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HÖLDER REGULARITY OF WEAK KAM SOLUTIONS
IN A PRIORI UNSTABLE SYSTEMS

Min Zhou

Abstract. For a priori unstable Hamiltonian systems with two and half degrees of

freedom, there is a continuous path in H1(T2, R) such that for each cohomology class c
in this path, the c-minimal measure is supported on a normally hyperbolic cylinder. In

this paper, we show that the weak KAM solutions for these classes can be parameterized

by the area bounded by the graph of these solutions and obtain the 1
4
-Hölder regularity

of these solutions in the parameter.

1. Introduction

A Hamiltonian system is usually called a priori unstable type if it is a perturbed
coupling of a rotator and a pendulum:

H(x, y, t) = f(y1) + g(x2, y2) + P (x, y, t),

where f , g and P stand for the rotator, the pendulum and the perturbation respec-
tively. In this paper, we assume x = (x1, x2) ∈ T2, y = (y1, y2) ∈ R2, H ∈ Cr(r ≥ 2)
and

1, f + g is a convex function in y, i.e., the Hessian matrix ∂yy(f + g) is positive
definite, finite everywhere, and has superlinear growth in y, (f + g)/‖y‖ → ∞ as
‖y‖ → ∞.

2, g has a non-degenerate saddle critical point (x∗2, y
∗
2) and its stable manifold

coincides with its unstable manifold. Without loss of generality, we assume (x∗2, y
∗
2) =

(0, 0).

3, P is time-1-periodic and small in Cr-topology.

Under Legendre transformation L∗ : H → L, we obtain the Lagrangian

L(x, ẋ, t) = max
y
{〈y, ẋ〉 −H(x, y, t)}.

Here ẋ = ẋ(x, y, t) is implicitly determined by ẋ = ∂H
∂y . We use L : (x, y, t) → (x, ẋ, t)

to denote the coordinate transformation determined by the Hamiltonian H.

As a priori unstable condition is assumed, there is a normally hyperbolic cylinder
invariant for ΦL, the time-1-map of the Lagrange flow. In this case, for each c ∈ P =

Received by the editors August 31, 2010.

75



76 MIN ZHOU

{(c1, 0) : A ≤ c1 ≤ B}, the c-minimal measure is supported on an Aubry-Mather set
in this cylinder. Each of these Aubry-Mather sets determines a pair of weak-KAM
solutions u±c [5].

A natural question would be the regularity of these weak-KAM solutions with
respect to the cohomology class c. However, it appears unclear whether the regularity
exists. In this paper, we find another parameter “area”, one-to-one corresponding to
c, and obtain certain Hölder regularity of these weak-KAM solutions in the parameter.

Let Bε,K denote the ball in the function space Cr({(x, y, t) ∈ T2 × R2 × T : ‖y‖ ≤
K} → R), centered at the origin with radius of ε. We have the following result:

Theorem 1.1. H is assumed a priori unstable. For each large K > 0 and small
a > 0, a small ε > 0 and a residual set Sε,K ⊂ Bε,K exist such that for each P ∈ Sε,K ,
there exists a continuous and one-to-one correspondence σ− ∈ [A′, B′] (resp. σ+ ∈
[A′′, B′′]) → P such that {ū−c(σ−)(x)|{0≤x2≤1−a}} (resp. {ū+

c(σ+)(x)|{a≤x2≤1}}) is 1
4 -

Hölder continuous in σ− (resp. σ+).

This paper is organized as follows. In the section 2, an order-preserving property is
obtained for backward and forward minimal configurations for monotone twist map.
With such order-preserving property, we obtain the regularity of weak-KAM solutions
for monotone twist maps in the section 3. The main result is obtained in the section
4 by using the normally hyperbolic structure of the invariant cylinder. In the last
section, we apply the result to construct Arnold-type diffusion orbits shadowing a
sequence of heteroclinic orbits, the shape of which is different from the shape of the
diffusion orbits constructed in [3].

Let us briefly recall the standard notations and terminologies before our demon-
stration [9]. Let ηc = 〈ηc(x), dx〉 be a closed 1-form with de Rham cohomology class
c = [ηc]. By abusing this notation, we call ηc = 〈ηc(x), ẋ〉 “closed 1-form” also. For
each c ∈ H1(M,R), the c-action of an absolutely continuous curve γ : [a, b] → M is
defined as

Ac(γ) =
∫ b

a

(L− ηc + α(c))(γ(t), γ̇(t), t)dt =
∫ b

a

Lc(γ(t), γ̇(t), t)dt.

For t ∈ R, let [t] ∈ T denote the decimal part of t. For any pair of points (m0, [s]),
(m1, [t]) on M × T, let

Φn
c ((m0, [s]), (m1, [t])) = min

γ

∫ b

a

(L− ηc + α(c))(γ(τ), γ̇(τ), τ)dτ,

where the minimum is taken over all absolutely continuous curve γ : [a, b] →M with
γ(a) = m0, γ(b) = m1 such that [a] = [s], [b] = [t] and the integer part of b− a is n.

Then the Mañé action functional is defined by

Φc((m0, [s]), (m1, [t])) = inf
n

Φn
c ((m0, [s]), (m1, [t])),
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and the barrier function is defined by ([10])

hc((m0, [s]), (m1, [t])) = lim inf
n→∞

Φn
c ((m0, [s]), (m1, [t])).

A curve γ ∈ C1(R,M) is called c-semi-static if

Ac(γ|[s,t]) = Φc((γ(s), [s]), (γ(t), [t]))

for each [s, t] ⊂ R. A curve γ ∈ C1(R,M) is called c-static if

Ac(γ|[s,t]) + Φc((γ(t), [t]), (γ(s), [s])) = 0

for each [s, t] ⊂ R. An orbit X(t) = (γ(t), γ̇(t), t mod 1) is called c-static (semi-
static) if γ is c-static (semi-static). We call the Mañé set Ñ (c) the union of global
c-semi-static orbits, and call the Aubry set Ã(c) the union of global c-static orbits.
In the following we use the symbol Ñs(c) = Ñ (c)|t=s to denote the time s-section of
a Mañé set, and so on.

