar curvature of g and define the “energy
functional” E : S(ξ, J̄)−−→R by

(1) E(g) =
∫

M

s2gdµg,

i.e. the L2-norm of the scalar curvature. Critical points g of this functional are called
extremal Sasakian metrics. In this case we also say that the Sasakian structure S
is extremal. Similar to the Kählerian case, the Euler-Lagrange equations for this
functional give [BGS08]

Theorem 2.1. A Sasakian structure S ∈ S(ξ, J̄) is a critical point for the energy
functional (1) if and only if the gradient vector field ∂#

g sg is transversely holomorphic.
In particular, Sasakian metrics with constant scalar curvature are extremal.

Here ∂#
g is the (1, 0)-gradient vector field defined by g(∂#

g ϕ, ·) = ∂̄ϕ. It is important
to note that a Sasakian metric g is extremal if and only if the ‘transverse metric’
gT = dη◦(Φ⊗1l) is extremal in the Kählerian sense which follows from the well known
relation between scalar curvatures sg = sT

g − 2n where sT
g is the scalar curvature of

the transverse metric. It follows that

Proposition 2.2. Let S = (ξ, η,Φ, g) be a Sasakian structure on M of dimension 2n+
1 and let U ⊂M be an open set such that f : U−−→Cn is a local submersion. Then the
restriction g|U is an extremal Sasakian metric if and only if gT viewed as a Kählerian
metric on f(U) is extremal. In particular, if the Sasakian structure S is quasi-regular
and (ω, Ĵ , h) is the induced orbifold Kählerian structure on the quotient Z = M/Fξ,
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then g is Sasakian extremal if and only if h is Kählerian extremal. Moreover, g has
constant scalar curvature if and only if h has constant scalar curvature.

Given a strictly pseudoconvex CR structure (D, J) of Sasaki type on a smooth
manifold M of dimenision 2n+ 1, we consider the set S(D, J) of Sasakian structures
whose underlying CR structure is (D, J). The group CR(D, J) of CR transformation
acts on S(D, J), and the quotient space κ(D, J) is called the Sasaki cone [BGS08]
whose dimension satisfies 1 ≤ dimκ(D, J) ≤ n + 1. For a strictly pseudoconvex CR
structure (D, J) on a compact manifold the group CR(D, J) is compact except in the
case of standard CR structure on the sphere S2n+1 [Sch95, Lee96] in which case it
is isomorphic to SU(n+ 1, 1) [Web77]. Thus, CR(D, J) has a unique maximal torus
up to conjugacy. So, as discussed in [Boy10] it is often convenient to consider the
‘unreduced’ Sasaki cone t+ = t+(D, J) where t is the Lie algebra of a maximal torus
in the group CR(D, J) of CR transformations. This is defined by

(2) t+ = {ξ′ ∈ t | η(ξ′) > 0}

where η is any 1-form representing D, and is an open convex cone in t. It is related
to the Sasaki cone κ(D, J) by κ(D, J) = t+(D, J)/W where W is the Weyl group
of CR(D, J). By abuse of terminology I also refer to t+ as the Sasaki cone. Note
that with (D, J) fixed, choosing a Reeb field uniquely chooses a 1-form η such that
ker η = D, and with J also fixed Φ, hence, g are uniquely specified. Thus, we can
think of the Sasaki cone t+(D, J) as consisting of Sasakian structures S = (ξ, η,Φ, g),
so again by abuse of notation we can write S ∈ t+(D, J).

Let η(t) = η+ tζ where ζ is a basic 1-form that is invariant under the full torus T .
Such a 1-form can always be obtained by averaging over T . So the Lie algebra t does
not change under such a deformation, but generally the Sasaki cone t+ associated
with Dt shifts, and we denote it by t+(t). We let ST (ξ, J̄) denote the subset of S(ξ, J̄)
consisting of T -invariant Sasakian structures. If S = (ξ, η,Φ, g) is T -invariant, then
ST (ξ, J̄) consists of all deformations obtained by η 7→ η(t) = η + tζ with ζ invariant
under T . We are interested in the case when the torus T has maximal dimension
and the Reeb vector field is an element of the Lie algebra t, that is, a toric contact
structure D of Reeb type.

