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ASYMPTOTIC GROWTH OF SATURATED POWERS AND
EPSILON MULTIPLICITY

Steven Dale Cutkosky

1. Introduction

In this paper, we study the growth of saturated powers of modules. In the case of
an ideal I in a local ring (R,m), the saturation of Ik in R is

(Ik)sat = Ik :R m∞ = ∪∞n=1I
k :R mn.

There are examples showing that the algebra of saturated powers of I,
⊕

k≥0(I
k)sat

is not a finitely generated R-algebra; for instance, in many cases the saturated powers
are the symbolic powers. As such, it cannot be expected that the “Hilbert function”,
giving the length of the R-module (Ik)sat/Ik, is very well behaved for large k. How-
ever, it can be shown that it is bounded above by a polynomial in k of degree d,
where d is the dimension of R. We show that in many cases, there is a reasonable
asymptotic behavior of this length.

Suppose that (R,m) is a Noetherian local domain of dimension d ≥ 1. Let L be
the quotient field of R. Let λ(M) denote the length of an R-module M . Let F be
a finitely generated free R-module, and let E be a submodule of F of rank e. Let
S = R[F ] = Sym(F ) =

⊕
k≥0 F k and let R[E] =

⊕
k≥0 Ek be the R-subalgebra of S

generated by E. Let
Ek :F k m∞ = ∪∞n=1E

k :F k mn

denote the saturation of Ek in F k. We prove the following theorem:

Theorem 1.1. Suppose that (R,m) is a local domain of depth ≥ 2 which is essentially
of finite type over a field K of characteristic zero (or over a perfect field K such that
R/m is algebraic over K). Let d be the dimension of R. Suppose that E is a rank e
submodule of a finitely generated free R-module F . Then the limit

(1) lim
k→∞

λ(Ek :F k m∞/Ek)
kd+e−1

∈ R

exists.

The conclusions of this theorem follow from Theorem 3.2 and Remark 3.3.
Theorem 1.1 is proven in the case when E = I is a homogeneous ideal and R is a

standard graded normal K-algebra in our paper [3] with Hà, Srinivasan and Theodor-
escu. The theorem is proven with the additional assumptions that R is regular, E = I
is an ideal in F = R, and the singular locus of Spec(R/I) is m in our paper [4] with
Herzog and Srinivasan. Kleiman [13] has proven Theorem 1.1 in the case that E is
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a direct summand of F locally at every nonmaximal prime of R. The theorem is
proven for E of low analytic deviation in [4], for the case of ideals, and by Ulrich
and Validashti [19] for the case of modules; in the case of low analytic deviation, the
limit is always zero. A generalization of this problem to the case of saturations with
respect to non m-primary ideals is investigated by Herzog, Puthenpurakal and Verma
in [10]; they show that an appropriate limit exists for monomial ideals.

An example in [3] shows that even in the case when E is an ideal I in a regular
local ring R, the limit may be irrational.

An important technique in the proof of Theorem 1.1 is to use a theorem of Lazars-
feld [14] showing that the volume of a line bundle on a complex projective variety
can be expressed as a limit of numbers of global sections of powers of the line bun-
dle; Lazarsfeld’s theorem is deduced from an approximation theorem of Fujita [6]
(generalizations of Fujita’s result to positive characteristic are given in [17] and [15]).

We can interpret our results in terms of local cohomology. Let F k
L = F k ⊗R L,

where L is the quotient field of R, so that we have natural embeddings Ek ⊂ F k ⊂ F k
L

for all k. We have identities

H0
m(F k/Ek) ∼= Ek :F k m∞/Ek and H1

m(Ek) ∼= Ek :F k
L

m∞/Ek.

Further, these two modules are equal if R has depth ≥ 2.
We thus obtain the following corollary to Theorem 1.1, which shows that the epsilon

multiplicity ε(E) of a module, defined as a limsup in [19], actually exists as a limit.

Corollary 1.2. Suppose that (R,m) is a local domain of depth ≥ 2 which is essentially
of finite type over a field K of characteristic zero (or over a perfect field K such that
R/m is algebraic over K). Let d be the dimension of R. Suppose that E is a rank e
submodule of a finitely generated free R-module F . Then the limit

lim
k→∞

(d + e− 1)!
kd+e−1

λ(H0
m(F k/Ek)) ∈ R

exists. Thus the epsilon multiplicity ε(E) of E exists as a limit.

