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ASYMPTOTIC LINEARITY OF REGULARITY AND
a∗-INVARIANT OF POWERS OF IDEALS

Huy Tài Hà

Abstract. Let X = Proj R be a projective scheme over a field k, and let I ⊆ R be an

ideal generated by forms of the same degree d. Let π : eX → X be the blowing up of X

along the subscheme defined by I, and let φ : eX → X̄ be the projection given by the

divisor dE0 − E, where E is the exceptional divisor of π and E0 is the pullback of a
general hyperplane in X. We investigate how the asymptotic linearity of the regularity

and the a∗-invariant of Iq (for q � 0) is related to invariants of fibers of φ.

1. Introduction

Let k be a field and let X = ProjR ⊆ Pn be a projective scheme over k. Let
I ⊆ R be a homogeneous ideal. It is well known (cf. [1, 4, 6, 7, 9, 12, 18, 20]) that
reg(Iq) = aq + b, a linear function in q, for q � 0. While the linear constant a is
quite well understood from reduction theory (see [20]), the free constant b remains
mysterious (see [10, 19] for partial results). Recently, Eisenbud and Harris [10] showed
that when I is generated by general forms of the same degree, whose zeros set is empty
in X, b can be related to a set of local data, namely, the regularity of fibers of the
projection map defined by the generators of I. The aim of this paper is to exhibit
a similar phenomenon in a more general situation, when I is generated by arbitrary
forms of the same degree. In this case, the generators of I do not necessarily give
a morphism. The projection map that we will examine is the map from the blowup
of X along the subscheme defined by I, considered as a bi-projective scheme, to its
second coordinate.

Let I = (F0, . . . , Fm), where F0, . . . , Fm are homogeneous elements of degree d in
R. Let π : X̃ → X be the blowing up of X along the subscheme defined by I. Let
R = R[It] be the Rees algebra of I. By letting deg Fit = (d, 1), the Rees algebra R is
naturally bi-graded with R =

⊕
p,q∈ZR(p,q), where R(p,q) = (Iq)p+qdt

q. Under this
bi-gradation of R, we can identify X̃ with ProjR ⊆ Pn×Pm (cf. [8, 15, 16]). Also, the
projection φ : ProjR → Pm is in fact the morphism given by the divisor D = dE0−E,
where E is the exceptional divisor of π and E0 is the pullback of a general hyperplane
in X. For a close point ℘ ∈ X̄ = image(φ), let X̃℘ = X̃ ×X̄ SpecOX̄,℘ be the fiber
of φ over the affine neighborhood SpecOX̄,℘ of ℘. Then X̃℘ = ProjR(℘), where R(℘)

is the homogeneous localization of R at ℘. We define the regularity of X̃℘, denoted
by reg(X̃℘), to be that of R(℘). Inspired by the work of Eisenbud and Harris [10], we
propose the following conjecture.
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Conjecture 1.1. Let X = ProjR ⊆ Pn be a projective scheme, and let I ⊆ R be a
homogeneous ideal generated by forms of degree d. Let reg(φ) = max{reg(X̃℘) | ℘ ∈
X̄}. Then for q � 0,

reg(Iq) = qd + reg(φ).

We provide a strong evidence1 for Conjecture 1.1. More precisely, we prove a
similar statement to Conjecture 1.1 for the a∗-invariant, a closely related variant of
the regularity. For a closed point ℘ ∈ X̄, we define the a∗-invariant of X̃℘, denoted
by a∗(X̃℘), to be the a∗-invariant of its homogeneous coordinate ring R(℘). Our first
main result is stated as follows.

Theorem 1.2 (Theorems 2.6). Let X = ProjR ⊆ Pn be a projective scheme, and
let I ⊆ R be a homogeneous ideal generated by forms of degree d. Let a∗(φ) =
max{a∗(X̃℘) | ℘ ∈ X̄}. Then for q � 0, we have

a∗(Iq) = qd + a∗(φ).

As a consequence of Theorem 1.2, we obtain in Theorem 3.1 an upper and a lower
bounds for the asymptotic linear function reg(Iq). We prove that for q � 0,

qd + a∗(φ) ≤ reg(Iq) ≤ qd + a∗(φ) + dim R.