Lemma 2.3. Let (M,D, T ) be a toric contact structure of Reeb type with Reeb vector
field ξ. Suppose also that there is an extremal representative S(t) = (ξ, η(t),Φt, gt) ∈
S(ξ, J̄). Then S(t) ∈ ST (ξ, J̄).

Proof. Since the contact structure D is toric of Reeb type, there is a compatible T -
invariant Sasakian structure S = (ξ, η,Φ, g) by [BG00], and suppose that S(ξ, J̄) has
an extremal representative S(t) = (ξ, η(t),Φt, gt). By the Rukimbira Approximation
Theorem, if necessary, there is a quasi-regular T -invariant Sasakian structure invariant
close to S, so we can assume that S is quasi-regular. But then by Proposition 2.2
the Sasakian deformation corresponds to a Kählerian deformation on the base Kähler
orbifold M/Fξ. By a theorem of Calabi [Cal85] this deformed Kähler structure has
maximal symmetry, and one easily sees that the corresponding deformed Sasakian
structure S(t) also has maximal symmetry which implies that S(t) ∈ ST (ξ, J̄). �
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Now let (D, J) be a strictly pseudoconvex CR structure of Sasaki type. We say
that S ∈ t+(D, J) is an extremal element2 of t+(D, J) if there exists an extremal
Sasakian structure in S(ξ, J̄). We also say that S is an extremal element of κ(D, J).
So we can define the extremal set e(D, J) ⊂ κ(D, J) as the subset consisting of those
elements that have extremal representatives (similarly for t+(D, J)).

Recall the transverse homothety (cf. [BG08]) taking a Sasakian structure S =
(ξ, η,Φ, g) to the Sasakian structure

Sa = (a−1ξ, aη,Φ, ag + (a2 − a)η ⊗ η)

for any a ∈ R+. It is easy to see that

Lemma 2.4. Let S be a Sasakian structure. If S is extremal, so is Sa, and if S
has constant scalar curvature so does Sa. In particular, if the extremal set e(D, J) is
non-empty it contains an extremal ray of Sasakian structures.

A main result of [BGS08] says that e(D, J) is an open subset of κ(D, J). Lemma
2.4 says that e(D, J) is conical in the sense that it is a union of open cones, so it is
not necessarily connected.

3. Bouquets of Sasaki Cones and Extremal Bouquets

There may be many Sasaki cones associated to a given contact structure D of Sasaki
type. They are distinguished by their complex structures J. As shown in [Boy10] to
a compatible almost complex structure J on a compact contact manifold (M,D)
one can associate a conjugacy class CT (D) of maximal tori in the contactomorphism
group Con(M,D). Furthermore, almost complex structures that are equivalent under
a contactomorphism give the same conjugacy class CT (D). So given inequivalent
complex structures Jl labelled by positive integers, we can associate unreduced Sasaki
cones t+(D, Jl), or the full Sasaki cones κ(D, Jl). This leads to

Definition 3.1. We define a bouquet of Sasaki cones B(D) as the union

B(D) = ∪l∈Aκ(D, Jl)

where A ⊂ Z+ is an ordered subset. We say the it is an N-bouquet if the cardinality
of A is N and denote it by BN (D).

Clearly a 1-bouquet of Sasaki cones is just a Sasaki cone. Generally, the Sasaki
cones in B(D) can have varying dimension.

The example of interest to us here has in its foundations in the work of Karshon
[Kar03] and Lerman [Ler03]. The general formulation is given in [Boy10]. We begin
with a simply connected symplectic orbifold (B, ω) such that ω defines an integral
class in the orbifold cohomology group H2

orb(B,Z). Suppose further that the class [ω]
is primitive and that there are compatible almost complex structures Ĵl on B such
that (ω, Ĵl) is Kähler for each l in some index set A. We can associate to each such Ĵl a
conjugacy class of maximal tori in the symplectomorphism group Sym(B, ω). Assume
that this map is injective. Now form the principal S1-orbibundle over B associated
to [ω] and assume that the total space M is smooth. By the orbifold version of the
Boothby-Wang construction we get a contact manifold (M,η) satisfying π∗ω = dη