The concept of c-semi-static curves can be extended to those only defined on R±

(cf. [2]). We call them backward or forward c-semi-static curves and use γ−c (t, x) :
(−∞, 0] → M to denote backward c-semi-static curve with γ−c (0) = x and use
γ+

c (t, x) : [0,+∞) →M to denote forward c-semi-static curve with γ+
c (0) = x. Let Φt

L

be the Lagrangian flow determined by L, let Φt
L(z, τ) be the orbit of the Lagrangian

flow with the initial value z at the time τ . Define

N−(c) = {(z, τ) ∈ TM × T, π ◦ Φt
L(z, τ)|(−∞,0] is c-semi-static},

N+(c) = {(z, τ) ∈ TM × T, π ◦ Φt
L(z, τ)|[0,+∞) is c-semi-static}.

Clearly, both N−(c) and N+(c) cover the configuration manifold in the sense that
πN±(c) = M . The orbits in N±(c) are called backward or forward c-semi-static
orbits respectively.

2. order-preseving property of minimal orbits
for monotone twist maps

Let f : T× R → T× R be an area-preserving and monotone twist diffeomorphism
of cylinder, i.e., if we write f(θ, y) = (θ′, y′), then | ∂2f

∂θ∂y | ≡ 1 and ∂θ′

∂y ≥ d > 0.
Considering a lift of f to the universal cover R2, by abusing of terminology, we
continue to denote f : R2 → R2, f(x, y) = (x′, y′). This map has a global generating
function h : R2 → R such that

y = −∂1h(x, x′), y′ = ∂2h(x, x′),

where ∂1h and ∂2h denote the first partial derivatives of h with respect to x and x′.
It was proved (see [1]) that h satisfies the following properties:

(1) h(x, x′) = h(x+ 1, x′ + 1), for all x, x′ ∈ R.

(2) lim|ξ|→∞ h(x, x+ ξ) = ∞, uniformly in x.

(3) h(x, x′) + h(ξ, ξ′) < h(x, ξ′) + h(ξ, x), if x < ξ, x′ < ξ′.
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(4) If (x̄, x, x′) 6= (ξ̄, ξ, ξ′) are both minimal segments and x = ξ, then (x̄− ξ̄)(x′ −
ξ′) < 0.

Given a sequence X = (· · · , xj , · · · , xk, · · · ) ∈ RZ, we call it minimal configuration
for the generating function h, if for any j < k,

H(xj , · · · , xk) =
k−1∑
i=j

h(xi, xi+1)

≤ H(x∗j , · · · , x∗k)(2.1)

holds for all (x∗j , · · · , x∗k) with xj = x∗j and xk = x∗k. If X ∈ RZ is a minimal
configuration, then ρ(X) = lim|i|→∞ i−1xi exists. The number ρ(X) is called the
rotation number of X. Indeed, if the rotation number is rational p/q, there are
three type of minimal configurations, they correspond to the rotation symbols p/q−,
p/q, p/q+ (see [1]). For each rotation symbol, all Aubry graphs of the minimal
configurations do not intersect each other.

For each rotation number ω, the Aubry-Mather set M̃ω is defined on the cylinder
(x, y) ∈ T × R. Let Mω = πM̃ω where π : T × R → T is the standard projection.
Without causing confusion, we abuse the symbol Mω to denote its lift to the universal
covering of T, call them projected Aubry-Mather set for ω. Obviously, Mω contains
exactly those points through each of which passes a minimal configuration with the
rotation symbol, i.e. if ω = p/q, then the rotation symbol is exactly p/q.

This definition of minimal configuration can be applied to one-sided infinite se-
quence. A sequence (x0, x1, · · · ) ∈ RZ+

is called forward minimal configuration if
(2.1) holds for any 0 ≤ j < k. A sequence (· · · , x−1, x0) ∈ RZ− is called back-
ward minimal configuration if (2.1) holds for any j < k ≤ 0. Therefore, we can
also define the rotation number for each forward (resp. backward) minimal con-
figuration. Each minimal configuration (· · · , xj , · · · , xk, · · · ) determines an orbit
(· · · , (xj , yj), · · · , (xk, yk), · · · ), i.e, f(xi, yi) = (xi+1, yi+1) for any i ∈ Z. We call
it minimal orbit. Clearly, a forward minimal configuration determines a forward
minimal orbit ((x0, y0), (x1, y1), · · · ), the ω-limit set of the forward minimal orbit is
contained in certain Aubry-Mather set. Similarly, a backward minimal configuration
determines a backward minimal orbit, the α-limit set of the backward minimal orbit
is also contained in certain Aubry-Mather set.

Lemma 2.1. Let X = (x0, x1, · · · ), X ′ = (x′0, x
′
1, · · · ) be two forward minimal con-

figurations, x0 = x′0. Assume ρ(X) > ρ(X ′), then ∂1h(x0, x1) < ∂1h(x0, x
′
1), i.e.,

y0 > y′0. The case for the backward minimal configurations is similar.

Proof. As both X and X ′ are forward minimal configurations, they determine forward
minimal orbits, denoted by

fk(x0, y0) = (xk, yk), k = 0, 1, 2 · · · ,

fk(x′0, y
′
0) = (x′k, y

′
k), k = 0, 1, 2 · · · .
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Clearly, we have y0 6= y′0 as ρ(X) 6= ρ(X ′). We consider the Aubry graphs {(k, xk)}∞k=0

and {(k, x′k)}∞k=0 of X and X ′ respectively. If y0 < y′0, we would have x′1 > x1 as f
is monotonically twisting and x′0 = x0. On the other hand, we find that xi > x′i for
sufficiently large i because of ρ(X) > ρ(X ′). Therefore, two Aubry graphs must cross
at least once at some t > 1, t ∈ R+. There are two cases: (t) 6= 0 or (t) = 0. Here (t)
is decimal part of t.

If (t) 6= 0, there is an integer k ≥ 2 such that t ∈ (k, k + 1). We consider two
segments (x0, x1, · · · · · · , xk, x

′
k+1), (x′0, x

′
1, · · · · · · , x′k, xk+1), using the property (3)

of h, we see

H(x0, · · · , xk, x
′
k+1) +H(x′0, · · · , x′k, xk+1)

= H(x0, · · · , xk) + h(xk, x
′
k+1) +H(x′0, · · · , x′k) + h(x′k, xk+1)

< H(x0, · · · , xk) + h(xk, xk+1) +H(x′0, · · · , x′k) + h(xk, xk+1)
= H(x0, · · · , xk, xk+1) +H(x′0, · · · , x′k, x′k+1).