By the above identities of local cohomology, we see that (1) is equivalent to the
statement that

(2) lim
k→∞

H0
m(F k/Ek)
kd+e−1

= lim
k→∞

H1
m(Ek)

kd+e−1
∈ R

exists when depth(R) ≥ 2.
In Section 4, we extend our results to domains of dimension d ≥ 2. We prove the

following extension of Theorem 1.1, which shows that the second limit of (2),

lim
k→∞

H1
m(Ek)

kd+e−1
∈ R

exists when R is a domain of dimension d ≥ 2.

Theorem 1.3. Suppose that (R,m) is a local domain of dimension d ≥ 2 which is
essentially of finite type over a field K of characteristic zero (or over a perfect field
K such that R/m is algebraic over K). Suppose that E is a rank e submodule of a
finitely generated free R-module F . Then the limit

(3) lim
k→∞

λ
(
Ek :F k

L
m∞/Ek

)
kd+e−1

∈ R
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exists.

Theorem 1.3 follows from Theorem 4.1 and equations (24) and (6). We prove that
the first limit of (2),

lim
k→∞

H0
m(F k/Ek)
kd+e−1

∈ R

exists when R is a domain of dimension d ≥ 2 and E is embedded in F of rank
< d + e. I thank Craig Huneke, Bernd Ulrich and Javid Validashti for pointing out
this interesting consequence of Theorem 1.3.

Corollary 1.4. Suppose that (R,m) is a local domain of dimension d ≥ 2 which is
essentially of finite type over a field K of characteristic zero (or over a perfect field
K such that R/m is algebraic over K). Suppose that E is a rank e submodule of a
finitely generated free R-module F . Suppose that γ = rank(F ) < d + e. Then the
limits

(4) lim
k→∞

λ
(
Ek :F k m∞/Ek

)
kd+e−1

∈ R

and

(5) lim
k→∞

(d + e− 1)!
kd+e−1

λ(H0
m(F k/Ek)) ∈ R

exist. In particular, the epsilon multiplicity ε(E) of E exists as a limit.

In the case when e = 1 and F = R, we get the following statement.

Corollary 1.5. Suppose that (R,m) is a local domain of dimension d ≥ 1 which
is essentially of finite type over a field K of characteristic zero (or over a perfect
field K such that R/m is algebraic over K). Suppose that I is an ideal in R. Let
(Ik)sat = Ik :R m∞ be the saturation of Ik. Then the limit

lim
k→∞

λ((Ik)sat/Ik)
kd

∈ R

exists.

Asymptotic polynomial like behavior of the length of extension functions is stud-
ied by Katz and Theodorescu [12], Theodorescu [18] and Crabbe, Katz, Striuli and
Theodorescu [2]. By the local duality theorem, we obtain the following corollary to
Theorem 1.1.

Corollary 1.6. Suppose that (R,m) is a Gorenstein local domain of dimension d ≥ 2
which is essentially of finite type over a field K of characteristic zero (or over a perfect
field K such that R/m is algebraic over K). Suppose that E is a rank e submodule of
a finitely generated free R-module F . Then the limit

lim
k→∞

λ(Extd
R(F k/Ek, R))
kd+e−1

∈ R

exists.
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2. Preliminaries

Suppose that (R,m) is a Noetherian local domain of dimension d ≥ 1 with quotient
field L. Let λR(M) denote the length of an R-module M . When there is no danger
of confusion, we will denote λR(M) by λ(M).

Let F be a finitely generated free R-module of rank γ, and let E be a submodule
of F of rank e. Let S = R[F ] = Sym(F ) =

⊕
k≥0 F k, and let R[E] =

⊕
k≥0 Ek be

the R-subalgebra of S generated by E. Let

Ek :F k m∞ = ∪∞n=1E
k :F k mn

denote the saturation of Ek in F k.
Let F k

L = F k ⊗R L (where L is the quotient field of R), so that we have natural
embeddings Ek ⊂ F k ⊂ F k

L for all k. Let X = Spec(R), Ẽk be the sheafification of
E on X and let u1, . . . , us be generators of the ideal m.

There are identities

(6) H0(X \ {m}, Ẽk) = ∩s
i=1(E

k)ui = Ek :F k
L

m∞.

