ASYMPTOTIC LINEARITY OF REGULARITY AND a^* -INVARIANT OF POWERS OF IDEALS

Huy Tài Hà

ABSTRACT. Let $X = \operatorname{Proj} R$ be a projective scheme over a field k, and let $I \subseteq R$ be an ideal generated by forms of the same degree d. Let $\pi : \widetilde{X} \to X$ be the blowing up of X along the subscheme defined by I, and let $\phi : \widetilde{X} \to \overline{X}$ be the projection given by the divisor $dE_0 - E$, where E is the exceptional divisor of π and E_0 is the pullback of a general hyperplane in X. We investigate how the asymptotic linearity of the regularity and the a^* -invariant of I^q (for $q \gg 0$) is related to invariants of fibers of ϕ .

1. Introduction

Let k be a field and let $X = \operatorname{Proj} R \subseteq \mathbb{P}^n$ be a projective scheme over k. Let $I \subseteq R$ be a homogeneous ideal. It is well known (cf. [1, 4, 6, 7, 9, 12, 18, 20]) that $\operatorname{reg}(I^q) = aq + b$, a linear function in q, for $q \gg 0$. While the linear constant a is quite well understood from reduction theory (see [20]), the free constant b remains mysterious (see [10, 19] for partial results). Recently, Eisenbud and Harris [10] showed that when I is generated by general forms of the same degree, whose zeros set is empty in X, b can be related to a set of local data, namely, the regularity of fibers of the projection map defined by the generators of I. The aim of this paper is to exhibit a similar phenomenon in a more general situation, when I is generated by arbitrary forms of the same degree. In this case, the generators of I do not necessarily give a morphism. The projection map that we will examine is the map from the blowup of I along the subscheme defined by I, considered as a bi-projective scheme, to its second coordinate.

Let $I=(F_0,\ldots,F_m)$, where F_0,\ldots,F_m are homogeneous elements of degree d in R. Let $\pi:\widetilde{X}\to X$ be the blowing up of X along the subscheme defined by I. Let $\mathcal{R}=R[It]$ be the Rees algebra of I. By letting deg $F_it=(d,1)$, the Rees algebra \mathcal{R} is naturally bi-graded with $\mathcal{R}=\bigoplus_{p,q\in\mathbb{Z}}\mathcal{R}_{(p,q)}$, where $\mathcal{R}_{(p,q)}=(I^q)_{p+qd}t^q$. Under this bi-gradation of \mathcal{R} , we can identify \widetilde{X} with $\operatorname{Proj}\mathcal{R}\subseteq\mathbb{P}^n\times\mathbb{P}^m$ (cf. [8, 15, 16]). Also, the projection $\phi:\operatorname{Proj}\mathcal{R}\to\mathbb{P}^m$ is in fact the morphism given by the divisor $D=dE_0-E$, where E is the exceptional divisor of π and E_0 is the pullback of a general hyperplane in X. For a close point $\wp\in\bar{X}=\operatorname{image}(\phi)$, let $\widetilde{X}_\wp=\widetilde{X}\times_{\bar{X}}\operatorname{Spec}\mathcal{O}_{\bar{X},\wp}$ be the fiber of ϕ over the affine neighborhood $\operatorname{Spec}\mathcal{O}_{\bar{X},\wp}$ of \wp . Then $\widetilde{X}_\wp=\operatorname{Proj}\mathcal{R}_{(\wp)}$, where $\mathcal{R}_{(\wp)}$ is the homogeneous localization of \mathcal{R} at \wp . We define the regularity of \widetilde{X}_\wp , denoted by $\operatorname{reg}(\widetilde{X}_\wp)$, to be that of $\mathcal{R}_{(\wp)}$. Inspired by the work of Eisenbud and Harris [10], we propose the following conjecture.

Received by the editors April 8, 2010.

²⁰⁰⁰ Mathematics Subject Classification. 13D45, 13D02, 14B15, 14F05.