This, in particular, allows us to settle Conjecture 1.1 in an important case. A fiber
X̃℘ is said to be arithmetically Cohen-Macaulay if its homogeneous coordinate ring
R℘ is Cohen-Macaulay. Our next result shows that Conjecture 1.1 holds under the
additional condition that each fiber X̃℘ is arithmetically Cohen-Macaulay. This hy-
pothesis is satisfied, for instance, when the Rees algebra R is a Cohen-Macaulay
ring.

Theorem 1.3 (Theorem 3.2). Let X = ProjR ⊆ Pn be an irreducible projective
scheme of dimension at least 1, and let I ⊆ R be a homogeneous ideal generated by
forms of degree d. Let reg(φ) = max{reg(X̃℘) | ℘ ∈ X̄}. Assume that each fiber X̃℘

is an arithmetically Cohen-Macaulay scheme. Then for q � 0, we have

reg(Iq) = qd + reg(φ).

Our method in proving Theorem 1.2, and subsequently Theorem 1.3, is based upon
investigating different graded structures of the Rees algebra R. More precisely, beside
the natural bi-graded structure mentioned above, R possesses two other N-graded
structures; namely

R =
⊕
q∈Z

R1
q, where R1

q =
⊕
p∈Z

R(p,q), and

R =
⊕
p∈Z

R2
p, where R2

p =
⊕
q∈Z

R(p,q).

Under these N-graded structures, it can be seen that R = R1
0 ↪→ R, R1

q is a graded
R-modules for any q ∈ Z, S = R2

0 ↪→ R, and R2
p is a graded S-modules for any p ∈ Z.

Let R̃1
q be the coherent sheaf associated to R1

q on X, and let R̃2
p be the coherent

1Marc Chardin in a recent preprint [5] has proved that Conjecture 1.1 holds in general.
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sheaf associated to R2
p on X̄. Observe further that R1

q =
⊕

p∈Z
[
Iq

]
p+qd

= Iq(qd),
the module Iq shifted by qd. As a consequence, for any p, q ∈ Z we have

R̃1
q(p) = Ĩq(p + qd).

Thus, to study the regularity of Iq, we examine sheaf cohomology groups of R̃1
q(p).

Our results are obtained by investigating how these sheaf cohomology groups behave
by pulling back via the blowup map π and pushing forward through the projection
map φ.

Our paper is outlined as follows. In the next section, we consider X̃ as a biprojective
scheme and prove a similar statement to Conjecture 1.1 for the a∗-invariant. In the
last section, we prove an important case of Conjectures 1.1.

2. Bi-projective schemes and a∗-invariants

The goal of this section is to give a similar statement to Conjecture 1.1 for the
a∗-invariant of powers of an ideal. We first recall the definition of regularity and
a∗-invariant.

Definition 2.1. For any N-graded algebra T , let T+ denote its irrelevant ideal. For
i ≥ 0, let ai(T ) = max{l | [Hi

T+
(T )]l 6= 0} (if Hi

T+
(T ) = 0 then take ai(T ) = −∞).

The a∗-invariant and the regularity of T are defined to be

a∗(T ) = max
i≥0

{ai(T )} and reg(T ) = max
i≥0

{ai(T ) + i}.

Note that Hi
T+

(T ) = 0 for i > dim T , so a∗(T ) and reg(T ) are well-defined and finite
invariants.

Let S denote the homogeneous coordinate ring of X̄ ⊆ Pm. For each closed point
℘ ∈ X̄, i.e., ℘ is a homogeneous prime ideal in S, let R℘ be the localization of R at
℘; that is, R℘ = R⊗S S℘. The homogeneous localization of R at ℘, denoted by R(℘),
is the collection of all element of degree 0 (in t) of R℘. Observe that homogeneous
localization at ℘ annihilates the grading with respect to powers of t. Thus, inheriting
from the bi-graded structure of R, the homogeneous localization R(℘) is a N-graded
ring. The regularity and a∗-invariant of R(℘) are therefore defined as usual.

Associated to φ : X̃ → X̄, let

ai(φ) = max{ai(R(℘)) | ℘ ∈ X̄} for i ≥ 0,

a∗(φ) = max{a∗(R(℘)) | ℘ ∈ X̄}, and

reg(φ) = max{reg(R(℘)) | ℘ ∈ X̄}.