From the exact sequence of cohomology groups

0 → H0
m(Ek) → Ek → H0

m(X \ {m}, Ẽk) → H1
m(Ek) → 0,

we deduce that we have isomorphisms of R-modules

(7) H1
m(Ek) ∼= Ek :F k

L
m∞/Ek

for k ≥ 0. The same calculation for F k shows that

(8) H1
m(F k) ∼= F k :F k

L
m∞/F k.

From the left exact local cohomology sequence

0 → H0
m(F k/Ek) → H1

m(Ek) → H1
m(F k),

we have that

(9) H0
m(F k/Ek) ∼=

(
Ek :F k

L
m∞) ∩ F k

)
/Ek = Ek :F k m∞/Ek.

From (6), and the fact that F k is a free R-module, we have that H0(X \{m}, F̃ k) =
F k and

(10) Ek :F k
L

m∞ = Ek :F k m∞ if R has depth ≥ 2.

Let ES be the ideal of S generated by E. We compute the degree n part of (ES)n

from the formula

(11) [(ES)n]n = En.

Let R[mE] =
⊕

n≥0(mE)n be the R-subalgebra of S generated by mE.
Let X = Spec(R), Y = Proj(R[mE]) and Z = Proj(R[E]).
Write R[E] = R[x1, . . . , xt] as a standard graded R-algebra, with deg xi = 1 for

all i. For 1 ≤ i ≤ t, let

Ri = R[
x1

xi
, . . . ,

xt

xi
],
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and let Vi = Spec(Ri) for 1 ≤ i ≤ t. {Vi} is an affine cover of Z. Let u1, . . . , us be
generators of the ideal m. For 1 ≤ i ≤ s and 1 ≤ j ≤ t, let

Ri,j = R[
uαxβ

uixj
| 1 ≤ α ≤ s, 1 ≤ β ≤ t],

and Ui,j = Spec(Ri,j). Then {Ui,j} is an affine cover of Y . Since

Rj [
u1

ui
, . . . ,

us

ui
] = Ri,j ,

we see that Y is the blow up of the ideal sheaf mOZ .
The structure morphism f : Y → X factors as a sequence of projective morphisms

Y
g→ Z

h→ X,

where Y is the blow up the ideal sheaf mOZ . Define line bundles on Y by L = g∗OZ(1)
and M = mOY . Then OY (1) ∼= M⊗L.

We have OZ(1)|Vj = xjOVj
, L|Ui,j = xjOUi,j

and M|Ui,j = uiOUi,j
.

We give three consequences (Proposition 2.1, Proposition 2.2 and Corollary 2.3) of
Serre’s fundamental theorem for projective morphisms which will be useful.

Proposition 2.1.
⊕

k≥0 Hi(Y,Lk) are finitely generated R[E]-modules for all i ∈ N.

Proof. Let Ẽk be the sheafication of Ek on X. From the natural surjections for k ≥ 0
of OZ-modules g∗(Ẽk) → OZ(k), we obtain surjections f∗(Ẽk) → Lk of OY -modules,
and a surjection f∗(

⊕
k≥0 Ẽk) →

⊕
k≥0 Lk. Hence

⊕
k≥0 Lk is a finitely generated

f∗(
⊕

k≥0 Ẽk)-module. By Theorem III.2.4.1 [8], Rif∗(
⊕

k≥0 Lk) is a finitely gener-

ated
⊕

k≥0 Ẽk-module for i ∈ N. Taking global sections on the affine X, we obtain
the conclusions of the proposition. �

Proposition 2.2. Suppose that A is a Noetherian ring, and B =
⊕

k≥0 Bk is a
finitely generated graded A-algebra, which is generated by B1 as an A-algebra. Let
C = Spec(A) and D = Proj(B). Let α : D → C be the structure morphism. Then
there exists a positive integer k such that Bk = Γ(D,OD(k)) for k ≥ k.

Proof. The ring
⊕

k≥0 Γ(D,OD(k)) is a finitely generated graded B-module by The-
orem III.2.4.1 [8]. Hence (

⊕
k≥0 Γ(D,OD(k)))/B is a finitely generated graded B-

module. Since every element of this module is B+ =
⊕

k>0 Bk torsion, we have that
Bk/Ek = 0 for k � 0. �

Taking the maximum over the k obtained from the above proposition applied to a
finite affine cover of W , we obtain the following generalization of Proposition 2.2.

