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(DISCRETE) MORSE THEORY ON CONFIGURATION SPACES

Francesca Mori and Mario Salvetti

1. Introduction

Classical Configuration Spaces in Rd (sometimes written as F (n, Rd)) are defined
as the set of ordered n−tuples of pairwise different points in Rd. Taking coordinates
in (Rd)n = Rnd

xij , i = 1, . . . , n, j = 1, . . . , d,

one has
F (n, Rd) = Rnd \ ∪i 6=j H

(d)
ij ,

where H
(d)
ij is the codimension-d subspace

∩k=1,...,d {xik = xjk}.

So, the latter subspace is the intersection of d hyperplanes in Rnd, each obtained by
the hyperplane Hij = {x ∈ Rn : xi = xj}, considered on the k−th component in
(Rn)d = Rnd, k = 1, . . . , d.

By a Generalized Configuration Space (for brevity, simply a Configuration Space)
we mean an analog construction, which starts from any Hyperplane Arrangement A
in Rn. For each d > 0, one has a d−complexification A(d) ⊂ Rnd of A, which is given
by the collection {H(d), H ∈ A} of the d-complexified subspaces. The configuration
space associated to A is the complement to the subspace arrangement

M(d) = M(A)(d) := (Rn)d \
⋃

H∈A
H(d) .

For d = 2 one has the standard complexification of a real hyperplane arrangement.
There is a natural inclusion M(d) ↪→ M(d+1) and the limit space is contractible (in
case of an arrangement associated to a reflection group W, the limit of the orbit space
with respect to the action of W gives the classifying space of W ; see [2]).

The main result of this paper is the explicit construction of a minimal CW-complex
for the configuration space M(A)(d), for all d ≥ 1. That is, we explicitly produce a
CW -complex having as many i-cells as the i-th Betti number Bi of M(A)(d), i ≥ 0.

For d = 1 the result is trivial, since M(1) is a disjoint union of convex sets (the
chambers). The analog result for d = 2 was found in [12] (see also [16], [3]), after
the proof that the complement to the arrangement is a minimal space ([5, 14]). For
d > 2 the configuration spaces are simply-connected, so by general results they have
the homotopy type of a minimal CW -complex. Nevertheless, having explicit ”combi-
natorial” complexes is useful in order to produce geometric bases for the cohomology.
In fact, we give explicit bases for the homology (and cohomology) of M(d+1) which we
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call (d)-polar bases (see below). As far as we know, there is no other precise descrip-
tion of a geometric Z-basis in the literature, except for some particular arrangements,
in spite of the fact that the Z-module structure of the homology is known: it derives
from a well known formula in [9] that such homology depends only on the intersection
lattice of the d-complexification A(d), and such lattice is the same for all d ≥ 1.

The main tool which we use is discrete Morse theory for CW -complexes, as intro-
duced in [6, 7]. Starting from the previous explicit construction in [2] of a non-minimal
CW -complex S(d), which has the homotopy type of M(d+1), we construct an explicit
combinatorial gradient vector field on S(d) and we give a precise description of the
critical cells. One finds that critical cells live in dimension id, for i = 1, . . . , n′, where
n′ is the rank of the arrangement A (n′ ≤ n).

Notice that the proof of minimality, in case d > 2, is straightforward from our
construction because of the gap between the dimensions of the critical cells.

The above construction depends on a system of polar coordinates in Rn, which is
generic with respect to the arrangement. Associated to such system is a total ordering
C (called polar ordering) on the set Φ := {F} of all the facets of the stratification
of Rn induced by the arrangement. Even if the philosophy of the paper is similar
to that used for d = 2 in [12], the extension to the case d > 2 is not trivial. Let ≺
be the standard partial ordering between facets: F ≺ G iff G ⊂ clos(F ). Then the
cells of S(d) correspond to chains (C ≺ F1 ≺ . . . ≺ Fd), where C is a chamber. To
construct a gradient field on S(d), we have to consider on the ith-component of the
chains either the polar ordering CFi+1 which is induced on the arrangement ”centered”
in the (i + 1)th-component, or the opposite Cop

Fi+1
of such ordering, according to the

parity of d − i. Then we use a double induction over d and the dimension of a sub-
arrangement of A.

In section 2 we recall some notations and results from [2], including a description
of the complex S(d).

In section 3, we recall the main constructions in [12], regarding the case d = 2.
In section 4 we introduce the degree-d discrete field : we show that it is a gradient

field and we characterize the critical cells. We obtain that critical dk−cells in S(d)

correspond to chains

(C ≺ F k ≺ . . . ≺ F k)
(k is the codimension) if d is odd; to

(opF k(C) ≺ F k ≺ . . . ≺ F k)

if d is even, where opF k(C) is the chamber opposite to C with respect to F k. Here
(C ≺ F k) corresponds to a critical cell in S(1), with respect to polar ordering C, so it
is characterized by

F C G, ∀ G such that F ≺ G;
H C F, ∀ H such that C ≺ H ≺ F.

.

One necessary condition to the minimality of a given space X is: H∗(X; Z) is a
free Z−module. For hyperplane complements, this property was known much earlier
than the proof of their minimality. It would be interesting to investigate the problem
of minimality in general for the case of subspace arrangements. Unlike the case of
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hyperplane arrangements, it is well known that subspace complements with torsion
cohomology exist, and they cannot be minimal in the above sense. So, a natural
conjecture to consider is: complements to subspace arrangements with torsion-free
cohomology are minimal spaces.

2. Cell decompositions of Configuration Spaces

In this part we recall some notations and results from [2].
Let A = {Hj}j∈J be a finite arrangement of linear hyperplanes in M := Rn. We

introduce a coordinate x ∈ M and coordinates (x1, ..., xd), xi ∈ M, in Md, d > 0.
Each hyperplane is given by a linear equation Hj = {x ∈ M : aj · x = 0},
aj ∈ M \ {0}. For each d > 0, one has the d−complexification A(d) ⊂ Md of A, given
by the collection of linear codimension-d subspaces

(Hj)(d) := {(x1, . . . , xd) : aj · xk = 0, k = 1, . . . , d}
(when d = 2 one has the standard complexification AC ⊂ Cn).