Remark 2.2. By definition, a∗(φ) = maxi≥0{ai(φ)} and reg(φ) = maxi≥0{ai(φ)+i}.
Note that Hi

R(℘)+
(R(℘)) =

[
Hi
R+

(R)
]
(℘)

, where on the right hand side we view R
under its N-graded structure R =

⊕
p∈ZR2

p, which induces the embedding S ↪→ R.
Thus, ai(φ) is a well-defined and finite invariant for any i ≥ 0. As a consequence,
a∗(φ) and reg(φ) are well-defined and finite invariants. These invariants are defined
in a similar fashion to the projective a∗-invariant that was introduced in [16]. We
shall also let rφ denote the smallest integer r such that

a∗(φ) = ar(φ).
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Recall further that the Rees algebra R = R[It] of I is naturally bi-graded with
R(p,q) = (Iq)p+qdt

q, and we identify X̃ with ProjR ⊆ Pn × Pm. It can also be
seen that X̃ and X̄ can be realized as the (closure of the) graph and the (closure of
the) image of the rational map ϕ : X 99K Pm given by P 7→ [F0(P ) : · · · : Fm(P )]
(cf. [8, 15, 16]). Under this identification, π and φ are restrictions on X̃ of natural
projections Pn × Pm → Pn and Pn × Pm → Pm. We have the following diagram:

X̃ ⊆ Pn × Pm

π ↙ ↘ φ

X
ϕ

99K X̄

Let I be the ideal sheaf of I, and let L = IO eX = O eX(0, 1).

Lemma 2.3. With notations as above.

(1) The homogeneous coordinate ring of X̄ is S ' k[F0t, . . . , Fmt].
(2) φ∗OX̄(q) = Lq ⊗ π∗OX(qd) ∀ q ∈ Z.
(3) O eX(p, q) = π∗OX(p)⊗ φ∗OX̄(q) ' Lq ⊗ π∗OX(p + qd) ∀ p, q ∈ Z.

Proof. (1) follows from the construction of ϕ. (2) and (3) follow from the graded
structures of R,R and S. �

The next few lemmas exhibit how the a∗-invariant of fibers of φ governs sheaf
cohomology groups via a push forward along φ.

Lemma 2.4. Let p > a∗(φ). Then

(1) φ∗O eX(p, q) = R̃2
p(q) and Rjφ∗O eX(p, q) = 0 for any j > 0 and any q ∈ Z,

(2) Hi(X̃,O eX(p, q)) = 0 for i > 0 and q � 0.

Proof. By Lemma 2.3 and the projection formula we have

φ∗O eX(p, q) = φ∗O eX(p, 0)⊗OX̄(q) and Rjφ∗O eX(p, q) = Rjφ∗O eX(p, 0)⊗OX̄(q).

Thus, to show (1) it suffices to prove the assertion for q = 0.
Let ℘ be any closed point of X̄, and consider the restriction φ℘ : X̃℘ = ProjR(℘) →

SpecOX̄,℘ of φ over an open affine neighborhood SpecOX̄,℘ of ℘. We have

Rjφ∗O eX(p, 0)
∣∣∣
SpecOX̄,℘

= Rjφ∗

(
R̃(℘)(p)

)
= Hj(X̃℘, R̃(℘)(p))g ∀ j ≥ 0.(2.1)

For any j ≥ 0 and any ℘ ∈ X̄, we have p > a∗(φ) ≥ aj(R(℘)); and thus,[
Hj
R(℘)+

(R(℘))
]
p

= 0. Moreover, the Serre-Grothendieck correspondence give us an
exact sequence

0 →
[
H0
R(℘)+

(R(℘))
]
p
→

[
R(℘)

]
p

=
(
R2

p

)
(℘)

→ H0(X̃℘, R̃(℘)(p)) →
[
H1
R(℘)+

(R(℘))
]
p
→ 0

and isomorphisms

Hi(X̃℘, R̃(℘)(p)) '
[
Hi+1
R(℘)+

(R(℘))
]
p

for i > 0.
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Therefore, for any j ≥ 0 and any ℘ ∈ X̄,

Rjφ∗O eX(p, 0)
∣∣∣
SpecOX̄,℘

= Hj(X̃℘, R̃(℘)(p))g =

{
˜(R2

p)(℘) for j = 0
0 for j > 0.

This is true for any ℘ ∈ X̄, and so (1) is proved.
Now, it follows from (1) that the Leray spectral sequence Hi(X̄, Rjφ∗O eX(p, q)) ⇒

Hi+j(X̃,O eX(p, q)) degenerates. Thus, for any j ≥ 0,

Hj(X̃,O eX(p, q)) = Hj(X̄, R̃2
p(q)).