Key words and phrases. regularity, a-invariant, asymptotic linearity, fibers of projection maps.

Conjecture 1.1. Let $X = \operatorname{Proj} R \subseteq \mathbb{P}^n$ be a projective scheme, and let $I \subseteq R$ be a homogeneous ideal generated by forms of degree d. Let $\operatorname{reg}(\phi) = \max\{\operatorname{reg}(\widetilde{X}_{\wp}) \mid \wp \in \overline{X}\}$. Then for $q \gg 0$,

$$reg(I^q) = qd + reg(\phi).$$

We provide a strong evidence¹ for Conjecture 1.1. More precisely, we prove a similar statement to Conjecture 1.1 for the a^* -invariant, a closely related variant of the regularity. For a closed point $\wp \in \bar{X}$, we define the a^* -invariant of \tilde{X}_\wp , denoted by $a^*(\tilde{X}_\wp)$, to be the a^* -invariant of its homogeneous coordinate ring $\mathcal{R}_{(\wp)}$. Our first main result is stated as follows.

Theorem 1.2 (Theorems 2.6). Let $X = \operatorname{Proj} R \subseteq \mathbb{P}^n$ be a projective scheme, and let $I \subseteq R$ be a homogeneous ideal generated by forms of degree d. Let $a^*(\phi) = \max\{a^*(\widetilde{X}_\wp) \mid \wp \in \overline{X}\}$. Then for $q \gg 0$, we have

$$a^*(I^q) = qd + a^*(\phi).$$

As a consequence of Theorem 1.2, we obtain in Theorem 3.1 an upper and a lower bounds for the asymptotic linear function $reg(I^q)$. We prove that for $q \gg 0$,

$$qd + a^*(\phi) \le \operatorname{reg}(I^q) \le qd + a^*(\phi) + \dim R.$$

This, in particular, allows us to settle Conjecture 1.1 in an important case. A fiber \widetilde{X}_{\wp} is said to be arithmetically Cohen-Macaulay if its homogeneous coordinate ring \mathcal{R}_{\wp} is Cohen-Macaulay. Our next result shows that Conjecture 1.1 holds under the additional condition that each fiber \widetilde{X}_{\wp} is arithmetically Cohen-Macaulay. This hypothesis is satisfied, for instance, when the Rees algebra \mathcal{R} is a Cohen-Macaulay ring.

Theorem 1.3 (Theorem 3.2). Let $X = \operatorname{Proj} R \subseteq \mathbb{P}^n$ be an irreducible projective scheme of dimension at least 1, and let $I \subseteq R$ be a homogeneous ideal generated by forms of degree d. Let $\operatorname{reg}(\phi) = \max\{\operatorname{reg}(\widetilde{X}_{\wp}) \mid \wp \in \overline{X}\}$. Assume that each fiber \widetilde{X}_{\wp} is an arithmetically Cohen-Macaulay scheme. Then for $q \gg 0$, we have

$$reg(I^q) = qd + reg(\phi).$$

Our method in proving Theorem 1.2, and subsequently Theorem 1.3, is based upon investigating different graded structures of the Rees algebra \mathcal{R} . More precisely, beside the natural bi-graded structure mentioned above, \mathcal{R} possesses two other \mathbb{N} -graded structures; namely

$$\mathcal{R} = \bigoplus_{q \in \mathbb{Z}} \mathcal{R}_q^1$$
, where $\mathcal{R}_q^1 = \bigoplus_{p \in \mathbb{Z}} \mathcal{R}_{(p,q)}$, and $\mathcal{R} = \bigoplus_{p \in \mathbb{Z}} \mathcal{R}_p^2$, where $\mathcal{R}_p^2 = \bigoplus_{q \in \mathbb{Z}} \mathcal{R}_{(p,q)}$.