Corollary 2.3. Suppose that W is a Noetherian scheme and B =
⊕

k≥0 Bk is a
finitely generated graded OW -algebra, which is locally generated by B1 as a OW -
algebra. Let W ′ = Proj(B) and let α : W ′ → W be the structure morphism. Then
there exists a positive integer k such that Bk = α∗OW ′(k) for k ≥ k,
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3. Asymptotic Growth

Proposition 3.1. Let (R,m) be a local domain of depth ≥ 2. Let d be the dimension
of R. Suppose that E is a rank e R-submodule of a finitely generated free R-module
F . Let notation be as above. Then there exist positive integers k0, k1 and τ such that

1) for k ≥ k0, n ∈ Z and p ∈ X \ {m},

Γ(Y,Mn ⊗ Lk)p = (Ek)p.

2) For k ≥ k1,
Ek :F k m∞ = Γ(Y,M−kτ ⊗ Lk).

Proof. We first establish 1). Ui = Spec(Rui
) for 1 ≤ i ≤ s is an affine cover of X\{m}.

g|f−1(Ui) is an isomorphism; in fact

f−1(Ui) = Proj(R[mE]ui
) = Proj(R[E]ui

) = h−1(Ui).

By Proposition 2.2, there exist positive integers ai such that

Γ(f−1(Ui),M−n ⊗ Lk) = Γ(h−1(Ui),OZ(k)) = (Ek)ui

for k ≥ ai. Let k0 = max{a1, . . . , as}. Then for p ∈ Ui

Γ(Y,M−n ⊗ Lk)p = Γ(f−1(Ui),Mn ⊗ Lk)p = (Ek)p

for k ≥ k0, establishing 1).
We now establish 2). Suppose that n ≥ 0, and k ≥ 0. Suppose that σ ∈ Ek :F k mn.

Let i, j be such that 1 ≤ i ≤ s and 1 ≤ j ≤ t. σmn ⊂ Ek implies un
i σ ∈ Ek which

implies there is an expansion

un
i σ =

∑
n1+···+nt=k

rn1,...,nt
xn1

1 · · ·xnt
t

with rn1,...,nt
∈ R. Thus

un
i σ = xk

j

( ∑
n1+···+nt=k

rn1,...,nt
(
x1

xj
)n1 · · · (xt

xj
)nt

)
,

so that σ ∈ u−n
i xk

j Ri,j . Thus

σ ∈ ∩i,ju
−n
i xk

j Ri,j = Γ(Y,M−n ⊗ Lk).

We have established that for k ≥ 0 and n ≥ 0,

(12) Ek :F k mn ⊂ Γ(Y,M−n ⊗ Lk).

Recall that S is a polynomial ring S = R[y1, . . . , yγ ] over R, where γ is the rank of
F . Let W = Proj(S), with natural morphism α : W → X. Let I be the sheafication
of the graded ideal ES on W . We have expansions

xi =
γ∑

l=1

filyl

with fil ∈ R.
The inclusion R[E] ⊂ S induces a rational map from W to Z.
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Let β : W ′ → W be the blow up of the ideal sheaf I. Let N = IOW ′ be the
induced line bundle. W ′ has an affine cover Ai,j = Spec(Tij) for 1 ≤ i ≤ t and
1 ≤ j ≤ γ with

Tij = R[
y1

yj
, . . . ,

yγ

yj
][

x1

xi
, . . . ,

xt

xi
].

From the inclusions

Ri = R[
x1

xi
, . . . ,

xt

xi
] ⊂ Tij

we have induced morphisms Ai,j → Vi = Spec(Ri) which patch to give a morphism
ϕ : W ′ → Z which is a resolution of indeterminacy of the rational map from W to Z.

We calculate for all i, j,

ϕ∗(OZ(1)) | Ai,j = xiOAij
= yj(

∑
l

fi,l
yl

yj
)OAij

= (β∗OW (1)) I|Ai,j ,

to see that
(β∗OW (1))⊗N ∼= ϕ∗OZ(1).