The generalized configuration space associated to A is the complement to the sub-
space arrangement

M(d) = M(A)(d) := Md \
⋃

H∈A
H(d) .

It is convenient to introduce the intersection lattice L := L(A) ofA, whose elements
are all the subspaces of M of the form

L = Hj1 ∩ · · · ∩Hjk
, Hjl

∈ A.

The partial ordering in L is given by

L ≺ L′ iff L′ ⊂ L,

so there is a minimum element, corresponding to the empty intersection, which is the
whole space M , and a maximum L0 :=

⋂
H∈A H. The rank rk(L) of a subspace L ∈ L

is its codimension; the rank of L is the rank of L0, and we also set rk(A) := rk(L(A)).
The arrangement is called essential when rk(A) = n = dim(M), i.e. when L0 reduces
to a single point.

In the present situation we can consider a finer poset Φ := Φ(A) := ({F},≺) whose
elements are the strata (also called facets) of the stratification induced on M by A,
where, as usual:

F ≺ F ′ iff F ′ ⊂ cl(F ).
The atoms (chambers) of Φ(A) are the connected components of M(1).

We have a map Φ → L which associates to a facet F its support |F |, which is by
definition the subspace generated by F (in a different language, this is the standard
map between an oriented matroid and its underlying matroid). We define the rank
function on Φ via this map:

rk(F ) := rk(|F |) = codim(F ).
Given L ∈ L(A), we will use the arrangements AL := {H ∈ A : H ≺ L},

AL := {L ∩ H : H ∈ A, H ⊀ L}. The former is an arrangement in M of rank
equal to rk(L), the latter is an arrangement inside L itself (of rank rk(A) − rk(L)).
Let ΦL := Φ(AL), ΦL := Φ(AL) be the induced stratifications of M, L respectively.
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There is a map prL : Φ → ΦL, taking F ′ into the unique stratum containing it, and
a map jL : ΦL → Φ just given by the inclusion.

Fixing a facet F, set also ΦF = { F ′ ∈ Φ : F ′ ≺ F}. It is easy to see that the
restriction ϕF := pr|F ||ΦF : ΦF → Φ|F | is a dimension-preserving bijection of
posets.

Let now Φd be the product of d copies of Φ, d ≥ 0, and let

Φ(d) = {(F1, . . . , Fd) ∈ Φd : F1 ≺ . . . ≺ Fd}
be the set of d−chains in Φ (repetitions in the chain are allowed). Then Φ(d) cor-
responds to a stratification of the space Md as follows (see [2]): to each F =
(F1, . . . , Fd) in Φ(d) it corresponds the stratum F̂ in Md given by

F̂ := {(x1, . . . , xd) ∈ Md : x1 ∈ Fd , xk ∈ ϕFd−k+2(Fd−k+1) , k = 2, . . . , d}.
One has

Proposition 2.1. (i) Each F̂ is homeomorphic to an open cell
(ii)

⋃
F∈Φ(d) F̂ = Md

(iii) F̂ ∩ Ĝ = ∅ if F 6= G
(iv) cl(F̂) ∩ Ĝ 6= ∅ iff cl(F̂) ⊃ Ĝ.

(v) M(d) =
⋃
{F∈Φ(d) : F1 is a chamber of Φ} F̂

For F = (F1, . . . , Fd), one has

codim(F) := codim(F̂) =
d∑

i=1

codim(Fi).

The partial ordering on Φ(d) is given by

F ≺ G iff Ĝ ⊂ cl(F̂).

This has the following characterization.

Lemma 2.2. For F = (F1, . . . , Fd), G = (G1, . . . , Gd) ∈ Φ(d) one has

F ≺ G iff Fd ≺ Gd and pr|Fi+1|(Fi) ≺ pr|Fi+1|(Gi)

in the stratification Φ|Fi+1|, i = d− 1, . . . , 1.

Part (v) of proposition 2.1 gives us the poset corresponding to the induced strati-
fication of the generalized configuration space M(d) which is

Φ
(d)
0 := {F = (F1, . . . , Fd) ∈ Φ(d) : rk(F1) = 0}

while the union
⋃

H∈A H(d) of the d−complexified subspaces correspond to the poset

Φ
(d)
+ := {F = (F1, . . . , Fd) ∈ Φ(d) : rk(F1) > 0}.

Proposition 2.3. The set

Q(d) :=
⋃

F∈Φ(d)

e(F),

where e(F) is the dual cell to the stratum F , is a cellular n′d-ball in Md (a regular
cell complex) dual to the stratification, where n′ := rk(L0).
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Remark. It follows from lemma 2.2 that if the first element F1 of F is a chamber,
then also the first element of any G ≺ F is a chamber.

Definition 2.4. We denote by S(d) the subcomplex of Q(d+1) whose cells correspond
to Φ

(d+1)
0 :

S(d) := ∪F∈Φ
(d+1)
0

e(F)

(case d = 1 was introduced in [11]; see also [1], [13]).
There is a natural inclusion

jd : S(d) → S(d+1), jd(e(C,F1, · · · , Fd)) = e(C,C, F1, · · · , Fd).

For F = (C,F1, F2, · · · ) we write e(C,F ′) := e(F), with F ′ = (F1, F2, · · · ). In
general, given a chamber C and a facet F in Φ we will use the notation

C.F := ϕF−1(pr|F |(C))

which is a uniquely defined chamber containing F in its boundary.
One has:

Theorem 1. (i) S(d) is a deformation retract of M(d+1).
(ii)

∂(e(C,F ′)) =
⋃

F ′′ ≺ F ′, codim(F ′′) = codim(F ′)−1

e(C.F1,F ′′)

( F ′′ = (F1, . . . ) ).
(iii) dim e(C,F ′) = dim e(F ′) = codimMd(F ′). In particular dim(S(d)) =
dim(Q(d)) = n′d.

3. Discrete Morse theory on Hyperplane Arrangements

We refer here to the main definitions and results from [6], [7], where Morse theory
from a combinatorial viewpoint was first developed (see also [10], where an approach to
Discrete Morse Theory is developed, where discrete gradient vector fields are replaced
by acyclic matchings over a poset).