For the segments (x0, · · · , xk, xk+1) and (x′0, · · · , x′k, x′k+1), it implies that at least
one of them is not minimal.

If (t) = 0, i.e., t = k for some integer k ≥ 2 and xk = x′k. Because of the property
(4) of h and (xk−1− x′k−1)(xk+1− x′k+1) < 0, it is impossible that both the segments
(xk−1, xk, x

′
k+1) and (x′k−1, x

′
k, xk+1) are minimal. Hence, there exist x̄k and x̄′k such

that

H(xk−1, x̄k, x
′
k+1) +H(x′k−1, x̄

′
k, xk+1)

<H(xk−1, xk, x
′
k+1) +H(x′k−1, x

′
k, xk+1).

Using xk = x′k, we have

H(xk−1, x̄k, x
′
k+1) +H(x′k−1, x̄

′
k, xk+1)

<H(xk−1, xk, xk+1) +H(x′k−1, x
′
k, x

′
k+1).

We consider the segments (x0, · · · , xk−1, x̄k, x
′
k+1), (x′0, · · · , x′k−1, x̄

′
k, xk+1), similarly,

we have

H(x0, · · · , xk−1, x̄k, x
′
k+1) +H(x′0, · · · , x′k−1, x̄

′
k, xk+1)

=H(x0, · · · , xk−1) +H(xk−1, x̄k, x
′
k+1)

+H(x′0, · · · , x′k−1) +H(x′k−1, x̄
′
k, xk+1)

<H(x0, · · · , xk−1) +H(xk−1, xk, xk+1)

+H(x′0, · · · , x′k−1) +H(x′k−1, x
′
k, x

′
k+1)

=H(x0, · · · , xk−1, xk, xk+1) +H(x′0, · · · , x′k−1, x
′
k, x

′
k+1).

For the segments (x0, · · · , xk−1, xk, xk+1) and (x′0, · · · , x′k−1, x
′
k, x

′
k+1), it also implies

that at least one of them is not minimal.

The contradiction shows that y0 > y′0. �
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Let X = (· · · , xi, · · · ) and X ′ = (· · · , x′i, · · · ) be the minimal configurations with
the rotation number p/q. Thus, we have xi+q = xi + p and x′i+q = x′i + p. We
assume that X < X ′ are two adjacent minimal configurations, i.e. between them
there is no other minimal configuration with the same rotation number, that is,
there is no other minimal configuration X ′′ such that xi < x′′i < x′i. For each
m ∈ (x0, x

′
0) and each integer k > 0, there exists a sequence of k + 1 numbers

Xm,k = (m−k,k,m−k+1,k, · · · ,m0,k) with m−k,k = x−k and m0,k = m which mini-
mizes the action

H(m−k,k, · · · ,m0,k) = min
ξ−k=x−k

ξ0=m

−1∑
i=−k

h(ξi, ξi+1).

By using the argument to prove Lemma 2.1, we see the monotonicity and the bound-
edness

x−i < m−i,k < m−i,k′ < x′−i, ∀ 0 < i < k < k′

and m−i,k > m−i,k′ holds for each i ≤ k′ provided k > k′. Let k →∞, there exists a
sequence of infinitely many numbers Xm = (· · · ,m−i, · · · ,m0) such that

m−i = lim
k→∞

m−i,k.

Because there is no minimal configuration between X and X ′, we see that

m−i − x−i → 0, as i→∞,

and Xm is a backward minimal configuration. Similarly, we can show the existence of
backward minimal configuration X ′

m = (· · · ,m′
−1,m

′
0 = m) originating from m and

approaching X ′ in the sense that

x′−i −m′
−i → 0, as i→∞.

Let us recall the minimal configuration for the rotation symbol p/q− as well as p/q+
[1]. Thus, we call Xm backward minimal configuration with rotation symbol p/q+
and call X ′

m backward minimal configuration with rotation symbol p/q−. These
arguments lead to the following:

Lemma 2.2. If the rotation number is rational ω = p/q and m is not in the projected
Aubry-Mather set, then, originating from m there exists backward minimal configu-
ration Xm = (· · · ,m−1,m0 = m) with rotation symbol p/q+ as well as backward
minimal configuration X ′

m = (· · · ,m′
−1,m

′
0 = m) with rotation symbol p/q−, and

∂2h(m′
−1,m) < ∂2h(m−1,m).

3. Regularity of weak KAM solutions
for monotone twist maps

Given a cohomology class c ∈ H1(M,R), there is a backward (resp. forward) c-
weak KAM solution ([5]), denoted by u−c (resp. u+

c ). It is also a viscosity solution of
the Hamiltonian-Jacobi equation

(3.2) H(t, x, ∂xu
−
c + c) + ∂tu

−
c = α(c),

(resp. −H(t, x, ∂xu
+
c + c)− ∂tu

+
c = −α(c)).
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Such weak KAM solution u−c (resp. u+
c ) is also a fixed point of so called Lax-Oleinik

operator on C0(M,R):

T−t,t′u(x, t
′) = inf

{
u(γ(t), t) +

∫ t′

t

(L− ηc + α(c))(dγ(τ), τ)dτ
}

(resp. T+
t,t′u(x, t) = sup

{
u(γ(t′), t′)−

∫ t′

t

(L− ηc + α(c))(dγ(τ), τ)dτ
}

)

where t′ > t, the infimum is taken over all absolutely continuous curves such that
γ(t′) = x (resp. γ(t) = x). The weak KAM solution u−c as well as u+

c is uniquely
determined up to a constant provided the minimal measure is uniquely ergodic.

As u−c (resp. u+
c ) is a fixed point of the Lax-Oleinik operator, it satisfies the

following properties [4]:

(1) u±c are Lc-dominated, i.e.,

u±c (x′, [t])− u±c (x, [s]) ≤ Φc((x, [s]), (x′, [t])),

for any (x, [s]), (x′, [t]) ∈M × T. We use the notation u±c ≺ Lc.