Moreover, since OX̄(1) is a very ample divisor, we have Hj(X̄, R̃2
p(q)) = 0 for all

q � 0, and (2) is proved. �

Lemma 2.5. Let rφ be defined as above.

(1) If rφ ≤ 1 then H0(X̃,O eX(a∗(φ), q)) 6= R(a∗(φ),q) for q � 0.
(2) If rφ ≥ 2 then Hrφ−1(X̃,O eX(a∗(φ), q)) 6= 0 for q � 0.

Proof. For simplicity, let a = a∗(φ). By the definition of rφ, we have{ [
Hi
R(℘)+

(R(℘))
]
a

= 0 for i < rφ and any ℘ ∈ X̄[
H

rφ

R(q)+
(R(q))

]
a
6= 0 for some q ∈ X̄.

(2.2)

(1) If rφ ≤ 1 then it follows from (2.2) and the Serre-Grothendieck correspondence
that H0(X̃q, R̃(q)(a)) 6=

[
R(q)

]
a

=
(
R2

a

)
(q)

. This and (2.1) imply that φ∗O eX(a, 0) 6=

R̃2
a, and so

φ∗O eX(a, q) 6= R̃2
a(q) for any q ∈ Z.

Since both φ∗O eX(a, q) = φ∗O eX(a, 0) ⊗ OX̄(q) (by Lemma 2.3 and the projection
formula) and R̃2

a(q) are generated by global sections for q � 0, we must have

H0(X̄, φ∗O eX(a, q)) 6= H0(X̄, R̃2
a(q)) = R(a,q) ∀ q � 0.

Moreover, H0(X̃,O eX(a, q)) = H0(X̄, φ∗O eX(a, q)). Thus,

H0(X̃,O eX(a, q)) 6= R(a,q) for q � 0.

(2) If rφ ≥ 2, then it follows from (2.2) and (2.1) that{
Rjφ∗O eX(a, q) = 0 for 0 < j < rφ − 1,
Rrφ−1φ∗O eX(a, q) 6= 0.(2.3)

By Lemma 2.3 and the projection formula, φ∗O eX(a, q) = φ∗O eX(a, 0)⊗OX̄(q). Thus,
for q � 0 we have Hrφ−1(X̄, φ∗O eX(a, q)) = 0. From this, together with (2.3) and the
Leray spectral sequence Hi(X̄, Rjφ∗O eX(a, q)) ⇒ Hi+j(X̃,O eX(a, q)), we can deduce
that

Hrφ−1(X̃,O eX(a, q)) = H0(X̄, Rrφ−1φ∗O eX(a, q)) for q � 0.

It then follows, since Rrφ−1φ∗O eX(a, q) = Rrφ−1φ∗O eX(a, 0) ⊗OX̄(q) is globally gen-
erated for q � 0, that

Hrφ−1(X̃,O eX(a, q)) 6= 0 for q � 0.

�
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Our first main result is a similar statement to Conjecture 1.1 for the a∗-invariant.

Theorem 2.6. Let X = ProjR ⊆ Pn be a projective scheme, and let I ⊆ R be a
homogeneous ideal generated by forms of degree d. Let a∗(φ) = max{a∗(X̃℘) | ℘ ∈ X̄}.
Then for q � 0, we have

a∗(Iq) = qd + a∗(φ).

Proof. By a similar argument as in Lemma 2.4, considering π∗ instead of φ∗, we can
show that for q � 0,

π∗O eX(p, q) = R̃1
q(p) = Ĩq(p + qd) and Rjπ∗O eX(p, q) = 0 ∀ j > 0.(2.4)

This implies that for q � 0, the Leray spectral sequence Hi(X, Rjπ∗O eX(p, q)) ⇒
Hi+j(X̃,O eX(p, q)) degenerates and we have

Hj(X̃,O eX(p, q)) = Hj(X, Ĩq(p + qd)) ∀ j ≥ 0.

Therefore, for j > 0, q � 0 and p > a∗(φ), it follows from Lemma 2.4 that
Hj(X, Ĩq(p + qd)) = 0. That is, [

Hj+1
R+

(Iq)
]
p+qd

= 0.(2.5)

Furthermore, for j = 0 and q � 0, we have H0(X̄, R̃2
p(q)) = H0(X̃,O eX(p, q)) =

H0(X, Ĩq(p + qd)), where the first equality follows from Lemma 2.4. On the other
hand, for q � 0, H0(X̄, R̃2

p(q)) = (R2
p)q = R(p,q) = [Iq]p+qd. Thus, for q � 0,

H0(X, Ĩq(p + qd)) = [Iq]p+qd. This and (2.5) imply that for q � 0,

a∗(Iq) ≤ qd + a∗(φ).