In the remaining of section 3 we need a brief summary (skipping some details) of
some of the results in [12], where we applied the theory to Hyperplane Arrangements.
We set in this section S := S(1), the case of standard complexification. A k−cell of S
is written as e(F), F = (C,F ), with codim(F ) = k. We write also e(F) = e(C,F ).
The boundary condition given in lemma 2.2 specializes here to: e(D,G) is in the
boundary of e(C,F ) iff

i) G ≺ F

ii) the chambers C and D are contained in the same chamber of AG, that is
D = C.G in the notations of part 2.

The following constructions are based on a generic system of polar coordinates in
M, which is associated to a generic flag of subspaces

Vi = < e1, ..., ei >, i = 0, ..., n (dim(Vi) = i).
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Consider the pencil of (n − 1)-dimensional subspaces of M, Vn−1(θ), θ ∈ R, with
base Vn−2 : so Vn−1(0) = Vn−1 and θ grows according to some positive orienta-
tion of V/Vn−2. By recurrence, let Vi(θ, θi+1, . . . , θn−1), θ ∈ R, be the pencil of i-
dimensional subspaces in Vi+1(θi+1, . . . , θn−1), with base Vi−1, i = 1, . . . , n − 2. Let
also V0(θ, θ1, . . . , θn−1) be the point with distance θ from the origin V0 inside the line
V1(θ1, . . . , θn−1).

Each point P 6= V0 is written uniquely as P = V0(θ0, θ1, . . . , θn−1), so we associate
to P the polar coordinates (θ0, . . . , θn−1).

Definition 3.1. We say that the above flag is generic with respect to the arrangement
A if it satisfies the following conditions:

i) the origin V0 is contained in a chamber C0 of A;
ii) there exists a δ > 0, δ << π/2, such that the set of bounded facets of A is

contained into B(δ) := {P ∈ M : 0 < θi(P ) < δ, i = 0, . . . , n− 1};
iii) subspaces Vi(θ̄) = Vi(θ̄i, ..., θ̄n−1) which intersect B(δ) are generic with respect

to A, in the sense that, for each codim−k subspace L ∈ L(A),

dim(|Vi(θ̄)| ∩ L) = i− k.

One proves that a generic system of polar coordinates always exists.
Fix a system of polar coordinates associated to a generic flag.
We consider the subspace Vi(θ̄), θ̄ = (θ̄i, ..., θ̄n−1), θj ∈ [0, δ], j = i, ..., n− 1. The

arrangement A induces a stratification Φ(θ̄) in Vi(θ̄) : given a codimension−k facet
F ∈ Φ, let us denote by

F (θ̄) := F ∩ Vi(θ̄).
By genericity conditions, if i ≥ k then F (θ̄) is either empty or it is a codimension

k + n− i facet contained in Vi(θ̄).
For each such θ̄ we want to give a total ordering on Φ(θ̄).

Definition 3.2. Given any facet F (θ̄) let us denote by

PF (θ̄) ∈ clos(F (θ̄))

the “minimum” vertex of clos(F (θ̄)) ∩ Rn
≥0 : this is the 0-dimensional facet which

has minimum polar coordinates, with respect to the anti-lexicographic ordering of the
coordinates (so, starting from θn−1 and going back).

Remark that the minimum vertex is well defined by genericity conditions.

Definition 3.3. We define the polar ordering by recurrence on the dimension as
follows: given F, G ∈ Φ, and given θ̄ = (θ̄i, ..., θ̄n−1), 0 ≤ i ≤ n, θ̄j ∈ [0, δ] for
j ∈ i, .., n− 1, (θ̄ = ∅ for i = n) such that F (θ̄), G(θ̄) 6= ∅, we set

F (θ̄) C G(θ̄)

iff one of the following cases occurs:

i) PF (θ̄) 6= PG(θ̄) and the coordinates of the former point are lower (in the anti-
lexicographical ordering) than the coordinates of the latter point.

ii) PF (θ̄) = PG(θ̄). Then either

iia) dim(F (θ̄)) = 0 (so PF (θ̄) = F (θ̄)) and F (θ̄) 6= G(θ̄) (so dim(G(θ̄)) > 0)
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or

iib) dim(F (θ̄)) > 0, dim(G(θ̄)) > 0.

Let i0 := max{j| θj(PF (θ̄)) 6= 0}+ 1 and let i1 := min{i0, i}. If the coordinates of
the minimal point are P ≡ (θ̄0, . . . , θ̄n−1) then ∀ε, 0 < ε << δ, it must happen

F (θ̄i1−1 + ε, θ̄i1 , ...) C G(θ̄i1−1 + ε, θ̄i1 , ...).

The idea in (iib) is to intersect F and G with a lower dimensional subspace con-
tained in Vi(θ̄), very close to the minimum point (see also [4] for a purely combinatorial
version of polar ordering).

One shows that polar ordering C is a total ordering on the facets of Vi(θ̄), for any
given θ̄ = (θ̄i, ..., θ̄n−1). In particular (taking θ̄ = ∅) it gives a total ordering on Φ.

We consider now the regular CW-complex S = S(1) and we define (see [6], [7]) a
combinatorial gradient vector field Γ over S. One can describe Γ as a collection of
pairs of cells

Γ ⊂ {(e, f) ∈ S× S | dim(f) = dim(e) + 1, e ∈ ∂(f)}

so that Γ decomposes into its dimension-p components

Γ =
n⊔

p=1

Γp, Γp ⊂ Sp−1 × Sp

(Sp being the p−skeleton of S).
We give the following recursive definition:

Definition 3.4 (Polar Gradient). We define a combinatorial gradient field Γ over S
in the following way:

the (j + 1)−th component Γj+1 of Γ, j = 0, ..., n− 1, is given by all pairs

(e(C,F j), e(C,F j+1)), F j ≺ F j+1

(same chamber C) such that

(1) F j+1 C F j

(2) ∀F j−1 ≺ F j such that C ≺ F j−1 the pair

(e(C ≺ F j−1), e(C ≺ F j)) 6∈ Γj

Theorem 2. One has:

(1) Γ is a combinatorial vector field on S which is the gradient of a discrete Morse
function.