By Corollary 2.3, there exists a positive integer k1 ≥ k0 such that β∗N k = Ik for
k ≥ k1. From the natural inclusion OZ(k) ⊂ ϕ∗ϕ

∗OZ(k), we have by the projection
formula that for k ≥ k1,

(13)
h∗OZ(k) ⊂ h∗ϕ∗(ϕ∗OZ(k)) = α∗β∗(β∗OW (k)⊗N k)

= α∗[OW (k)⊗ β∗N k] = α∗[OW (k)⊗ Ik]
⊂ α∗OW (k) = F̃ k,

where F̃ k is the sheafication of the R-module F on X. Now we have

(14)
Γ(Y,M−n ⊗ Lk) = Γ(X, f∗(M−n ⊗ Lk))

⊂ Γ(X \ {m}, f∗(M−n ⊗ Lk)) = Γ(X \ {m}, h∗OZ(k))
⊂ Γ(X \ {m}, F̃ k) = F k

since R, and hence the free R-module F k, have depth ≥ 2.
From (11), we deduce that for k, n ≥ 0,

(15)
(
(ES)k :S mnS

)
∩ F k = Ek :F k mn.

By 1.5 [11] or Theorem 1.3 [16], there exists a positive integer τ such that

(ES)k :S mkτS = (ES)k :S (mS)∞

for all k ≥ 0. Thus from (15) we have that

(16) Ek :F k mkτ = Ek :F k m∞

for k ≥ 0. From (16), (12) and (14), we have inclusions

Ek :F k m∞ ⊂ Γ(Y,M−kτ ⊗ Lk) ⊂ F k

for k ≥ k1. The conclusions of 2) of the proposition now follow from 1) of the
proposition since Ek :F k m∞ is the largest R-submodule N of F k which has the
property that Np = (Ek)p for p ∈ X \ {m}.

�
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Theorem 3.2. Suppose that (R,m) is a local domain of depth ≥ 2 which is essentially
of finite type over a field K of characteristic zero. Let d be the dimension of R.
Suppose that E is a rank e submodule of a finitely generated free R-module F . Then
the limit

lim
k→∞

λ
(
Ek :F k m∞/Ek

)
kd+e−1

∈ R

exists.

Proof. Let notation be as above.
First consider the short exact sequences

(17) 0 → Γ(Y,Lk)/Ek → Ek :F k m∞/Ek → Ek :F k m∞/Γ(Y,Lk) → 0.⊕
k≥0 Γ(Y,Lk) is a finitely generated R[E]-module by Lemma 2.1. By 1) of Propo-

sition 3.1, the support of the R-module Γ(Y,Lk)/Ek is contained in {m} for all k.
Since (

⊕
k≥0 Γ(Y,Lk))/R[E] is a finitely generated R[E]-module, there is a positive

integer r such that mr(Γ(Y,Lk)/Ek) = 0 for all k. Since dim R[E]/mR[E] ≤ dim R+
rank E−1 = d+e−1, and R/mr is an Artin local ring, we have that λ(Γ(Y,Lk)/Ek)
is a polynomial of degree less than or equal to d+e−2 for k � 0 by the Hilbert-Serre
theorem. Thus there exists a constant α such that λ(Γ(Y,Lk)/Ek) ≤ αkd+e−2 for all
k. From (17), we are now reduced to showing that the limit

lim
k→∞

λ(Ek :F k m∞/Γ(Y,Lk))
kd+e−1

exists, from which we will have

(18) lim
k→∞

λ(Ek :F k m∞/Γ(Y,Lk))
kd+e−1

= lim
k→∞

λ(Ek :F k m∞/Ek)
kd+e−1

.

Taking global sections of the short exact sequences

0 → Lk →M−kτ ⊗ Lk →M−kτ ⊗ Lk ⊗ (OY /mkτOY ) → 0,

we obtain by Proposition 3.1 left exact sequences

(19) 0 → Ek :F k m∞/Γ(Y,Lk) → Γ(Y,M−kτ ⊗ Lk ⊗ (OY /mkτOY )) → H1(Y,Lk)

for k ≥ k1.
Let u1, . . . , us be generators of the ideal m, and set Ui = Spec(Rui