To prove the other inequality, let rφ be defined as in Remark 2.2. We consider two
cases: rφ ≤ 1 and rφ ≥ 2. If rφ ≤ 1 then by Lemma 2.5, H0(X̃,O eX(a∗(φ), q)) 6=
R(a∗(φ),q) for all q � 0. This implies that H0(X, π∗O eX(a∗(φ), q)) 6= R(a∗(φ),q) for
q � 0. That is,

H0(X, Ĩq(a∗(φ) + qd)) 6=
[
Iq

]
a∗(φ)+qd

∀ q � 0.

By the Serre-Grothendieck correspondence, for q � 0, we have either[
H0

R+
(Iq)

]
(a∗(φ)+qd,q)

6= 0 or
[
H1

R+
(Iq)

]
(a∗(φ)+qd,q)

6= 0.

It then follows that a∗(Iq) ≥ qd + a∗(φ) for q � 0.
If rφ ≥ 2, then by Lemma 2.5, Hrφ−1(X̃,O eX(a∗(φ), q)) 6= 0 for q � 0. Moreover,

for q � 0, it follows from (2.4) that the Leray spectral sequence

Hi(X, Rjπ∗O eX(p, q)) ⇒ Hi+j(X̃,O eX(p, q))

degenerates. Thus, for q � 0, we have Hrφ−1(X, Ĩq(a∗(φ) + qd)) 6= 0. By the Serre-
Grothendieck correspondence, we have

[
H

rφ

R+
(Iq)

]
a∗(φ)+qd

6= 0 for q � 0. This implies
that a∗(Iq) ≥ qd + a∗(φ) for q � 0. �
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Example 2.7. Let R =
⊕

n≥0 Rn be a Cohen-Macaulay standard graded domain,
and let A = (aij)1≤i≤r,1≤j≤s be an r × s matrix (r ≤ s) of entries in R1. Let It(A)
denote the ideal generated by t× t minors of A, and let I = Ir(A). Assume that for
any 1 ≤ t ≤ r, ht It(A) ≥ (r − t + 1)(s − r) + 1. Let ı(ωR) be the least generating
degree of ωR, the canonical module of R. Then for q � 0,

a∗(Iq) = qr − ı(ωR).

Indeed, let S = k[It] denote the homogeneous coordinate ring of X̄, let ℘ be any point
in X̄, and let T = R(℘). By [11, Theorem 3.5], the Rees algebraR is Cohen-Macaulay.
Thus, R(℘) is Cohen-Macaulay. This implies that

a∗(T ) = adim T (T ) = −min{s | [ωT ]s 6= 0}.
Furthermore, by [17, Example 3.8],

ωR = ωR(1, t)g−2 = ωR ⊕ ωRt⊕ · · · ⊕ ωRtg−2 ⊕ ωRItg−1 ⊕ . . . ,

where g = ht I. Hence, by localizing at ℘, we obtain

ωT =
(
ωR

)
(℘)

=
(
ωR(1, t)g−2

)
(℘)

.

Observe that the homogeneous localization at ℘ annihilates the grading inherited
from powers of t, so it follows that the degrees of ωT arise from the degrees of ωR.
That is, ı(ωT ) = ı(ωR), and the conclusion follows from Theorem 2.6.

3. Regularity of powers of ideals

In this section, we investigate the asymptotic linearity of regularity and prove a
special case of Conjecture 1.1.

We start by giving an upper and a lower bound for the free constant of reg(Iq) in
terms of a∗(φ).

Theorem 3.1. Let X = ProjR ⊆ Pn be a projective scheme, and let I ⊆ R be a
homogeneous ideal generated by forms of degree d. Let a∗(φ) = max{a∗(X̃℘) | ℘ ∈
X̄}. Then there exists an integer 0 ≤ r ≤ dim R such that for q � 0, we have
reg(Iq) = qd + a∗(φ) + r. In particular, for q � 0,

qd + a∗(φ) ≤ reg(Iq) ≤ qd + a∗(φ) + dim R.