(2) The pair
(e(C ≺ F j), e(C ≺ F j+1)), F j ≺ F j+1

belongs to Γ iff the following conditions hold:
(a) F j+1 C F j

(b) ∀ F j−1 such that C ≺ F j−1 ≺ F j , one has F j−1 C F j .
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(3) Given F j ∈ Φ, there exists a chamber C such that the cell e(C ≺ F j) is the
second factor of a pair in Γ iff there exists F j−1 ≺ F j with F j C F j−1. More
precisely, for each chamber C such that there exists F j−1 with

C ≺ F j−1 ≺ F j , F j C F j−1 (∗)
the pair (e(C ≺ F̄ j−1), e(C ≺ F j)) ∈ Γ, where F̄ j−1 is the maximum
(j − 1)−facet (with respect to polar ordering) satisfying conditions (*).

(4) The set of k−dimensional critical cells is given by

(1)
Singk(S) =

= {e(C ≺ F k) : F k ∩ Vk 6= ∅, F j C F k, ∀ C ≺ F j � F k}.

Equivalently, F k ∩Vk is the maximum (in polar ordering) among all facets of
C ∩ Vk.

In section 4 we will need some more specific results which were used in the proof
of part (1) of theorem 2.

Take a Γ−path in S (according to [7])

(2) e(C1, F
k
1 ), e(C1, F

k+1
1 ), . . . , e(Cm, F k

m), e(Cm, F k+1
m ), e(Cm+1, F

k
m+1)

Here the pair (e(Ci, F
k
i ), e(Ci, F

k+1
i )) is an element of Γ, and e(Ci, F

k
i ) is in the

boundary of e(Ci−1, F
k+1
i−1 ).

According to a standard result in Discrete Morse Theory ([6]) we have to show
that, if the path (2) is closed, (i.e. if e(Cm+1, F

k
m+1) equals to e(C1, F

k
1 )), then it is

trivial, i.e. F k
i = F k

i+1, F k+1
i = F k+1

i+1 , and Ci = Ci+1 (i = 1, . . . ,m− 1).
The proof directly follows from the following two claims.

Claim 1. Given a triple of consecutive cells in (2) of the form:

(3) e(Ci, F
k+1
i ), e(Ci+1, F

k
i+1), e(Ci+1, F

k+1
i+1 ).

we have that F k+1
i+1 E F k+1

i .

Claim 2. Given a quadruple of consecutive cells in (2) of the form:

(4) e(Ci, F
k
i ), e(Ci, F

k+1), e(Ci+1, F
k
i+1), e(Ci+1, F

k+1).

we have F k
i E F k

i+1.

Remark 3.5. 1) Once a polar ordering is assigned, the set of singular cells is de-
scribed only in terms of it by
Singk(S) := {e(C ≺ F k) :

a) F k C F k+1, ∀ F k+1 s.t. F k ≺ F k+1

b) F ′ C F k, ∀ F ′ s.t. C ≺ F ′ ≺ F k }
2) The construction of theorem 2 gives an explicit additive basis for the homology and
for the cohomology in terms of the singular cells in S. We can call it a polar basis
(relative to a given system of generic polar coordinates).
3) The minimality of the associated Morse complex is obtained by the one-to-one
correspondence between singular cells and the set of all the chambers of Φ, and the
well-known formula

∑
bi = |{chambers}| (see [15]).
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4. Discrete Morse theory on Configuration Spaces

We now consider general configuration spaces as in part 2, generalizing the theory
of part 3. We fix a polar ordering C induced by a generic system of polar coordinates
V0, V1, . . . , Vn as in part 3.

Lemma 4.1. Let L ∈ L(A) be a codimension-k subspace. Then the system V0, . . . , Vk

gives a generic system of polar coordinates for the arrangement AL ∩ Vk := {H ∩
Vk| H ∈ A} in Vk, so it induces a polar ordering CL on ΦL. The system Vk∩L, . . . , Vn∩
L gives a generic system of polar coordinates for the arrangement AL on L, inducing
a polar ordering CL on ΦL.

One has that CL coincides with the restriction C|ΦL of the polar ordering C to
ΦL ⊂ Φ.

Proof. In the case of ΦL, there are no bounded facets, except for the point L∩Vk, and
the genericity condition reduces to transversality, which is included in the genericity
condition for the given system V0, . . . , Vn, taking into account that L(AL) ⊂ L(A).

For ΦL, just remark that by the genericity of the given system, Vi ∩ L 6= ∅ only
for i ≥ k, so by the genericity of the original system one gets the genericity of the
restricted one Vk ∩ L, . . . , Vn ∩ L. Now notice that if (θ′0, . . . , θ

′
n−k) are the polar

coordinates of a point P in L with respect to the system Vk ∩ L, . . . , Vn ∩ L and
(θ0, . . . , θn) are the polar coordinates of P with respect to V0, . . . , Vn, then there exist
smooth functions:

αj : ([0, ε))n−j+1 → R≥0 : (θj , . . . , θn) 7→ θ′j , j = k, . . . , n,

with ε > δ (δ as in 3.1) such that:

θ′i = αi+k(θi+k, . . . , θn), i = 0, . . . , n− k

and the function:

θ 7−→ αi+k(θ, θi+k+1, ..., θn)

is strictly increasing in [0, ε) (i = 0, . . . , n − k). This shows the last assertion of the
lemma, by definition of polar ordering (see part 3). �

Definition 4.2. Given G ∈ Φ, we set CG:= C|G| .

Definition 4.3. Given G ∈ Φ, and being ΦG as in part 2, we define an involution:

opG : ΦG → ΦG

F 7→ opG(F )

where opG(F ) is the unique facet which is symmetric to F with respect to supp(G).
In other terms (using the maps ϕG, pr|G| defined in section 2):

opG(F ) := ϕ−1
G (−(pr|G|(F ))).

Here we notice that, for a central arrangement, every facet F has a unique opposite
−F with respect to the center.
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Definition 4.4. Define the opposite polar ordering Cop
G in ΦG as:

F Cop
G F ′ ⇔ opG(F ) CG opG(F ′)

F, F ′ ∈ ΦG. One can show that Cop
G is the polar ordering with respect to a system

V ′
0 , · · · , V ′

k, k = codim(G), where V ′
i is the symmetric of Vi with respect to the point

Vk ∩ |G|.