Under these N-graded structures, it can be seen that $R = \mathcal{R}_0^1 \hookrightarrow \mathcal{R}$, \mathcal{R}_q^1 is a graded R-modules for any $q \in \mathbb{Z}$, $S = \mathcal{R}_0^2 \hookrightarrow \mathcal{R}$, and \mathcal{R}_p^2 is a graded S-modules for any $p \in \mathbb{Z}$. Let $\widetilde{\mathcal{R}_q^1}$ be the coherent sheaf associated to \mathcal{R}_q^1 on X, and let $\widetilde{\mathcal{R}_p^2}$ be the coherent

¹Marc Chardin in a recent preprint [5] has proved that Conjecture 1.1 holds in general.

sheaf associated to \mathcal{R}_p^2 on \bar{X} . Observe further that $\mathcal{R}_q^1 = \bigoplus_{p \in \mathbb{Z}} \left[I^q \right]_{p+qd} = I^q(qd)$, the module I^q shifted by qd. As a consequence, for any $p, q \in \mathbb{Z}$ we have

$$\widetilde{\mathcal{R}}_q^1(p) = \widetilde{I}^q(p+qd).$$

Thus, to study the regularity of I^q , we examine sheaf cohomology groups of $\mathcal{R}^1_q(p)$. Our results are obtained by investigating how these sheaf cohomology groups behave by pulling back via the blowup map π and pushing forward through the projection map ϕ .

Our paper is outlined as follows. In the next section, we consider \widetilde{X} as a biprojective scheme and prove a similar statement to Conjecture 1.1 for the a^* -invariant. In the last section, we prove an important case of Conjectures 1.1.

2. Bi-projective schemes and a^* -invariants

The goal of this section is to give a similar statement to Conjecture 1.1 for the a^* -invariant of powers of an ideal. We first recall the definition of regularity and a^* -invariant.

Definition 2.1. For any N-graded algebra T, let T_+ denote its irrelevant ideal. For $i \geq 0$, let $a^i(T) = \max\{l \mid [H^i_{T_+}(T)]_l \neq 0\}$ (if $H^i_{T_+}(T) = 0$ then take $a^i(T) = -\infty$). The a^* -invariant and the regularity of T are defined to be

$$a^*(T) = \max_{i \ge 0} \{a^i(T)\}\$$
and $\operatorname{reg}(T) = \max_{i \ge 0} \{a^i(T) + i\}.$

Note that $H_{T_+}^i(T)=0$ for $i>\dim T$, so $a^*(T)$ and $\operatorname{reg}(T)$ are well-defined and finite invariants.

Let S denote the homogeneous coordinate ring of $\bar{X} \subseteq \mathbb{P}^m$. For each closed point $\wp \in \bar{X}$, i.e., \wp is a homogeneous prime ideal in S, let \mathcal{R}_\wp be the localization of \mathcal{R} at \wp ; that is, $\mathcal{R}_\wp = \mathcal{R} \otimes_S S_\wp$. The homogeneous localization of \mathcal{R} at \wp , denoted by $\mathcal{R}_{(\wp)}$, is the collection of all element of degree 0 (in t) of \mathcal{R}_\wp . Observe that homogeneous localization at \wp annihilates the grading with respect to powers of t. Thus, inheriting from the bi-graded structure of \mathcal{R} , the homogeneous localization $\mathcal{R}_{(\wp)}$ is a \mathbb{N} -graded ring. The regularity and a^* -invariant of $\mathcal{R}_{(\wp)}$ are therefore defined as usual.