), so that
{U1, . . . , Us} is an affine cover of X \ {m}. Then L|f−1(Ui) is ample, so there exist
positive integers bi such that R1f∗(Lk) | Ui = 0 for k ≥ bi. Let k2 = max{b1, . . . , bs}.
We have that the support of H1(Y,Lk) is contained in {m} for k ≥ k2.⊕

k≥0 H1(Y,Lk) is a finitely generated R[E]-module by Lemma 2.1. Hence the
submodule M =

⊕
k≥k2

H1(Y,Lk) is a finitely generated graded R[E]-module. We
have that mrM = 0 for some positive integer r. Since

dim R[E]/mR[E] ≤ dim R + rank E − 1 = d + e− 1,

and R/mr is an Artin local ring, we have that λ(H1(Y,Lk)) is a polynomial of degree
less than or equal to d + e − 2 for k � 0 by the Hilbert-Serre theorem. Thus there
exists a constant c such that

λ(H1(Y,Lk)) ≤ ckd+e−2
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for all k ≥ 0. By consideration of (18) and (19), we are reduced to proving that the
limit

(20) lim
k→∞

λ(H0(Y,M−kτ ⊗ Lk ⊗OY /mkτOY ))
kd+e−1

exists.
If R/m is algebraic over K, let K ′ = K. If R/m is transcendental over K, let

t1, . . . , tr be a lift of a transcendence basis of R/m over K to R. The rational function
field K(t1, . . . , tr) is contained in R. Let K ′ = K(t1, . . . , tr). We have that R/m is
finite algebraic over K ′.

There exists an affine K ′-variety X ′ = Spec(A) such that R is the local ring of a
closed point α of X ′, and E extends to a submodule E′ of Aγ , where γ is the rank of the
free R-module F . We then have an inclusion of graded A-algebras A[E′] ⊂ Sym(Aγ)
which extends R[E]. Identify m with its extension to a maximal ideal of A. The
structure morphism Y ′ = Proj(A[mE′]) → X ′ is projective and its localization at m

is f : Y → X. Let X be a projective closure of X ′ and let Ỹ be a projective closure
of Y ′. X ′ is an open subset of X and Y ′ is an open subset of Ỹ . Let Y → Ỹ be the
blow up of an ideal sheaf which gives a resolution of indeterminancy of the rational
map from Ỹ to X. We may assume that the morphism Y → Ỹ is an isomorphism
over the locus where the rational map is a morphism, and thus an isomorphism over
the subset Y ′ of Ỹ . Let f : Y → X be the resulting morphism. We now establish that
f
−1

(X ′) = Y ′. Suppose that p ∈ X ′ and q ∈ f
−1

(p). Let V be a valuation ring of
the function field L of Y (which is also the function field of Y ′) which dominates the
local ring OY ,q. By assumption, V dominates the local ring OX′,p. V dominates the
local ring of a point on Y ′, by the valuative criterion for properness (Theorem II.4.7
[9]) applied to the proper morphism Y ′ → X ′. Since V dominates the local ring of a
unique point on Y , we have that q ∈ Y ′.

After possibly replacing Y with the blow up of an ideal sheaf on Y whose support
is disjoint from Y ′, we may assume that L extends to a line bundle on Y which we
will also denote by L. We will identify m with its extension to the ideal sheaf of the
point α on X, and identify M with its extension mOY to a line bundle on Y . Let
A be an ample divisor on X. Then there exists l > 0 such that C = f

∗
(Al) ⊗ L is

generated by global sections and is big.
Set B = C ⊗M−τ . Tensor the short exact sequences

0 →Mkτ → OY → OY /mkτOY
∼= OY /mkτOY → 0

with Bk to obtain the short exact sequences

0 → Ck → Bk →M−kτ ⊗ Lk ⊗OY / mkτOY → 0

for k ≥ 0. Taking global sections, we have exact sequences
(21)

0 → H0(Y , Ck) → H0(Y ,Bk) → H0(Y,M−kτ ⊗ Lk ⊗OY / mkτOY ) → H1(Y , Ck).

For a coherent sheaf F on Y , let

hi(Y ,F) = dimK′Hi(Y ,F).
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Since C is semiample (generated by global sections and big) and Y has dimension
d + e− 1, we have that

lim
k→∞

h1(Y , Ck)
kd+e−1

= 0.