Definition 4.5. For all arrangements A, all polar orderings C on A, and all d ≥ 1,
we define the degree-d discrete field

Γ(d) := Γ(d)(A,C)

on the complex S(d)(A). Assume by recurrence that Γ(d′)(AL) has been defined for
d′ < d, for any AL ⊂ A, L ∈ L(A), for the induced polar ordering CL (see lemma
4.1). Then the k−dimensional part Γk

(d)(A) is given by the set of pairs of cells in
S(d)(A)

(e(F), e(F ′))
where dim(e(F)) = k − 1, dim(e(F ′)) = k, F ≺ F ′ (so e(F) ⊂ ∂(e(F ′))), and the
two flags differ only in a single position:

F = (C,F1, . . . , Fi−1, F
j
i , Fi+1, . . . , Fd),

F ′ = (C,F1, . . . , Fi−1, F
j+1
i , Fi+1, . . . , Fd)

with F j
i ≺ F j+1

i (j, j + 1 denote codimensions). Moreover, such pairs satisfy the
following conditions (5),(6):

(5)

for i < d, e(F j
i , Fi+1, . . . , Fd) is a critical cell in the complex S(d−i)(AL),

endowed with the discrete (d− i)− vector field Γ(d−i)(AL),
with L := |F j

i | (i.e., e(F j
i , Fi+1, . . . , Fd) 6∈ Γ(d−i)(AL),

see ([6, 7]))

Set l = d− i; then:

(6)

for even l

F j+1
i CFi+1 F j

i and F j
i = maxCFi+1

{F | Fi−1 ≺ F ≺ F j
i };

for odd l

F j+1
i Cop

Fi+1
F j

i and F j
i = maxCop

Fi+1
{F | Fi−1 ≺ F ≺ F j

i }.

For i = d there is no Fi+1 in the first condition of (6), which is to be considered in
this case as defined by using the given polar ordering C .

We have Γ(d) = ⊕n′d
k=1Γ

k
(d), n′ = rk(A).

Definition 4.6. Let L ∈ L(A) be a codimension k subspace.
Set ΓL

(d) as the degree-d discrete field of the arrangement AL with respect to the
polar ordering CL=C|L .

Set ΓL,(d) as the degree-d discrete field of the arrangement AL ∩V k with respect to
the polar ordering CL (see lemma (4.1)).
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The following main theorem describes the minimal complex in terms of the field
Γ(d), exhibiting its critical cells.

Theorem 3. One has:
(1) Γ(d) is a discrete vector field;
(2) Γ(d) is the gradient field of a discrete Morse function;
(3) the critical cells of Γ(d) are the following ones, depending on the parity of d:

(7) e(C,F k, . . . , F k)

with e(C,F k) ∈ S(1) critical cell for (Γ(1),C), if d is odd;

(8) e(opF k(C), F k, . . . , F k)

with e(C,F k) ∈ S(1) critical cell for (Γ(1),C), if d is even.

As an immediate consequence of theorem 3 we have

Theorem 4. (1) The configuration space M(d)(A) is a minimal space (d ≥ 1).
(2) The cohomology of S(d) (or of M(d+1)), d ≥ 1, is concentrated in dimension

id , i = 0 . . . n .

The Betti numbers are given by

Bid(S(d)) = Bi(S(1)).

Proof of theorem 4. Case d = 1 is considered in section 3. For d > 1 minimality
follows immediately from the gap between the dimensions of the critical cells. �

Remark. For d > 1 the configuration space is simply connected, therefore its mini-
mality follows by general means. For d = 1 there is also a non trivial Morse complex
for local cohomology (see [12],[8]).

Notation 4.7. Given L ∈ L(A), with codim(L) = k, notice that the cells of
S(d−1)(AL) have the form e(F), where F is a flag whose first element is some facet
F k with |F k| = L (in fact, F k is a chamber in the arrangement AL).

Let
λ : S(d−1)(AL) 99K S(d)(A)

be the correspondence defined by

λ(e(F k, F2, . . . , Fd−1)) := {e(C,F k, F2, . . . , Fd−1)| C ≺ F k} ⊂ S(d)(A).

When Γ′ is a discrete field over S(d−1)(AL), we have an induced field λ∗(Γ′) over
S(d)(A) : for each pair

(e(F k, F2, . . . , Fd−1), e(F k, F ′
2, . . . , F

′
d−1)) ∈ Γ′,

take all pairs of the shape

(e(C,F k, F2, . . . , Fd−1), e(C,F k, F ′
2, . . . , F

′
d−1)), for all chambers C ≺ F k.

In particular, when L is the whole space M, λ gives a map which to a discrete field
on S(d−1)(A) associates a discrete field on S(d)(A) (in this case k = 0 so one can add
just one chamber C = F 0). Here λ = jd−1 : S(d−1) → S(d), defined at the end of part
2.
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Proof of theorem 3. We proceed by double induction on the degree d and the rank of
the arrangement A.

The case d = 1, any rank, is exactly given by theorem 2, part 3.
The case of rank 0, any d, is trivial since here A = ∅ and Φ has only one facet

C = M ; so, S(d) is given by the unique point e(C, . . . , C), and Γ(d) = ∅ verifies the
thesis.

We assume the theorem holds when the arrangement has rank lower than rk(A)
and arbitrary degree, or when the arrangement has the same rank as A but the degree
d′ is lower than d.

To prove 1), we partition Γ(d) into subsets, each of these being a discrete field; this
will suffice to prove that Γ(d) is a field.

Consider first all cells in S(d) with codim(F1) = 0, that is of the kind

(9) e(C,C, F2, . . . , Fd).

This set bijectively corresponds to S(d−1) by jd−1.

By induction, Γ(d−1) is a discrete field, so λ∗(Γ(d−1)) ⊂ Γ(d) is also a discrete field
(see 4.7). The cells of jd−1(S(d−1)) ⊂ S(d) (of the shape (9)) which are not contained
in λ∗(Γ(d−1)) are exactly given by

(10) jd−1(Sing(S(d−1))) = {jd−1(e(F)) : e(F) critical cell of S(d−1)}.