Associated to $\phi: \widetilde{X} \to \overline{X}$, let

$$\begin{split} a^i(\phi) &= \max\{a^i(\mathcal{R}_{(\wp)}) \mid \wp \in \bar{X}\} \text{ for } i \geq 0, \\ a^*(\phi) &= \max\{a^*(\mathcal{R}_{(\wp)}) \mid \wp \in \bar{X}\}, \text{ and } \\ \operatorname{reg}(\phi) &= \max\{\operatorname{reg}(\mathcal{R}_{(\wp)}) \mid \wp \in \bar{X}\}. \end{split}$$

Remark 2.2. By definition, $a^*(\phi) = \max_{i \geq 0} \{a^i(\phi)\}$ and $\operatorname{reg}(\phi) = \max_{i \geq 0} \{a^i(\phi) + i\}$. Note that $H^i_{\mathcal{R}_{(\wp)}}(\mathcal{R}_{(\wp)}) = [H^i_{\mathcal{R}_+}(\mathcal{R})]_{(\wp)}$, where on the right hand side we view \mathcal{R} under its \mathbb{N} -graded structure $\mathcal{R} = \bigoplus_{p \in \mathbb{Z}} \mathcal{R}^2_p$, which induces the embedding $S \hookrightarrow \mathcal{R}$. Thus, $a^i(\phi)$ is a well-defined and finite invariant for any $i \geq 0$. As a consequence, $a^*(\phi)$ and $\operatorname{reg}(\phi)$ are well-defined and finite invariants. These invariants are defined in a similar fashion to the *projective* a^* -invariant that was introduced in [16]. We shall also let r_ϕ denote the smallest integer r such that

$$a^*(\phi) = a^r(\phi).$$

HUY TÀI HÀ

Recall further that the Rees algebra $\mathcal{R} = R[It]$ of I is naturally bi-graded with $\mathcal{R}_{(p,q)} = (I^q)_{p+qd}t^q$, and we identify \widetilde{X} with $\operatorname{Proj}\mathcal{R} \subseteq \mathbb{P}^n \times \mathbb{P}^m$. It can also be seen that \widetilde{X} and \overline{X} can be realized as the (closure of the) graph and the (closure of the) image of the rational map $\varphi: X \dashrightarrow \mathbb{P}^m$ given by $P \mapsto [F_0(P): \cdots: F_m(P)]$ (cf. [8, 15, 16]). Under this identification, π and ϕ are restrictions on \widetilde{X} of natural projections $\mathbb{P}^n \times \mathbb{P}^m \to \mathbb{P}^n$ and $\mathbb{P}^n \times \mathbb{P}^m \to \mathbb{P}^m$. We have the following diagram:

$$\begin{array}{cccc} & \widetilde{X} & \subseteq & \mathbb{P}^n \times \mathbb{P}^m \\ \pi & \swarrow & \searrow & \phi \\ X & \stackrel{\varphi}{\dashrightarrow} & \bar{X} \end{array}$$

Let \mathcal{I} be the ideal sheaf of I, and let $\mathcal{L} = \mathcal{IO}_{\widetilde{X}} = \mathcal{O}_{\widetilde{X}}(0,1)$.

Lemma 2.3. With notations as above.

- (1) The homogeneous coordinate ring of \bar{X} is $S \simeq k[F_0t, \dots, F_mt]$.
- (2) $\phi^* \mathcal{O}_{\bar{X}}(q) = \mathcal{L}^q \otimes \pi^* \mathcal{O}_X(qd) \ \forall \ q \in \mathbb{Z}.$
- (3) $\mathcal{O}_{\widetilde{X}}(p,q) = \pi^* \mathcal{O}_X(p) \otimes \phi^* \mathcal{O}_{\overline{X}}(q) \simeq \mathcal{L}^q \otimes \pi^* \mathcal{O}_X(p+qd) \ \forall \ p,q \in \mathbb{Z}.$

Proof. (1) follows from the construction of φ . (2) and (3) follow from the graded structures of R, R and S.

The next few lemmas exhibit how the a^* -invariant of fibers of ϕ governs sheaf cohomology groups via a push forward along ϕ .