2In [BGS08] this was called a canonical element, but I prefer to call it an extremal element.
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where π : M−−→B is the natural orbifold projection map. We can lift a compatible
almost complex structure Ĵl on B to a D-compatible almost complex structure Jl on
D. Choosing tori Tl associated to Ĵl we can also lift these to maximal tori Ξ×π−1(Tl)
in the contactomorphism group Con(M,D) where D = ker η and Ξ is the circle group
generated by the Reeb vector field ξ of η. Suppose that there are exactly N such
maximal tori in Con(M,D), then we get an N-bouquet BN (D) of Sasaki cones on
(M,D) which intersect in the ray of Reeb vector fields, ξa = a−1ξ. If we projectivize
the Sasaki cones by transverse homotheties we obtain the usual notion of bouquet,
namely, a wedge product

∨
P(κ(D, Ĵl)) with base point ξ.

Suppose that Sl = (ξ, η,Φl, gl) is an extremal element of κ(D, Jl) for each l ∈ A,
that is for each l ∈ A there is an extremal representative Sl(t) ∈ S(ξ, J̄l). Then
by the openness theorem there is a nonempty open extremal set e(D, Jl) ⊂ κ(D, Jl)
containing S = (ξ, η,Φ, g) for each l ∈ A. This leads to

Definition 3.2. We define an extremal bouquet EB(D) associated with the con-
tact structure D to be the union ∪l∈Ae(D, Jl) if for each l ∈ A the extremal set
e(D, Jl) is non-empty. Moreover, it is called an extremal N-bouquet EBN (D) if
A has cardinality N .

One easily sees from the openness theorem of [BGS08] that EB(D) is open in
B(D). An important open problem here is to obtain a good measure of the size of
the extremal sets e(D, Jl), and hence, a measure of the size of the extremal bouquet.
The actual size of extremal Sasakian sets is known in very few cases, namely the
standard sphere, and the Heisenberg group [BGS08, Boy09].

4. The Main Theorems

Let us now construct contact structures of Sasaki type on S2 × S3 and X∞. First
consider the toric symplectic manifold S2 ×S2 with symplectic form ωk1,k2 = k1ω1 +
k2ω2 on S2 × S2 where (k1, k2) are relatively prime integers satisfying k1 ≥ k2, and
ω1(ω2) is the standard symplectic forms on the first (second) factor of S2, respectively.
Let π : M−−→S2 × S2 be the circle bundle corresponding to the cohomology class
[ωk1,k2 ] ∈ H2(M,Z). As stated in the introduction M is diffeomorphic to S2 × S3

for each such pair (k1, k2). By the Boothby-Wang construction one obtains a contact
structure Dk1,k2 on M by choosing a connection 1-form ηk1,k2 such that π∗ωk1,k2 =
dηk1,k2 . Justin Pati [Pat09] has recently shown using contact homology that there
are infinitely many such contact structures with the same first Chern class that are
inequivalent.

Theorem 4.1. Let M = S2×S3 with the contact structure Dk1,k2 described above. Let
N = dk1

k2
e denote the smallest integer greater than or equal to k1

k2
. Then for each pair

(k1, k2) of relatively prime integers satisfying k1 ≥ k2, there is an extremal N -bouquet
EBN (Dk1,k2) of toric Sasakian structures associated to the contact structure Dk1,k2

on S2 × S3, and all the cones of the bouquet have dimension three. Furthermore, the
extremal Sasakian structure corresponding to the contact 1-form ηk1,k2 has constant
scalar curvature if and only if the transverse complex structure is that induced by the
product complex structure on the base S2 × S2.