(2) For every (x, s) ∈ M × R, there exists a curve γ−c : (−∞, s) → M (resp.
γ+

c : (s,∞) →M) with γ−c (s) = x (resp. γ+
c (s) = x) such that

u−c (x, [s])− u−c (γ−c (t), [t]) =
∫ s

t

(L− ηc + α(c))(γ−(τ), γ̇−c (τ), τ)dτ

(resp. u+
c (γ+(t), [t])− u+

c (x, [s]) =
∫ t

s

(L− ηc + α(c))(γ+
c (τ), γ̇+

c (τ), τ)dτ)

for any t < s (resp. t > s). The curve γ−c (t) and γ+
c (t) are called the calibrated curves

of backward c-weak KAM solution and forward c-weak KAM solution respectively.

Each weak KAM solution u−c is a Lipschitz function provided the Hamiltonian is
assumed positive definite, thus it is differentiable almost everywhere. Starting from
the point (x, y) = (x, ∂xu

−
c (x, 0)+ c), a backward c-minimal orbit dγ−c (t) : (−∞, 0] →

TM will approach to the certain Mather set M̃(c) corresponding to the cohomology
class c, provided u−c is differentiable at (x, 0). In this sense, we say that M̃(c) is
associated to u−c . Obviously, ∂xu

−
c (x, 0)+c and γ̇−c (0) are conjugate via the Legendre

transformation. The similar result is valid for u+
c and γ̇+

c .

Let us consider the case that M = T in this section. By a result of Moser [12], for
each monotone twist map there exists a positive definite periodic Hamiltonian system
with one and half degrees of freedom such that the time-1-map of the Hamiltonian
flow is exactly the twist map. We have

Lemma 3.1. For each x ∈ T, there is at least one backward (resp. forward) c-semi-
static curve γ−c (t, x) (resp. γ+

c (t, x)) such that γ−c (0, x) = x (resp. γ+
c (0, x) = x).
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Proof. Obviously, every calibrated curve γ−c (t) (resp. γ+
c (t)) of backward (resp. for-

ward) c-weak KAM solution with γ−c (0) = x (resp. γ+
c (0) = x) is corresponding

backward (resp. forward) c-semi-static curve. �

As both the α-limit set of dγ−c and the ω-limit set of dγ+
c are in the Aubry set, the

set ⋃
x∈M

{
x,
dγ±c (0, x)

dt

}
are the unstable and stable set of the c-Mather set respectively. Clearly, if c-minimal
measure is uniquely ergodic, we have

W±
c = L−1(

⋃
x∈M

{
x,
dγ±c (0, x)

dt

}
) = Graph(dxu

±
c (x, 0) + c)

holds almost everywhere. Let ū±c (x) = u±c (x, 0) + cx, x ∈ [0, 1], here [0, 1] is a basic
region for the covering space of T, then

W±
c = Graph(dxū

±
c (x)) almost everywhere.

We call ū−c (x), ū+
c (x) the backward generating function and the forward generating

function of W−
c and W+

c respectively.

Let Lβ be the Fenchel-Legendre transformation : H1(M,R) → H1(M,R) deter-
mined by

c ∈ Lβ(ω) iff 〈c, ω〉 = βL(ω) + αL(c) holds.
In the case M = T, we have canonical identification H1(T,R) = R and H1(T,R) = R.
The following facts are proved in [8] or [2]:

• If ω ∈ H1(T,R) is irrational, then Lβ(ω) ∈ H1(T,R) is one point, denoted by
cω = Lβ(ω).

• If ω = p/q, then Lβ(p/q) is reduced to one point if and only if π(Mp,q) = T×T.
In the generic case, there is only one p/q-minimal periodic orbit and

Lβ(p/q) = [cp/q−, cp/q+], −∞ < cp/q− < cp/q+ <∞.

When Lβ(p/q) is an interval, the projected Aubry-Mather set in R can be expressed
in the form

Mp/q =
∞⋃

i=−∞
Mi

where each Mi = [x−i , x
+
i ] is a point or an interval, x+

i < x−i+1. In generic case, each
x−i = x+

i = xi and Mp/q|[0,1) contains q points, i.e. there is only one minimal periodic
orbit.

Let us consider the set of backward generating functions {ū−c (x)}c∈R. The study
of the set {ū+

c (x)}c∈R is similar. By adding a constant, we can assume ū−c (0) = 0
for each c ∈ R. First of all, we study the set of backward generating functions
{ū−c (x)}c∈[cp/q−,cp/q+].
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Recall Lemma 2.2. Let ū−p/q−, ū−p/q+ be the functions such that

∂xū
−
p/q−(m) = ∂2h(m′

−1,m),

∂xū
−
p/q+(m) = ∂2h(m−1,m),

and ū−p/q±(0) = 0. We see that ū−p/q+ − ū−p/q− monotonously increases with respect
to the variable by the fact that ∂2∂1h < 0. Indeed, these two functions generate all
weak KAM solutions for each c ∈ [cp/q−, cp/q+] in the following sense.

Lemma 3.2. Assume there is only one minimal periodic configuration for the rotation
number p/q. For each c ∈ (cp/q−, cp/q+), let ū−c (x) = u−c (0, x) + cx where u−c (t, x) is
the weak KAM solution of the equation 3.2. Then,

1, there exists a unique mi = mi(c) ∈ (xi, xi+1) as well as constants a−i , a
+
i for

each i such that mi monotonously increases respect to c, mi(c) → xi as c → cp/q−,
mi(c) → xi+1 as c→ cp/q+ and

ū−c (x) =ū−p/q+(x) + a+
i , ∀ x ∈ [xi,mi]

ū−c (x) =ū−p/q−(x) + a−i , ∀ x ∈ [mi, xi+1]

In particular, ū−cp/q±
= ū−p/q± + constant holds for all x ∈ R;

2, if we set ū−c (0) = 0 for each c, then ū−c (x) ≤ ū−c′(x) for all x ∈ (0,∞) and
ū−c (x) ≥ ū−c′(x) for all x ∈ (−∞, 0) provided c < c′ ∈ (cp/q−, cp/q+).

Proof. Let X and X ′ be the minimal configuration with rotation symbol p/q passing
through x0 and x1 respectively. Clearly, they are adjacent minimal configurations.
Originating from each m ∈ (x0, x1), there are two backward minimal configurations
Xm and X ′

m which approach to X and X ′ respectively. We define

Ac(Xm) = lim
k→∞

( −1∑
−kq

h(mi,mi+1)− (m−m−kq)c+ kqα(c)
)
,

for each c ∈ [cp/q−, cp/q+]. Ac(X ′
m) is defined in similar way. If we write X =

(· · · , ζi, · · · , ζ0 = x0, · · · ), X ′ = (· · · , ζ ′i, · · · , ζ ′0 = x1, · · · ), then m−i − ζ−i → 0 and
ζ ′−i −m′

−i → 0 as i→∞. Thus we find that

Ac(X ′
m)−Ac(Xm) =

−1∑
−∞

(h(m′
i,m

′
i+1)− h(mi,mi+1))(3.3)

+ c(x1 − x0).