This follows for instance from [5]. Since
⊕

k≥0 H0(Y , Ck) is a finitely generated K ′

algebra of dimension d + e, as C is generated by global sections and is big (or by the
Riemann Roch theorem and the vanishing theorem of [5]) we have that the limit

lim
k→∞

h0(Y , Ck)
kd+e−1

∈ Q

exists. Since B is big, by the corollary to [6] given in Example 11.4.7 [14] or [3], we
have that the limit

lim
k→∞

h0(Y ,Bk)
kd+e−1

∈ R

exists. From the sequence (21), we see that

lim
k→∞

h0(Y,M−kτ ⊗ Lk ⊗OY / mkτOY )
kd+e−1

∈ R

exists. The conclusions of the theorem now follow from (20) and the formula

h0(Y,M−kτ ⊗ Lk ⊗OY / mkτOY ) = dimK′H0(Y,M−kτ ⊗ Lk ⊗OY / mkτOY )
= [R/m : K ′]λ(H0(Y,M−kτ ⊗ Lk ⊗OY / mkτOY )).

�

Remark 3.3. The conclusions of Theorem 3.2 are also true if K is a perfect field of
positive characteristic and R/m is algebraic over K. In this case we have that K ′ = K
in the proof of Theorem 3.2. Let K be an algebraic closure of K. Since K is perfect,
Y ×K K is reduced, and to compute the limit, we reduce to computing the sections
of the pullback of Bk on the disjoint union of the irreducible (integral) components of
Y ×K K. Fujita’s approximation theorem is valid on varieties over an algebraically
closed field of positive characteristic, as was shown by Takagi [17], from which the
existence of the limit now follows.

Remark 3.4. Theorem 3.2 is proven for graded ideals in [3]. An example where the
limit is an irrational number is given in [3]. The theorem is proven with the additional
assumptions that R is regular, E = I is an ideal in F = R, and the singular locus of
Spec(R/I) is m in [4]. Kleiman [13] has proven Theorem 3.2 in the case that E is a
direct summand of F locally at every nonmaximal prime of R.

Corollary 3.5. Suppose that (R,m) is a local domain of depth ≥ 2 which is essentially
of finite type over a field K of characteristic zero. Let d be the dimension of R.
Suppose that E is a rank e submodule of a finitely generated free R-module F . Then
the limit

lim
k→∞

(d + e− 1)!
kd+e−1

λ(H0
m(F k/Ek)) ∈ R

exists. Thus the epsilon multiplicity ε(E) of the module E, defined in [19] as a limsup,
actually exists as a limit.

The example of [3] shows that ε(E) may be an irrational number.
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Proof. The corollary is immediate from Theorem 3.2 and (9). �

Remark 3.6. The conclusions of Corollary 3.5 are valid if K is a perfect field of
positive characteristic and R/m is algebraic over K, by Remark 3.3.

4. Extension to domains of dimension ≥ 2.

In this section, we prove extensions of Theorem 1.1 and Corollary 1.2 to domains
of dimension ≥ 2. Let notation be as in Section 2.

Suppose that R is a domain of dimension d ≥ 2 with a dualizing module. By the
Theorem of Finiteness, Theorem VIII.2.1 (and footnote) [7],

(22) R = Γ(X \ {m},OX) = ∩p∈X\{m}Rp

is a finitely generated R-module, which lies between R and its quotient field. Since
R/R is m-torsion,

(23) λR(R/R) < ∞.

Let m1, . . . ,mα be the maximal ideals of R which lie over m. By our construction,

0 = H1
m(R) = H1

mR
(R) =

α⊕
i=1

H1
miR

(R),

so
H1

miRmi

(Rmi
) = H1

miR
(R)⊗R Rmi

= 0

for 1 ≤ i ≤ α, and thus depth(Rmi
) ≥ 2 for 1 ≤ i ≤ α.

Let F = F ⊗R R and R[F ] =
⊕

k≥0 F
k
, so that F

k ∼= F k ⊗R R for all k. Let

E = RE be the R-submodule of F generated by E. Let R[E] =
⊕

k≥0 E
k

be the
R-subalgebra of R[F ] generated by E.

Let u1, . . . , us be generators of the ideal m. For k ∈ N, let Ẽk be the sheafification
of Ek on X = Spec(R).

There are identities

(24) H0(X \ {m}, Ẽk) = ∩s
i=1(E

k)ui
= Ek :

F
k m∞.