Lemma 2.4. Let $p > a^*(\phi)$. Then

- $(1) \ \phi_*\mathcal{O}_{\widetilde{X}}(p,q) = \widetilde{\mathcal{R}_p^2}(q) \ and \ R^j\phi_*\mathcal{O}_{\widetilde{X}}(p,q) = 0 \ for \ any \ j > 0 \ and \ any \ q \in \mathbb{Z},$
- (2) $H^i(\widetilde{X}, \mathcal{O}_{\widetilde{X}}(p,q)) = 0$ for i > 0 and $q \gg 0$.

Proof. By Lemma 2.3 and the projection formula we have

$$\phi_*\mathcal{O}_{\widetilde{\mathbf{X}}}(p,q) = \phi_*\mathcal{O}_{\widetilde{\mathbf{X}}}(p,0) \otimes \mathcal{O}_{\overline{\mathbf{X}}}(q) \text{ and } R^j\phi_*\mathcal{O}_{\widetilde{\mathbf{X}}}(p,q) = R^j\phi_*\mathcal{O}_{\widetilde{\mathbf{X}}}(p,0) \otimes \mathcal{O}_{\overline{\mathbf{X}}}(q).$$

Thus, to show (1) it suffices to prove the assertion for q = 0.

Let \wp be any closed point of \bar{X} , and consider the restriction $\phi_{\wp}: \widetilde{X}_{\wp} = \operatorname{Proj} \mathcal{R}_{(\wp)} \to \operatorname{Spec} \mathcal{O}_{\bar{X},\wp}$ of \wp over an open affine neighborhood $\operatorname{Spec} \mathcal{O}_{\bar{X},\wp}$ of \wp . We have

$$(2.1) \quad \left. R^j \phi_* \mathcal{O}_{\widetilde{X}}(p,0) \right|_{\operatorname{Spec} \mathcal{O}_{\widetilde{X},\wp}} = R^j \phi_* \left(\widetilde{\mathcal{R}_{(\wp)}}(p) \right) = H^j (\widetilde{X}_\wp, \widetilde{\mathcal{R}_{(\wp)}}(p)) \quad \forall \ j \geq 0.$$

For any $j \geq 0$ and any $\wp \in \bar{X}$, we have $p > a^*(\phi) \geq a^j(\mathcal{R}_{(\wp)})$; and thus, $\left[H^j_{\mathcal{R}_{(\wp)+}}(\mathcal{R}_{(\wp)})\right]_p = 0$. Moreover, the Serre-Grothendieck correspondence give us an exact sequence

$$0 \to \left[H^0_{\mathcal{R}_{(\wp)+}}(\mathcal{R}_{(\wp)})\right]_p \to \left[\mathcal{R}_{(\wp)}\right]_p = \left(\mathcal{R}^2_p\right)_{(\wp)}$$
$$\to H^0(\widetilde{X}_\wp, \widetilde{\mathcal{R}_{(\wp)}}(p)) \to \left[H^1_{\mathcal{R}_{(\wp)+}}(\mathcal{R}_{(\wp)})\right]_p \to 0$$

and isomorphisms

$$H^i(\widetilde{X}_{\wp}, \widetilde{\mathcal{R}_{(\wp)}}(p)) \simeq \left[H^{i+1}_{\mathcal{R}_{(\wp)+}}(\mathcal{R}_{(\wp)})\right]_p \text{ for } i>0.$$

Therefore, for any $j \geq 0$ and any $\wp \in \bar{X}$,

$$R^{j}\phi_{*}\mathcal{O}_{\widetilde{X}}(p,0)\Big|_{\operatorname{Spec}\mathcal{O}_{\widetilde{X},\wp}} = H^{j}(\widetilde{X}_{\wp}, \widetilde{\mathcal{R}_{(\wp)}}(p)) = \begin{cases} \widetilde{(\mathcal{R}_{p}^{2})_{(\wp)}} & \text{for } j = 0\\ 0 & \text{for } j > 0. \end{cases}$$

This is true for any $\wp \in \bar{X}$, and so (1) is proved.