It is easy to see that for each c ∈ (cp/q−, cp/q+)

Ac(X ′
m)−Ac(Xm) > 0, as m↘ x0;

Ac(X ′
m)−Ac(Xm) < 0, as m↗ x1.

Indeed, the quantity Ac(X ′
m) − Ac(Xm) is monotonously decreasing in m in the

interval (x0, x1). To see it, we note that the Aubry graph of X ′
m intersects the
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Aubry graph of Xξ if ξ > m. If they intersect each other at s ∈ (−i,−i+ 1), then we
have

h(m′
−i, ξ−i+1) + h(ξ−i,m

′
−i+1) < h(ξ−i, ξ−i+1) + h(m′

−i,m
′
−i+1).

We define two configurations

Xm∨ ξ = (· · · ,m′
−j , · · · ,m′

−i, ξ−i+1, · · · , ξ0 = ξ),

and
Xm∧ ξ = (· · · , ξ−j , · · · , ξ−i,m

′
−i+1, · · · ,m′

0 = m).
If they intersect each other at −i, i.e. ξ−i = m′

−i, there exists a < ξ−i < a′ such that

H(ξ−i−1, a,m
′
−i+1) +H(m′

−i−1, a
′, ξ−i+1)

<H(ξ−i−1, ξ−i, ξ−i+1) +H(m′
−i−1,m

′
−i,m

′
−i+1).

In this case, we define the two configurations

Xm∨ ξ = (· · · ,m′
−j , · · · ,m′

−i−1, a
′, ξ−i+1, · · · , ξ0 = ξ),

and
Xm∧ ξ = (· · · , ξ−j , · · · , ξ−i−1, a,m

′
−i+1, · · · ,m′

0 = m).
By the definition we then have

(Ac(X ′
m)−Ac(Xm))− (Ac(X ′

ξ)−Ac(Xξ))

>Ac(Xm∧ ξ)−Ac(Xm) +Ac(Xm∨ ξ)−Ac(X ′
ξ)

≥ 0.

The second inequality comes from the observation that Xm∧ ξ is the configuration
originating from m and approaching X which is a minimal configuration, and Xm∨ ξ

is the configuration originating from ξ and approaching X ′ which is again a minimal
configuration. This verifies the decreasing monotonicity in m. Therefore, for each
c ∈ (cp/q−, cp/q+) there is exactly one point m ∈ (x0, x1) such that

Ac(X ′
m)−Ac(Xm) = 0,

thus we can write mc = m(c) and see its increasing monotonicity in c if we note
further that Ac(X ′

m)−Ac(Xm) monotonously increases with respect to c (see (3.3)).

Therefore, for c ∈ (cp/q− , cp/q+) we have Ac(Xm) < Ac(X ′
m) if m ∈ (x0,mc)

and Ac(Xm) > Ac(X ′
m) if m ∈ (mc, x1). By the definition of weak KAM solution,

(m,∂ū−c (m)) uniquely determines a backward minimal configuration X along which
the action Ac(X) reaches the minimum provided u−c is a weak KAM solution and
differentiable at m. Clearly, this minimal configuration is exactly Xm if m ∈ (x0,mc),
is X ′

m if m ∈ (mc, x1). This verifies the expression of ū−c for c ∈ (cp/q−, cp/q+). Let
c→ cp/q±, it is obvious that ū−c → ū−p/q±.

Indeed, we have

Acp/q−(X ′
m)−Acp/q−(Xm) → 0, as m↘ x0;

Acp/q+(X ′
m)−Acp/q+(Xm) → 0, as m↗ x1.

Indeed, by letting σkX
′
m = (· · · , (σkm

′)0 = m′
−k, · · · , (σkm

′)k = m′
0 = m) be the

shift of X ′
m, we see that σkX

′
m approaches to a minimal homoclinic configuration as
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m → x0 and k → ∞. This minimal configuration is in the Aubry set for c = cp/q−.
Similarly, σkXm approaches another minimal homoclinic configuration as m → x1

and k → −∞. It is in the Aubry set for c = cp/q+.

To obtain the monotonicity of ū−c in c, we observe two facts, the first one is that
∂xū

−
p/q+ > ∂xū

−
p/q− whenever both exist, the second one is that mc monotonously

increases in c. Therefore, we obtain that

∂xū
−
c ≤ ∂xū

−
c′ a.e. whenever c < c′.

This completes the proof of the second part. �

Let C0([0, 1],R) be the space of continuous functions equipped with supremum
norm

‖ū−c − ū−c′‖ = max
x∈[0,1]

|ū−c (x)− ū−c′(x)|.

We have:

Theorem 3.1. The set of functions {ū−c : c ∈ R} can be parameterized by some
parameter σ, so that the map σ → ū−c(σ) is 1

2 -Hölder regular in σ.

Proof. Note that each cohomology class c uniquely determines a rotation number
ωc = L−1

β (c) for monotone twist map and c > c′ if ωc > ωc′ . According to Lemma
2.1, we have

∂xū
−
c (x) > ∂xū

−
c′(x) a.e, if ωc > ωc′ .

If we set ū−c (0) = 0 for each c, we have ū−c > ū−c′ for x > 0 if ωc > ω′c and if
cp/q+ ≥ c > c′ ≥ cp/q−, in virtue of Lemma 3.2, we find that ū−c (x) ≥ ū−c′(x) for
x > 0, moreover, there exists x ∈ (0, 1] such that ū−c (x) > ū−c′(x).

We arbitrarily choose one function ū−0 corresponding to a cohomology class c0 and
parameterize another ū−σ = ū−c(σ) by the algebraic area between graphū−σ and graphū−0
in [0, 1],

σ =
∫ 1

0

(ū−σ (x)− ū−0 (x))dx.