186 CHARLES P. BOYER

Proof. By Proposition 2.2 a Sasakian structure S = (ξ, η,Φ, g) in κ(Dk1,k2 , J) is ex-
tremal if and only if the induced Kähler structure (ωk1,k2 , Ĵ , h) on S2×S2 is extremal.
Now Karshon [Kar03] proved that there are precisely dk1

k2
e even Hirzebruch surfaces

S2m that are Kähler with respect to the symplectic form ωk1,k2 . More precisely for
each m = 0, · · · , dk1

k2
e − 1 there is a diffeomorphism that takes the Kähler form S2m

to ωk1,k2 . Note that m = 0 corresponds the product complex structure CP1 × CP1.
Moreover, Calabi [Cal82] has shown that for every Kähler class [ω] of any Hirzebruch
surface Sn there is an extremal Kähler metric which is of constant scalar curvature
if and only if n = 0. Furthermore, as shown by Lerman [Ler03] one can lift maximal
tori of the symplectomorphism group Sym(S2 × S2, ωk1,k2) to maximal tori in the
contactomorphism group Con(S2 × S3,Dk1,k2) (see also Theorem 6.4 of [Boy10] for
the more general situation). As explained above this gives a Sasaki cone associated
to each of the transverse complex structures induced by the Hirzebruch surfaces, and
hence an N -bouquet of Sasaki cones where N = dk1

k2
e. Furthermore, since each Sasaki

cone has an extremal Sasakian structure, namely the one with 1-form ηk1,k2 , we can
apply Theorem 7.6 of [BGS08] to obtain an open set of extremal Sasakian structures in
each of the Sasaki cones. This gives an extremal N -bouquet EBN (Dk1,k2) as defined
above. �

There is another family of contact structures on S2×S3 that arise as circle bundles
over the non-trivial S2-bundle over S2 which is diffeomorphic to CP2 blown up at a
point. Following [Kar03] I denote this manifold by C̃P

2
. The construction of this

family also gives contact structures on the non-trivial bundle X∞. Let E be the
exceptional divisor and let L be a projective line in C̃P

2
that does not intersect E.

We consider the symplectic form ω̃l,e such that the symplectic areas of L and E are 2πl
and 2πe, respectively, where (l, e) are relatively prime integers satisfying l > e ≥ 1.
Karshon [Kar03] proved that there are precisely d e

l−ee odd Hirzebruch surfaces S2m+1

with m = 0, · · · , d e
l−ee − 1 that are Kähler with respect to the symplectic form ω̃l,e,

and again there are diffeomorphisms ψm that take the Kähler forms of S2m+1 to the
form ω̃l,e. As occured in the proof of the previous theorem the different Hirzebruch
surfaces correspond to non-conjugate maximal tori in the symplectomorphism group
Sym(C̃P

2
, ω̃l,e). By Proposition 6.3 and Theorem 6.4 of [Boy10] these can be lifted

to non-conjugate tori in the contactmorphism group Con(M, D̃l,e) where M is the

circle bundle over C̃P
2

corresponding to the cohomology class [ωl,e] and D̃l,e is the
contact structure induced by a connection 1-form ηl,e satisfying π∗ωl,e = dηl,e. I
assume that l and e are relatively prime positive integers. Now in order to identify
the diffeomorphism type of M it is enough by the Barden-Smale classification of
simply connected 5-manifolds to compute the mod 2 reduction of the first Chern
class c1(D̃l,e). For this we pullback c1(C̃P

2
) to M and use the relation [π∗ω̃l,e] =

0. Now c1(C̃P
2
) = 2αE + αL where αE(αL) is Poincaré dual of the divisor class

E(L), respectively [GH78]. We find c1(D̃l,e) =
(
l − 2e

)
γ where γ is a generator of

H2(M,Z) ≈ Z. It follows that M is S2 × S3 if l is even and X∞ if l is odd. Then,
using Calabi [Cal82], just as in the proof of Theorem 4.1 we arrive at
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Theorem 4.2. Let M be the circle bundle over C̃P
2

with the contact structure D̃l,e

as described above, and let N = d e
l−ee. Then for each pair (l, e) of relatively prime

integers satisfying l > e ≥ 1, there is an extremal N -bouquet EBN (D̃l,e) of toric
Sasakian structures associated to the contact structure D̃l,e, and the cones of the
bouquet all have dimension three. Furthermore, if l is even M = S2 × S3, whereas,
if l is odd M = X∞ and in either case the extremal Sasakian structure corresponding
to the contact 1-form ηl,e does not have constant scalar curvature.

Remark 4.3. If the pairs of integers (k1, k2) and (l, e) are not relatively prime, but
(k1, k2) = (l, e) = n, similar results to Theorems 4.1 and 4.2 hold for the quotient
manifolds (S2 × S3)/Zn and X∞/Zn.