From the exact sequence of cohomology groups

0 → H0
m(Ek) → Ek → H0

m(X \ {m}, Ẽk) → H1
m(Ek) → 0,

we deduce that we have isomorphisms of R-modules

(25) H1
m(Ek) ∼= Ek :

F
k m∞/Ek

for k ≥ 0. The same calculation for F k shows that

(26) H1
m(F k) ∼= F k :

F
k m∞/F k.

From the left exact local cohomology sequence

0 → H0
m(F k/Ek) → H1

m(Ek) → H1
m(F k),

we have that

(27) H0
m(F k/Ek) ∼=

(
Ek :

F
k m∞) ∩ F k

)
/Ek = Ek :F k m∞/Ek.
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Theorem 4.1. Suppose that (R,m) is a local domain of dimension d ≥ 2 which is
essentially of finite type over a field K of characteristic zero (or over a perfect field
K such that R/m is algebraic over K). Suppose that E is a rank e submodule of a
finitely generated free R-module F . Then the limit

(28) lim
k→∞

λ
(
Ek :

F
k m∞/Ek

)
kd+e−1

∈ R

exists.

Proof. Since E
k

:
F

k m∞/E
k

are finitely generated mR-torsion R-modules, we have
that

E
k

:
F

k m∞/E
k ∼=

α⊕
i=1

(
E

k

mi
:
F

k
mi

m∞
i /E

k

mi

)
.

By Theorem 1.1, we have that

lim
k→∞

λRmi

(
E

k

mi
:
F

k
mi

m∞
i /E

k

mi

)
kd+e−1

exists for 1 ≤ i ≤ α. Since for any Rmi
module M we have that

λR(M) = [R/mi : R/m]λRmi
(M),

we conclude that

(29) lim
k→∞

λR(E
k

:
F

k m∞/E
k
)

kd+e−1

exists. We have

E
k

:
F

k m∞ = ∩s
i=1(E

k
)ui

= ∩s
i=1(E

k)ui
= Ek :

F
k m∞.

Consider the short exact sequences

(30) 0 → E
k
/Ek → Ek :

F
k m∞/Ek → E

k
:
F

k m∞/E
k → 0.

Now R[E]/R[E] is a finitely generated R[E]-module, and the support of the R-module
E

k
/Ek is contained in {m} for all k, so there exists a positive integer r such that mr

annihilates R[E]/R[E]. Thus (as in the argument following equation (17) in the proof
of Theorem 3.2), we have that there exists a constant β such that

(31) λR(E
k
/Ek) ≤ βkd+e−2

for all k. The conclusions of the proposition now follow from (29), (31) and (30). �

I thank Craig Huneke, Bernd Ulrich and Javid Validashti for pointing out the
following consequence of Theorem 4.1.

Corollary 4.2. Suppose that (R,m) is a local domain of dimension d ≥ 2 which is
essentially of finite type over a field K of characteristic zero (or over a perfect field
K such that R/m is algebraic over K). Suppose that E is a rank e submodule of a
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finitely generated free R-module F . Suppose that γ = rank(F ) < d + e. Then the
limits

(32) lim
k→∞

λ
(
Ek :F k m∞/Ek

)
kd+e−1

∈ R

and

(33) lim
k→∞

(d + e− 1)!
kd+e−1

λ(H0
m(F k/Ek)) ∈ R

exist. In particular, the epsilon multiplicity ε(E) of E exists as a limit.

Proof. We will establish that the limit (32) exists. We have exact sequences

(34) 0 → Ek :F k m∞/Ek → Ek :
F

k m∞/Ek → Ek :
F

k m∞/Ek :F k m∞ → 0

and inclusions

(35) Ek :
F

k m∞/Ek :F k m∞ = Ek :
F

k m∞/
(
(Ek :

F
k m∞) ∩ F k

)
→ F k :

F
k m∞/F k

for k ≥ 0.
We have

(36) F k :
F

k m∞/F k = F
k
/F k ∼= (R/R)(

k+γ−1
γ−1 ).

Since γ = rank(F ) < d + e, we have

lim
k→∞

λR

(
Ek :

F
k m∞/Ek :F k m∞)
kd+e−1

= 0.

The existence of the limit (32) now follows from (34) and Theorem 4.1. The existence
of the limit (33) is immediate from (32) and (27). �
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