Obviously, there exists one-to-one and continuous correspondence between σ and c
although we do not know whether some regularity exists if we think σ as a function
of c, or vice versa. Anyway, we can think ū−σ as a map to function space C0 equipped
with supremum norm ū− : R → C0([0, 1],R),

‖ū−σ1
− ū−σ2

‖ = max
x∈[0,1]

|ū−σ1
(x)− ū−σ2

(x)|.

Straight forward calculation shows

|σ1 − σ2| =
∣∣∣ ∫ 1

0

(ū−σ1
(x)− ū−σ2

(x))dx
∣∣∣

≥ 1
2|Cσ1 ± Cσ2 |

‖ū−σ1
− ū−σ2

‖2,
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i.e,

‖ū−σ1
− ū−σ2

‖ ≤
√

2|Cσ1 ± Cσ2 |σ1 − σ2|
1
2 .

Here the constant Cσ is the Lipschitz constant for ū−σ . �

4. Regularity of weak KAM solutions
in a priori unstable case

This section aims at the regularity of those weak KAM solutions for which the
associated Mather sets are contained in a two dimensional cylinder.

Let Φt, Φt
f+g and Φt

g denote the Hamiltonian flow determined by H, f + g and
g respectively, let Φ, Φf+g and Φg be their time-1-maps accordingly. For the map
Φg, the origin in the two dimensional space (x2, y2) ∈ T × R is a hyperbolic fixed
point, its stable and unstable manifolds are smooth curves, denoted by Γs

0 and Γu
0

respectively. For the map of Φf+g, the cylinder Σ0 = T × R × {(x2, y2) = (0, 0)} is
a normally hyperbolic invariant manifold, its stable (unstable) manifold has the form
W s,u

Σ0
= T × R × Γs,u

0 , foliated into a family of invariant fibers W s,u
Σ0

= ∪z∈Σ0Γ
s,u
0,z in

which Γs,u
0,z = {z} × Γs,u

0 .

As the a priori unstable condition is assumed, it follows from the fundamental
theorem of normally hyperbolic invariant manifold [6] that

Theorem 4.1. For any K > 0, there is ε0 = ε0(K) > 0 such that if ‖P‖Cr ≤ ε0
in the region {|y1| ≤ K} then the map Φ has an invariant Cr−1-manifold Σ with the
properties:

1, it is a small deformation of manifold Σ0||y1|≤K

Σ = {x1, y1, x2(x1, y1), y2(x1, y1) : x1 ∈ T1, y1 ∈ [−K,K]},
and is also normally hyperbolic for Φ, its locally invariant stable and unstable manifold
are denoted by W s

Σ and Wu
Σ respectively.

2, W s,u
Σ has a foliation of stable (unstable) fibers W s,u

Σ = ∪z∈ΣΓs,u
z . The points of

Γu
z are characterized by sharp backward asymptoticity towards z, the points of Γs

z are
characterized by sharp forward asymptoticity towards z. The laminae ∪z∈ΣΓs,u

z for Φ
are Cr−1 near ∪z∈Σ0Γ

s,u
0,z for Φf+g.

Let M̄ = T × 2T be the covering space of M = T2, i.e. x2 ∈ [0, 2) modulus 2. In
T ∗M̄ , the life of Σ has two connected components, one is in a small neighborhood
of {x2 = 0}, denoted by Σ̄, another one is in a small neighborhood of {x2 = 1},
denoted by Σ̄′. Similarly, the life of each point z ∈ Σ and the associated fiber Γs,u

z

have their two copies, denoted by z̄, z̄′, Γs,u
z̄ and Γs,u

z̄′ respectively. The unstable fibre
Γu

z̄ originates form Σ̄ and extends to the right, the stable fiber Γs
z̄′ originates form Σ̄′

and extends to the left. For suitably small a > 0, there exists 0 < ε < ε0 such that if
‖P‖Cr ≤ ε on the region {|y1| ≤ K}, Γu

z̄ keep horizontal in the region {x2(x1, y1) ≤
x2 ≤ 1− a} and Γs

z̄′ keep horizontal in the region {a ≤ x2 ≤ x2(x1, y1) + 1}.
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As the manifold Σ can be considered as the image of a map ψ : Σ0 → T2 × R2,
Σ = {x1, y1, x2(x1, y1), y2(x1, y1)}, this map induces a 2-form ψ∗ω on Σ0,

ψ∗ω = (1 +
∂(y2, x2)
∂(y1, x1)

)dy1 ∧ dx1,

here ω is canonical 2-form. Since the second de Rham co-homology group of Σ0 is
trivial, by using Moser’s argument on the isotopy of symplectic form [11], we find that
there exists a diffeomorphism ψ1 on Σ0|{|y1|≤K} such that

(ψ ◦ ψ1)∗ω = dy1 ∧ dx1.

Since Σ is invariant for Φ and Φ∗ω = ω, we obtain(
(ψ ◦ ψ1)−1 ◦ Φ ◦ (ψ ◦ ψ1)

)∗
dy1 ∧ dx1 = dy1 ∧ dx1.

Note that φ = ψ ◦ ψ1 : Σ0 → Σ is a small perturbation of identity. Consequently,
(ψ ◦ ψ1)−1 ◦ Φ ◦ (ψ ◦ ψ1) is monotonously twist.

As the second de Rham cohomology group of a suitably small neighborhood of Σ0

is trivial also, both ψ and ψ1 can be smoothly extended to the neighborhood of Σ0

so that (
(ψ ◦ ψ1)−1 ◦ Φ ◦ (ψ ◦ ψ1)

)∗
ω = ω.

It is shown in [3] that there is a channel S = {(c1, c2) ∈ H1(M,R) : c1 ∈ R, A <
c1 < B, a(c1) ≤ c2 ≤ b(c1),−∞ < a(c1) < 0 < b(c1) <∞}, such that, if c ∈ intS, the
Mañé set is contained in LΣ.

The following estimation is in the sense that we pull it back to the standard cylinder
by φ ∈ diff(Σ0,Σ), and denote the perturbed generating functions still by ū±c .