Now, it follows from (1) that the Leray spectral sequence $H^i(\bar{X}, R^j \phi_* \mathcal{O}_{\widetilde{X}}(p, q)) \Rightarrow H^{i+j}(\widetilde{X}, \mathcal{O}_{\widetilde{X}}(p, q))$ degenerates. Thus, for any $j \geq 0$,

$$H^j(\widetilde{X},\mathcal{O}_{\widetilde{X}}(p,q))=H^j(\bar{X},\widetilde{\mathcal{R}_p^2}(q)).$$

Moreover, since $\mathcal{O}_{\bar{X}}(1)$ is a very ample divisor, we have $H^j(\bar{X}, \widetilde{\mathcal{R}_p^2}(q)) = 0$ for all $q \gg 0$, and (2) is proved.

Lemma 2.5. Let r_{ϕ} be defined as above.

- (1) If $r_{\phi} \leq 1$ then $H^0(\widetilde{X}, \mathcal{O}_{\widetilde{X}}(a^*(\phi), q)) \neq \mathcal{R}_{(a^*(\phi), q)}$ for $q \gg 0$.
- (2) If $r_{\phi} \geq 2$ then $H^{r_{\phi}-1}(\widetilde{X}, \mathcal{O}_{\widetilde{X}}(a^*(\phi), q)) \neq 0$ for $q \gg 0$.

Proof. For simplicity, let $a = a^*(\phi)$. By the definition of r_{ϕ} , we have

(2.2)
$$\left\{ \begin{array}{l} \left[H^{i}_{\mathcal{R}(\wp)+}(\mathcal{R}_{(\wp)}) \right]_{a} = 0 & \text{for } i < r_{\phi} \text{ and any } \wp \in \bar{X} \\ \left[H^{r_{\phi}}_{\mathcal{R}(\mathfrak{q})+}(\mathcal{R}_{(\mathfrak{q})}) \right]_{a} \neq 0 & \text{for some } \mathfrak{q} \in \bar{X}. \end{array} \right.$$

(1) If $r_{\phi} \leq 1$ then it follows from (2.2) and the Serre-Grothendieck correspondence that $H^0(\widetilde{X}_{\mathfrak{q}}, \widetilde{\mathcal{R}_{(\mathfrak{q})}}(a)) \neq \left[\mathcal{R}_{(\mathfrak{q})}\right]_a = \left(\mathcal{R}_a^2\right)_{(\mathfrak{q})}$. This and (2.1) imply that $\phi_*\mathcal{O}_{\widetilde{X}}(a,0) \neq \widetilde{\mathcal{R}_a^2}$, and so

$$\phi_*\mathcal{O}_{\widetilde{X}}(a,q) \neq \widetilde{\mathcal{R}_a^2}(q) \text{ for any } q \in \mathbb{Z}.$$

Since both $\phi_*\mathcal{O}_{\widetilde{X}}(a,q) = \phi_*\mathcal{O}_{\widetilde{X}}(a,0) \otimes \mathcal{O}_{\overline{X}}(q)$ (by Lemma 2.3 and the projection formula) and $\widetilde{\mathcal{R}_a^2}(q)$ are generated by global sections for $q \gg 0$, we must have

$$H^0(\bar{X}, \phi_*\mathcal{O}_{\widetilde{X}}(a, q)) \neq H^0(\bar{X}, \widetilde{\mathcal{R}_a^2}(q)) = \mathcal{R}_{(a,q)} \ \forall \ q \gg 0.$$

Moreover, $H^0(\widetilde{X}, \mathcal{O}_{\widetilde{X}}(a,q)) = H^0(\overline{X}, \phi_* \mathcal{O}_{\widetilde{X}}(a,q))$. Thus,

$$H^0(\widetilde{X}, \mathcal{O}_{\widetilde{X}}(a,q)) \neq \mathcal{R}_{(a,q)} \text{ for } q \gg 0.$$