Proof. Suppose reg(Iq) = aq + b for q � 0. It can be easily seen from the definition
of the regularity and a∗-invariant of graded R-modules that a∗(Iq) ≤ reg(Iq) ≤
a∗(Iq) + dim R for any q. This and Theorem 2.6 imply that a = d; that is, reg(Iq) =
qd + b for q � 0. Let r = b − a∗(φ). Then reg(Iq) = qd + a∗(φ) + r, and since
a∗(Iq) ≤ reg(Iq) ≤ a∗(Iq) + dim R, we have 0 ≤ r ≤ dim R. �

Our next result shows that Conjecture 1.1 holds under an extra condition that each
fiber X̃℘ is an arithmetically Cohen-Macaulay scheme.

Theorem 3.2. Let X = ProjR ⊆ Pn be an irreducible projective scheme of dimension
at least 1, and let I ⊆ R be a homogeneous ideal generated by forms of degree d. Let
reg(φ) = max{reg(X̃℘) | ℘ ∈ X̄}. Assume that each fiber X̃℘ is an arithmetically
Cohen-Macaulay scheme. Then for q � 0, we have

reg(Iq) = qd + reg(φ).
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Proof. Let l = dim X ≥ 1. Since X is irreducible, X̃ is also irreducible. More-
over, for any point ℘ ∈ X̄, SpecOX̄,℘ is an open neighborhood of ℘, and so X̃℘ =
φ−1(SpecOX̄,℘) is an open subset in X̃. Thus, dim X̃℘ = dim X̃ = dim X.

By the hypothesis, for each ℘ ∈ X̄, R(℘) is a Cohen-Macaulay ring of dimension
dim X̃℘ + 1 = l + 1. This implies that a∗(R(℘)) = al+1(R(℘)) and reg(R(℘)) =
al+1(R(℘)) + (l + 1). Therefore,

a∗(φ) = al+1(φ),(3.1)

reg(φ) = a∗(φ) + l + 1.(3.2)

It follows from (3.1) that rφ = l + 1 ≥ 2. By the same arguments as the last
part of the proof of Theorem 2.6, we have that for q � 0, reg(Iq) ≥ qd + a∗(φ) +
rφ = qd + a∗(φ) + dim R. This, together with Theorem 3.1, implies that for q � 0,
reg(Iq) = qd + a∗(φ) + dim R. The conclusion now follows from (3.2). �

Corollary 3.3. Let X = ProjR ⊆ Pn be an irreducible projective scheme of dimen-
sion at least 1, and let I ⊆ R be a homogeneous ideal generated by forms of degree d.
Assume that R is a Cohen-Macaulay ring. Then for q � 0,

reg(Iq) = qd + reg(φ).

Proof. Since R is Cohen-Macaulay, so is R(℘) for any ℘ ∈ X̄. Thus, each fiber X̃℘ is
arithmetically Cohen-Macaulay. The conclusion follows from Theorem 3.2. �

We shall end the paper with a number of examples in which the hypotheses of
Corollary 3.3 are satisfied.

Example 3.4. Let R and I be as in Example 2.7. In this case, I is generated in
degree r. As noted before, the Rees algebra R is Cohen-Macaulay. Notice further
that X = ProjR is an irreducible projective scheme. Thus, by Corollary 3.3, we have

reg(Iq) = qr + reg(φ) ∀ q � 0.

Example 3.5. Let R = k[xij ]1≤i≤r,1≤j≤s and let I be the ideal generated by t × t
minors of M = (xij)1≤i≤r,1≤j≤s for some 1 ≤ t ≤ min{r, s}. By [11, Theorem 3.5]
and [3, Corollary 3.3], the Rees algebra R of I is Cohen-Macaulay. Also, X = ProjR
is an irreducible projective scheme. It follows from Corollary 3.3 that

reg(Iq) = qt + reg(φ) ∀ q � 0.

Example 3.6. Let R be a Cohen-Macaulay graded domain of dimension at least 2.
Let I be either a complete intersection, or an almost complete intersection that is also
generically a complete intersection. Assume that I is generated in degree d. Then
the Rees algebra R of I is Cohen-Macaulay (cf. [2, 21]). By Corollary 3.3, we have

reg(Iq) = qd + reg(φ) ∀ q � 0.
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[15] H.T. Hà. On the Rees algebra of certain codimension two perfect ideals. Manuscripta Math.

107 (2002), no. 4, 479501.
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