5. Concluding Remarks

Recall [BG08] that a Sasakian structure S = (ξ, η,Φ, g) is said to be positive (neg-
ative) if its basic first Chern class c1(Fξ) can be represented by a positive (negative)
definite (1, 1)-form. It is null if c1(Fξ) = 0, and indefinite otherwise. The following
result follows directly from Theorem 8.1.14 of [BG08] and Proposition 4.4 of [BGS08].

Lemma 5.1. Let S = (ξ, η,Φ, g) be a Sasakian structure with underlying CR structure
(D, J). Suppose that dimκ(D, J) > 1. Then the type of S is either positive or
indefinite.

In a forthcoming work [BP11] it will be seen that generally the type is not an
invariant of the Sasaki cone. Here it is easy to see from the constructions above that
the type is not an invariant of the bouquet. For example consider the contact structure
D5,1 on S2 × S3. There are five Sasaki cones κ(D5,1, J2m) where m = 0, · · · , 4. We
can label the corresponding extremal Sasakian structures as S2m = (ξ, η5,1,Φ2m, g2m)
where J2m = Φ2m|D5,1 and g2m = dη5,1 ◦ (Φ2m ⊗ 1l) + η5,1 ⊗ η5,1. The Sasakian
structure S0 is positive and has constant scalar curvature; whereas, the others S2m

with m = 1, 2, 3, 4 are indefinite with non-constant scalar curvature. Similarly, the
contact structure D̃5,4 onX∞ has four Sasaki cones κ(D̃4,1, J2m+1) withm = 0, 1, 2, 3.
The corresponding extremal Sasakian structures are S2m+1 = (ξ, η̃4,1,Φ2m+1, g2m+1)
where J2m+1 = Φ2m+1|D̃4,1

and g2m+1 = dη̃5,1 ◦ (Φ2m+1⊗1l)+ η̃4,1⊗ η̃4,1. Again S1 is
positive, and the others are indefinite, but now they are all extremal of non-constant
scalar curvature.

The case (l, e) = (2, 1) and m = 0 presents an interesting case even though the
Sasaki bouquet degenerates to a single Sasaki cone. Here we have c1((D̃2,1, J0)) = 0
and M = S2×S3. So by Calabi the induced Sasaki structure over the complex mani-
fold C̃P

2
has an extremal Sasaki metric with non-constant scalar curvature. However,

it was shown in [MS06] that the contact structure D̃2,1 admits an irregular Sasaki-
Einstein structure, which, of course, is extremal with constant scalar curvature. In
this case it would be interesting to see how big the extremal set e(D̃l,e, J0) is. This
is actually a special case of a much more general result of Futaki, Ono, and Wang
[FOW09] which says that for any positive toric Sasakian structure with c1(D) = 0
there is a deformation to a Reeb vector field in the Sasaki cone whose Sasakian metric
is Sasaki-Einstein. This discussion begs the questions:
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Does every toric contact structure of Reeb type on S2 × S3 or X∞ have a constant
scalar curvature Sasakian metric somewhere in its Sasaki cone?, or more generally
for any toric contact structure of Reeb type?

Another observation comes from the well known fact [MK06] that for each m >
0 there is a complex analytic family of even Hirzebruch surfaces S2l(t) satisfying
S2l(t) ≈ S2l for t 6= 0 and m > l, but that S2l(0) ≈ S2m. This implies that the moduli
space of complex structures on S2 × S2 is non-Hausdorff. A similar result holds for
the moduli space of complex structures on C̃P

2
. These results imply that the moduli

space of extremal Sasakian structures with underlying contact structures Dk1,k2 on
S2 × S3 or D̃l,e on X∞ is non-Hausdorff as well.

Note added: The first question above has been recently answered in the affir-
mative by Éveline Legendre [Leg11]. Moreover, she shows that if k1 > 5k2 the
toric contact structure Dk1,k2 on S2 × S3 has two distinct rays in the Sasaki cone
with constant scalar curvature Sasakian metrics. So unlike the Sasaki-Einstein case
[CFO08, FOW09] constant scalar curvature rays are not unique in a Sasaki cone.
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