For each c ∈ IntS, as it was studied in [3], the corresponding Aubry-Mather set lies
in the cylinder. Thus, restricted on the universal covering of Σ0, we have y1 = ∂x1 ū

−
c

and y2 = ∂x2 ū
−
c = 0 almost everywhere. Without loss of generality, we assume

ū−c (0, 0) = 0. We choose a path P = {c = (c1, 0) : A ≤ c1 ≤ B} ⊂ S. By choosing the
parameter σ as in Theorem 3.1, there exists a one-to-one correspondence between c1
and σ. Clearly, a constant C1 = C1(K) > 0 exists such that

‖ū−σ (x1, 0)− ū−σ′(x1, 0)‖ ≤ C1|σ − σ′| 12 ,

where
‖ū−σ (x1, 0)− ū−σ′(x1, 0)‖ = max

x1∈[0,1]
|ū−σ (x1, 0)− ū−σ′(x1, 0)|

and

σ − σ′ =
∫ 1

0

(ū−σ (x1, 0)− ū−σ′(x1, 0))dx1.

Theorem 4.2. The set of functions {ū−c (x)}c∈P can be parameterized by σ so that
restricted in {0 ≤ x2 ≤ 1− a}, {ū−σ } is 1

4 -Hölder continuous in σ.
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Proof. Recall the proof of Theorem 3.1, there exist upper and lower bound for σ:
A′ ≤ σ ≤ B′ so that each c ∈ P corresponds to some σ ∈ [A′, B′]. Let us establish
the lemma first:

Lemma 4.1. For σ, σ′ ∈ [A′, B′] with |σ − σ′| < 1
16 , let

D =
{
x1 ∈ [0, 1]

∣∣∣ |∂x1 ū
−
σ (x1, 0)− ∂x1 ū

−
σ′(x1, 0)| > |σ − σ′| 12

}
,

then the Lebesgue measure of D is bounded by m(D) < 2|σ − σ′| 14 .

Proof. As we set ūσ(0, 0) = 0 for each σ, straightforward calculation shows

σ − σ′ =
∫ 1

0

(ū−σ (x1, 0)− ū−σ′(x1, 0))dx1

=
∫ 1

0

∫ x1

0

(∂x1 ū
−
σ (s, 0)− ∂x1 ū

−
σ′(s, 0))dsdx1

=
∫ 1

0

(1− s)(∂x1 ū
−
σ (s, 0)− ∂x1 ū

−
σ′(s, 0))ds.

Let D1 = D ∩ [0, 1− |σ − σ′| 14 ], we have

m(D) ≤ m(D1) + |σ − σ′| 14 .
By the way of defining σ, we have

∂x1 ū
−
σ (x1, 0)− ∂x1 ū

−
σ′(x1, 0) ≥ 0 a.e.

if σ > σ′, thus,

σ − σ′ >

∫
D1

(1− s)(∂x1 ū
−
σ (s, 0)− ∂x1 ū

−
σ′(s, 0))ds

> m(D1)|σ − σ′| 34 .

Thus, we have m(D) < 2|σ − σ′| 14 . �

This lemma implies that the existence of a points x∗1 in each interval [a, b] ⊂ [0, 1]
with the property

|∂x1 ū
−
σ (x∗1, 0)− ∂x1 ū

−
σ′(x

∗
1, 0)| ≤ |σ − σ′| 12 .

provided m([a, b]) ≥ 2|σ − σ′| 14 .

Given σ, σ′ ∈ [A′, B′] with |σ − σ′| < 1
16 , we assume that both ū−σ and ū−σ′

are differentiable at x∗ = (x∗1, x
∗
2) ∈ {0 ≤ x2 ≤ 1 − a}. Let y = ∂xū

−
σ (x∗) and

y′ = ∂xū
−
σ′(x

∗). Thus, by Theorem 4.1, there exist exactly two points ẑ, ẑ′ in the
cylinder such that z = (x∗, y) ∈ Γu

ẑ and z′ = (x∗, y′) ∈ Γu
ẑ′ . As they are in the

cylinder, we can write ẑ = (x̂1, 0, ŷ1, 0) and ẑ′ = (x̂′1, 0, ŷ
′
1, 0).

Thanks to Lemma 4.1, there exist two points zξ = (ξ, 0, yξ, 0) and z′ξ = (ξ, 0, y′ξ, 0)
in the cylinder such that |ξ − x̂1| ≤ 2|σ − σ′| 14

yξ = ∂x1 ū
−
σ (ξ, 0), y′ξ = ∂x1 ū

−
σ′(ξ, 0),
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and
|yξ − y′ξ| ≤ |σ − σ′| 12 .

The unstable fiber Γu
zξ

(resp. Γu
z′ξ

) intersects the hyperplane {x2 = x∗2} at zζ = (xζ , yζ)
(resp. z′ζ = (x′ζ , y

′
ζ)), where xζ = (ζ, x∗2) and x′ζ = (ζ ′, x∗2). Let γ1 = Γu

zξ
|[zξ,zζ ] and

γ2 = Γu
z′ξ
|[z′ξ,z′ζ ],

ū−σ (xζ)− ū−σ′(x
′
ζ) =ū−σ (ξ, 0)− ū−σ′(ξ, 0)

+
∫

γ1

ydx−
∫

γ2

ydx.

By the theorem of normally hyperbolic manifold, the unstable (stable) fiber Cr−1-
smoothly depends on the base point. Therefore, we have∣∣∣ ∫

γ1

ydx−
∫

γ2

ydx
∣∣∣ = O(|σ − σ′| 12 ).

In virtue of Theorem 3.1, we see that there is a positive constant C3 such that

|ū−σ (xζ)− ū−σ′(x
′
ζ)| ≤ C3|σ − σ′| 12 .

To complete the proof, we claim that

max{‖xζ − x∗‖, ‖x′ζ − x∗‖} = O(|σ − σ′| 14 ).

Towards this goal, we recall a fact that the unstable manifold of Σ is invariantly
foliated by unstable fiber Wu

Σ = ∪z∈ΣΓu
z . Since the 3-dimensional manifold Wu

Σ inter-
sects the hyperplane x2 = constant transversally, we obtain a map FH : Wu

Σ |x2=0 →
Wu

Σ |x2=x∗2
by defining F (z) ∈ Γu

z |x2=x∗2
. Clearly, for the map Φf+g, Ff+g is a trans-

lation and the coordinate x1 keeps constant. By Theorem 4.1, the foliation into
unstable fiber is permanent for the map ΦH , the laminae ∪z∈ΣΓs,u

z for ΦH are Cr−1

near ∪z∈Σ0Γ
s,u
0,z for Φf+g. It implies the tangent map dFH is close to identity provided

r ≥ 2. This verifies our claim.