By induction, the cells (10) will be of the following form:

(11)
e(C,C, Fh, . . . , Fh)

with e(C,Fh) critical for (Γ(1),C) if d is even;

(12)
e(opF h(C), opF h(C), Fh, . . . , Fh)

with e(C,Fh) critical for (Γ(1),C) if d is odd

(of course, d even implies d− 1 odd and conversely).
Notice that the unique 0-cell in (10) is e(C0, . . . , C0), where C0 is the unique cham-

ber containing the origin V0 of the polar system. All the other 0 − cells in S(d) (all
having analog shape e(C, . . . , C), C 6= C0) belong to some pair in the image of λ∗.

It will be useful to give an equivalent condition for a cell e(C,Fh) ∈ S to be critical,
which come easily from point (4) of theorem 2:

(13) Fh ∩ V h 6= ∅ and pr|F h|(C) ∩ V h−1 6= ∅ and bounded.

Now let L ∈ L(A) be a codim-k subspace, k > 0. Consider all cells in S(d) of the
form

(14) {e(C,F k, F2, . . . , Fd) | F k ⊂ L}.

By induction ΓL
(d−1) (4.6) is a discrete vector field. By the definition of Γ(d), one has

that λ∗(ΓL
(d−1)) is contained into Γ(d) and by 4.7 it is a discrete field.
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The remaining cells of S(d) of shape (14) which are not in λ∗(ΓL
(d−1)) (i.e. the cells

in λ(Sing(S(d−1)(AL)))) have the form

(15)
e(C,F k, Fh, . . . , Fh)

with e(F k, Fh) critical cell for (ΓL
(1),C

L) for even d;

(16)
e(C, opF h(F k), Fh, . . . , Fh)

with e(F k, Fh) critical cell for (ΓL
(1),C

L) for odd d.

In particular for h = k they remain all cells e(C,F k
0 , . . . , F k

0 ) for all C ≺ F k
0 , where

F k
0 is the unique facet in L such that F k

0 ∩ V k 6= ∅.
When k < h condition (13) for critical cells translates as:

(17)
V h ∩ L ∩ Fh = V h ∩ Fh 6= ∅

and
pr|F h|(F k) ∩ V h−1 ∩ L = pr|F h|(F k) ∩ V h−1 6= ∅ and bounded.

Let L′, L′′ ∈ L(A). Remark that ΓL′

(d−1) and ΓL′′

(d−1) have no common cell if L′ 6= L′′

(by definition, the first facet defining a cell has support respectively L′, L′′). When
L is the whole space M, clearly Γ(d−1) = ΓL

(d−1). If L = L0 = ∩{Hi} is the center of
the arrangement, ΓL

(d−1) = ∅ and the unique critical cell is e0 := e(L, . . . , L). In this
case λ(e0) = {e(C,L, . . . , L)| C any chamber}.

Summarizing the previous discussion, we have by induction that

Γ′(d) =
⋃

L ∈ L(A)

λ∗(ΓL
(d−1)) ⊂ Γ(d)

is a discrete field; the set E of cells of S(d) which do not belong to Γ′(d) are given by

(18)
e(C,F k, Fh, . . . , Fh)

with Fh ∩ V h 6= ∅, pr|F h|(F k) ∩ V h−1 6= ∅ and bounded, even d,

(19)
e(C, opF h(F k), Fh, . . . , Fh)

with Fh ∩ V h 6= ∅, pr|F h|(F k) ∩ V h−1 6= ∅ and bounded, odd d,

when k < h; by

(20)
e(C,Fh, . . . , Fh)

with Fh ∩ V h 6= ∅

when h = k.
The proof of parts (1) and (3) of theorem 3 will follow from the following lemma.
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Lemma 4.8. Let k < h. For each cell e(C,F k, Fh, . . . , Fh) ∈ E , there exists either

(21) F k+1 such that F k ≺ F k+1 ≺ Fh (if k + 1 = h then F k+1 = Fh)

or

(22) F k−1 such that C ≺ F k−1 ≺ F k (if k = 1 then F k−1 = C)

such that e(C,F k+1, Fh, . . . , Fh) ∈ E (resp. e(C,F k−1, Fh, . . . , Fh) ∈ E) and the pair
(e(C,F k), e(C,F k+1)) (resp. (e(C,F k−1), e(C,F k))) belongs to the field ΓL,(1) which
is defined by using the ordering

Cop
L , for even d;

or
CL , for odd d.

(L := |Fh|).
Case k = h. For each cell e(C,F k, . . . , F k) ∈ E , there exists F k−1 verifying (22)

and such that e(C,F k−1, F k, . . . , F k) belongs to E and the pair (e(C,F k−1), e(C,F k))
belongs to the field (ΓL,(1),C

op
L ) for d even, respectively to (ΓL,(1),CL) for d odd,

(L = |F k|) iff e(C,F k) is non critical for (ΓL,(1),C
op
L ) for d even, respectively for

(ΓL,(1),CL) for d odd.

Proof of lemma 4.8. We show first that e(C,F k) is not critical for ΓL,(1) (with the
suitable ordering defined above).

Assume d even. Condition (18), giving pr|F h|(F k) ∩ V h−1 6= ∅ and bounded, is
equivalent to

(23) pr|F h|(opF h(F k)) ∩ V h−1 = ∅.

If e(C,F k) were critical for (ΓL,(1),C
op
L ) then pr|F h|(opF h(F k)) ∩ V k 6= ∅. Since

V k ⊂ V h−1 this is impossible.
If d is odd, condition (19), giving pr|F h|(opF h(F k)) ∩ V h−1 6= ∅ and bounded, is

equivalent to pr|F h|(F k) ∩ V h−1 = ∅. If e(C,F k) were critical for (ΓL,(1),CL) then
pr|F h|(F k) ∩ V k 6= ∅, and this also is impossible.

Assume that there exists F k+1 as in (21) such that the pair

(e(C,F k), e(C,F k+1)) ∈ ΓL,(1).