Therefore, we obtain

‖ū−σ (x1, x2)− ū−σ′(x1, x2)‖C0({0≤x2≤1−a},R) ≤ C|σ − σ′| 14

for σ, σ′ ∈ [A′, B′] with |σ − σ′| suitably small. �

From the proof, we see that the parametrization σ → c(σ) depends on the family
of ū−c , we use the symbol σ− to specify it for backward weak-KAM solutions. Simi-
larly, area parameter σ+ ∈ [A′′, B′′] can be also introduced for ū+

c , and the 1
4 -Hölder

regularity exists in σ+. It is not clear whether σ−(c) = σ+(c). Anyway, we complete
the proof of Theorem 1.1.

Remark 1: By using the modulus continuity of Peierl’s barrier function obtained
in [7], we find that, restricted on the invariant cylinder, the Hausdorff dimension of
the barrier function set is not larger than 2. But we don’t know, in this way, how to
obtain the Hausdorff dimension estimate when they are treated as functions defined
on two dimensional configuration space.
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Remark 2: The result in this paper can be extended to the case that the Hamiltonian
g has arbitrary k degrees of freedom provided (x, y) = 0 is a hyperbolic fixed point
supporting a minimal measure. There is a neighborhood of the origin where the stable
and unstable manifolds keep horizontal. Under small perturbations to f + g, a two-
dimensional cylinder still exists. Therefore, the regularity is obtained in the same
way if we restrict ourselves in a suitable neighborhood of the cylinder. We can obtain
the regularity by noticing the fact that a uniform upper bound T exists such that
Φ±t

H (z) stays in this neighborhood for any t ≥ T and any z provided it is a forward
(backward) c-minimal orbit for c ∈ P.

5. Application

By the regularity obtained above, one immediately obtains the genericity of Arnold
diffusion in a priori unstable systems by following the way of [3]. Different from the
diffusion orbit obtained in [3], the diffusion orbit obtained here shadows a sequence
of heteroclinic orbits. It was claimed in [13].

Indeed, by the regularity of the weak-KAM solutions, we obtain immediately the
regularity of the barrier functions Bc,e2(x) for the co-homology class c ∈ P with
σ−(c) ∈ [A′, B′] and σ+(c) ∈ [A′′, B′′], it measures the limit infimum of the action
along each curve passing through x and homoclinic to M(c) in the covering space M̄ .
Here Bc,e2(x) is defined as well as in [3],

Bc,e2(x) = inf{hc,e2(m0, x,m1)− hc,e2(m0,m1) : m0,m1 ∈M0(c)},

hc,e2(m0, x,m1) = lim inf
k1→∞
k2→∞

inf
γ(−k1)=m0

γ(0)=x
γ(k2)=m1

[γ]2 6=0

∫ k2

−k1

(L− ηc)(dγ(t), t)dt+ (k1 + k2)α(c),

hc,e2(m0,m1) = lim inf
k→∞

inf
γ(0)=m0
γ(k)=m1
[γ]2 6=0

∫ k

0

(L− ηc)(dγ(t), t)dt+ kα(c).

For the covering of the configuration manifold M̄ = T× 2T introduced in the last
section, there are two lifts of the invariant cylinder Σ, denoted by Σ̄, Σ̄′ respectively.
Each lift of orbits homoclinic to Σ turns out to be heteroclinic orbit connecting Σ̄ to
Σ̄′ or vice versa. We consider those orbits originating from Σ̄ and approaching to Σ̄′.
Among which the minimal heteroclinic orbit corresponds to the minimal point of the
function

Bc(σ±),e2(x) = ū−c(σ−)(x)− ū+
c(σ+)(x).

We call it barrier function, it is introduced in [3], somewhat different from the barrier
function introduced by Mather [10]. Recall the parametrization σ− ∈ [A′, B′] (resp.
σ+ ∈ [A′′, B′′]) → c = (c1(σ±), 0) ∈ P with c1 ∈ [A,B], we have
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Theorem 5.1. Given A < B, there exists C5 > 0 such that

|Bc(σ±),e2(x)−Bc(σ′±),e2(x)| ≤ C5(|σ− − σ′−| 14 + |σ+ − σ′+| 14 )

holds for each x ∈M\{|x2| ≤ a}, provided σ−, σ′− ∈ [A′, B′], σ+, σ′+ ∈ [A′′, B′′] and
|σ± − σ′±| is suitably small.

Consequently, the Hausdorff dimension of the set

Bσ = {Bc(σ±),e2 |x∈M\{|x2|≤a} : σ− ∈ [A′, B′], σ+ ∈ [A′′, B′′]}.

is finite:

DH(Bσ) ≤ 8.

This finiteness of the Hausdorff dimension guarantees that genericity of transition
chain (see [3]):

Let c = (c1, 0), c′ = (c′1, 0), transition chain Γ : [0, 1] → P is defined by Γ(τ) =
((1 − τ)c1 + τc′1, 0). For each τ ∈ [0, 1], Γ(τ) satisfies the following condition: there
is a small number δτ > 0 such that π1(N0(Γ(τ), M̄))\(A0(Γ(τ)) + δτ ) is non-empty
and totally disconnected. Here N0(Γ(τ), M̄) denotes the Mañé set with respect to the
covering space π1 : M̄ →M .

Indeed, Ã0(Γ(τ)) is the image of the Aubry-Mather set in the cylinder under
the Legendre transformation L and (A0(Γ(τ)) + δτ ) ⊂ {x : |x2| ≤ a}. Thus,
π1(N0(Γ(τ), M̄))\(A0(Γ(τ)) + δτ ) contains exactly the minimal points of the bar-
rier function in the region {x : |x2| > a}. Clearly, this set is totally disconnected in
generic case, one obtains it immediately from the finiteness of the Hausdorff dimension
(see Section 7 in [3]).

Therefore, the conditions required in the Theorem 5.1 in [3] are satisfied, (one
needs not to consider c-equivalence here). By applying this theorem, we obtain:

Theorem 5.2. Given two arbitrarily numbers A < B and assume H satisfies the
above conditions, then there exists a small number ε > 0, a large number K > 0 and
a residual set Sε,K ⊂ Bε,K such that for each P ∈ Sε,K there exists an Arnold-type
orbit of the Hamiltonian flow which connects the region with y1 < A to the region
with y1 > B.
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