We have to show that e(C,F k+1, Fh, . . . , Fh) ∈ E .

In case k + 1 < h, if condition (18) holds for F k (d even) then it clearly holds
for all facets F k+1 in the boundary of F k and such that F k+1 ≺ Fh, and analog for
condition (19).

When k + 1 = h, then by (20) all cells e(C,Fh, . . . , Fh) with Fh ∩ V h 6= ∅ belong
to E .

Now let us suppose there exists F k−1 as in (22) such that

(e(C,F k−1), e(C,F k)) ∈ ΓL,(1)

and we have to show that e(C,F k−1, Fh, . . . , Fh) ∈ E .
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Let d be even. By the definition of (ΓL,(1),C
op
L ) (section 3) one must have F k Cop

L

F k−1, that is opF h(F k) CL opF h(F k−1). Since for F k condition (23) holds, we must
have (by definition of polar ordering) also

pr|F h|(opF h(F k−1)) ∩ V h−1 = ∅

which is equivalent (as said above) to (18), so it gives the thesis in this case.
The case d odd is proved in the same way, so as the last assertion of the theorem

for case k = h. �

From lemma 4.8 it follows both parts 1) and 3) of theorem 3. Indeed, the pairs of
cells of Γ(d) coming from lemma 4.8 clearly do not have common cells and, together
with the previous field Γ′(d), exhaust all Γ(d). This proves part 1). Part 3) follows from
the last part of lemma 4.8.

We now come to part 2) of the theorem. We use the characterizing property for
gradient fields: every closed Γ(d)−path is trivial ([7]; see the comments soon after
theorem 2).

Take a Γ(d)−path in S(d) :

(24) e(C1,Fk
1 ), e(C1,Fk+1

1 ), . . . , e(Cm,Fk
m), e(Cm,Fk+1

m ), e(Cm+1,Fk
m+1)

where by Fk
i we indicate the flag (F ji,1

i,1 , . . . , F
ji,d

i,d ), whose codimension is k =
∑d

l=1 ji,l,

and by Fk+1
i we indicate the flag (F

j′i,1
i,1 , . . . , F

j′i,d

i,d ), whose codimension is k + 1 =∑d
l=1 j′i,l (i = 1, . . . ,m). Here the pair (e(Ci,Fk

i ), e(Ci,Fk+1
i )) is an element of Γ(d),

and e(Ci,Fk
i ) is in the boundary of e(Ci−1,Fk+1

i−1 ).
We have to prove that if the path (24) is closed (i.e. if e(Cm+1,Fk

m+1) equals
e(C1,Fk

1 )), then such path is trivial, i.e. Fk
i = Fk

i+1, F
k+1
i = Fk+1

i+1 , and Ci = Ci+1

(i = 1, . . . ,m− 1).
Let J be a polar ordering over the face poset Φ(A′) of an arrangementA′. Introduce

the ordering Jlex in Φ(d)(A′)

(F0, F1, . . . , Fd) Jlex (F ′
0, F

′
1, . . . , F

′
d)

(codim(F0) = codim(F ′
0) = 0) iff, being k the last position where Fk 6= F ′

k, one has

Fk Jk F ′
k,

where Jk equals either J|Fk+1| or Jop
|Fk+1| according to the parity of d− k.

We will prove the following claim:

Claim 3. Given a triple of consecutive cells in (24) of the form:

(25) e(Ci,Fk+1
i ), e(Ci+1,Fk

i+1), e(Ci+1,Fk+1
i+1 ).

we have that Fk+1
i+1 Elex Fk+1

i .

We prove this claim inductively on d. The base of the induction is the case d = 1,
i.e. claim 1 of section 3.

We now suppose the statement true for d− 1 and prove it for d.
By splitting a flag F = (G, Fd) into a (d − 1)−flag G and the last facet Fd, the

triple (25) will become:
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e(Ci,G
h′i
i , F

l′i
i,d), e(Ci+1,Ghi+1

i+1 , F
li+1
i+1,d), e(Ci+1,G

h′i+1
i+1 , F

l′i+1
i+1,d).

Now we have to distinguish several cases.

(1) If l′i = li+1 = l′i+1 = l, then F l
i+1,d ≺ F l

i,d and so F l
i,d = F l

i+1,d by a dimension
argument. We have also that h′i− 1 = hi+1 = h′i+1− 1 = h, so we can rewrite
the triple as:

e(Ci,Gh+1
i , F l), e(Ci+1,Gh

i+1, F
l), e(Ci+1,Gh+1

i+1 , F l).

By inductive hypothesis we have that Gh+1
i+1 (Cop

F l)lexGh+1
i , and so also

Fk+1
i+1 Clex Fk+1

i .
(2) If l′i − 1 = li+1 = l′i+1 − 1 = l, so h′i = hi+1 = h′i+1 = h and we can write the

triple as:

e(Ci,Gh
i , F l+1

i,d ), e(Ci+1,Gh
i+1, F

l
i+1,d), e(Ci+1,Gh

i+1, F
l+1
i+1,d).

This case follows from claim 1 applied to the triple

e(Fi,d−1, F
l+1
i,d ), e(Fi+1,d−1, F

l
i+1,d), e(Fi+1,d−1, F

l+1
i+1,d)

in the arrangement AL, L = |Fi+1,d−1|.
(3) If l′i − 1 = li+1 = l′i+1 = l, so h′i = hi+1 = h′i+1 − 1 = h and we can write the

triple as:

e(Ci,Gh
i , F l+1

i,d ), e(Ci+1,Gh
i+1, F

l
i+1,d), e(Ci+1,Gh+1

i+1 , F l
i+1,d).

Here (e(Ci+1,Gh
i+1, F

l
i+1,d), e(Ci+1,Gh+1

i+1 , F l
i+1,d)) ∈ Γ(d), so, by condition

(5), there exists an index j ≥ 1 so that e(Fi+1,d−j , Fi+1,d−j+1, . . . , F
l
i+1,d) is

critical for ΓL
(j), where L =| Fi+1,d−j |; we have in particular F l

i+1,d ∩ V l 6= ∅.
The definition of polar ordering gives F l

i+1,d C F l+1
i,d , so Fk+1

i+1 Clex Fk+1
i as

required.
(4) If l′i = li+1 = l′i+1 − 1 = l, so F l

i,d = F l
i+1,d as above, and h′i − 1 = hi+1 =

h′i+1 = h, so we can write the triple as:

e(Ci,Gh+1
i , F l), e(Ci+1,Gh

i+1, F
l), e(Ci+1,Gh

i+1, F
l+1).

Since (e(Ci+1,Gh
i+1, F

l), e(Ci+1,Gh
i+1, F

l+1)) ∈ Γ(d) then condition (6) gives
F l+1 C F l and Fk+1

i+1 Clex Fk+1
i as required.

This proves the claim. If the path (24) is closed, it follows that all the flags of
codimension k + 1 equal a fixed flag Fk+1.

We can rewrite (24) as follows:

(26) e(C1,Fk
1 ), e(C1,Fk+1), . . . , e(Cm,Fk

m), e(Cm,Fk+1), e(C1,Fk
1 ).

So Fk
i ≺ Fk+1, i = 1, . . . ,m.

We will now prove another claim:
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Claim 4. Given a quadruple of consecutive cells in (26) of the form:

(27) e(Ci,Fk
i ), e(Ci,Fk+1), e(Ci+1,Fk

i+1), e(Ci+1,Fk+1).

we have Fk
i Elex Fk

i+1.

We prove this claim inductively on d. The base of the induction is the case d = 1,
i.e. claim 2 of section 3.

We now suppose the statement true for d− 1 and prove it for d.
As before, we can rewrite the quadruple as:

e(Ci,Ghi
i , F li

i,d), e(Ci,Gh+1, F l+1), e(Ci+1,Ghi+1
i+1 , F

li+1
i+1,d), e(Ci+1,Gh+1, F l+1).

Let us distinguish several cases:
(1) if li = li+1 = l + 1 then, by definition of Γ(d), it follows F l+1

i,d = F l+1= F l+1
i+1,d

and hi = hi+1 = h, so the quadruple becomes:

e(Ci,Gh
i , F l+1), e(Ci,Gh+1, F l+1), e(Ci+1,Gh

i+1, F
l+1), e(Ci+1,Gh+1, F l+1)

By inductive hypothesis we have Gh
i (Cop

F l+1)lexGh
i+1, and consequently also

Fk
i Clex Fk

i+1.
(2) If li = li+1 = l then hi = hi+1 = h + 1 and the quadruple become:

e(Ci,Gh+1, F l
i,d), e(Ci,Gh+1, F l+1), e(Ci+1,Gh+1, F l

i+1,d),

, e(Ci+1,Gh+1, F l+1)
(the fact that all the G’s coincide here follows directly from the definition of
Γ(d) applied to both pairs of the field in (27)).

From claim 2, applied to the quadruple

e(G, F l
i,d), e(G, F l+1), e(G, F l

i+1,d), e(G, F l+1),

where G is the last facet of G, it follows F l
i,d E F l

i+1,d, which concludes this
case.

(3) if li = li+1 + 1 = l + 1 then F l+1
i,d = F l+1, moreover hi + 1 = hi+1 = h + 1. So

the quadruple becomes:

e(Ci,Gh
i , F l+1), e(Ci,Gh+1, F l+1), e(Ci+1,Gh+1, F l

i+1), e(Ci+1,Gh+1, F l+1).

By condition (6) we have F l+1 C F l
i+1, so Fk

i Clex Fk
i+1 as required.

(4) if li + 1 = li+1 = l + 1 then F l+1
i+1,d = F l+1, moreover hi = hi+1 + 1 = h + 1.

So the quadruple becomes:

e(Ci,Gh+1, F l
i,d), e(Ci,Gh+1, F l+1), e(Ci+1,Gh

i+1, F
l+1), e(Ci+1,Gh+1, F l+1).

It follows from condition (5) that there exists an index j such that

e(F p
i+1,j , Fi+1,j+1 = F l+1, . . . , F l+1)

is critical for ΓL
(d−j), with L = |F p

i+1,j |.
By construction Gh

i+1, Gh+1 differ only in the position j :
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Gh
i+1 = (Fi+1,1, . . . , Fi+1,j−1, F

p
i+1,j , Fi+1,j+1, . . . , Fi+1,d−1),

Gh+1 = (Fi+1,1, . . . , Fi+1,j−1, F
p+1
i+1,j , Fi+1,j+1, . . . , Fi+1,d−1).

Since Fi+1,k = F l+1 for k > j, we deduce j = d− 1, so:

Gh
i+1 = (Fi+1,1, . . . , Fi+1,d−2, F

p
i+1,d−1)

Gh+1 = (Fi+1,1, . . . , Fi+1,d−2, F
p+1
i+1,d−1).

So e(F p
i+1,d−1, F

l+1) is critical in (ΓL
(1),C), L = |F p

i+1,d−1|. It follows:

F l+1 = maxC{F | F p
i+1,d−1 ≺ F ≺ F l+1}.

We have also F p
i+1,d−1 ≺ F p+1

i+1,d−1 ≺ F l
i,d ≺ F l+1, which gives F l

i,d C F l+1.
This is not possible since condition (6) gives F l+1 C F l

i,d.

Then all Fk
i coincide.

It remains to see that all the chambers Ci’s coincide. We will show that Ci = Ci+1

for i = 1 . . .m− 1.
In (26) we can take a triple of consecutive cells of the form:

e(Ci,Fk), e(Ci,Fk+1), e(Ci+1,Fk)
where the pair (e(Ci,Fk), e(Ci,Fk+1)) is in Γ(d) and e(Ci+1,Fk) is in the boundary
of e(Ci,Fk+1). If we write Fk = (F1,F ′) then this triple become:

e(Ci, F1,F ′), e(Ci,Fk+1), e(Ci+1, F1,F ′).
By the boundary condition (lemma 2.2) we have pr|F1|(Ci+1) ≺ pr|F1|(Ci). By a

dimension argument, it follows pr|F1|(Ci+1) = pr|F1|(Ci). Since Ci ≺ F1 and Ci+1 ≺
F1, it follows Ci = Ci+1.

This completes the proof. �
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