(2) If $r_{\phi} \geq 2$, then it follows from (2.2) and (2.1) that

(2.3)
$$\begin{cases} R^{j} \phi_{*} \mathcal{O}_{\widetilde{X}}(a, q) = 0 \text{ for } 0 < j < r_{\phi} - 1, \\ R^{r_{\phi} - 1} \phi_{*} \mathcal{O}_{\widetilde{X}}(a, q) \neq 0. \end{cases}$$

By Lemma 2.3 and the projection formula, $\phi_*\mathcal{O}_{\widetilde{X}}(a,q) = \phi_*\mathcal{O}_{\widetilde{X}}(a,0) \otimes \mathcal{O}_{\overline{X}}(q)$. Thus, for $q \gg 0$ we have $H^{r_{\phi}-1}(\bar{X}, \phi_*\mathcal{O}_{\widetilde{X}}(a,q)) = 0$. From this, together with (2.3) and the Leray spectral sequence $H^i(\bar{X}, R^j\phi_*\mathcal{O}_{\widetilde{X}}(a,q)) \Rightarrow H^{i+j}(\widetilde{X}, \mathcal{O}_{\widetilde{X}}(a,q))$, we can deduce that

$$H^{r_\phi-1}(\widetilde{X},\mathcal{O}_{\widetilde{X}}(a,q))=H^0(\bar{X},R^{r_\phi-1}\phi_*\mathcal{O}_{\widetilde{X}}(a,q)) \text{ for } q\gg 0.$$

It then follows, since $R^{r_{\phi}-1}\phi_*\mathcal{O}_{\widetilde{X}}(a,q) = R^{r_{\phi}-1}\phi_*\mathcal{O}_{\widetilde{X}}(a,0)\otimes\mathcal{O}_{\overline{X}}(q)$ is globally generated for $q\gg 0$, that

$$H^{r_{\phi}-1}(\widetilde{X}, \mathcal{O}_{\widetilde{X}}(a, q)) \neq 0 \text{ for } q \gg 0.$$

HUY TÀI HÀ

Our first main result is a similar statement to Conjecture 1.1 for the a^* -invariant.

Theorem 2.6. Let $X = \operatorname{Proj} R \subseteq \mathbb{P}^n$ be a projective scheme, and let $I \subseteq R$ be a homogeneous ideal generated by forms of degree d. Let $a^*(\phi) = \max\{a^*(\widetilde{X}_\wp) \mid \wp \in \overline{X}\}$. Then for $q \gg 0$, we have

$$a^*(I^q) = qd + a^*(\phi).$$

Proof. By a similar argument as in Lemma 2.4, considering π_* instead of ϕ_* , we can show that for $q \gg 0$,

$$(2.4) \pi_*\mathcal{O}_{\widetilde{X}}(p,q) = \widetilde{\mathcal{R}_q^1}(p) = \widetilde{I^q}(p+qd) \text{ and } R^j\pi_*\mathcal{O}_{\widetilde{X}}(p,q) = 0 \ \forall \ j > 0.$$

This implies that for $q \gg 0$, the Leray spectral sequence $H^i(X, R^j \pi_* \mathcal{O}_{\widetilde{X}}(p, q)) \Rightarrow H^{i+j}(\widetilde{X}, \mathcal{O}_{\widetilde{X}}(p, q))$ degenerates and we have

$$H^{j}(\widetilde{X}, \mathcal{O}_{\widetilde{Y}}(p,q)) = H^{j}(X, \widetilde{I}^{q}(p+qd)) \ \forall \ j \geq 0.$$

Therefore, for $j>0,\ q\gg 0$ and $p>a^*(\phi),$ it follows from Lemma 2.4 that $H^j(X,\widetilde{I}^q(p+qd))=0.$ That is,

$$[H_{R_{+}}^{j+1}(I^{q})]_{p+qd} = 0.$$

Furthermore, for j=0 and $q\gg 0$, we have $H^0(\bar{X},\widetilde{\mathcal{R}_p^2}(q))=H^0(\widetilde{X},\mathcal{O}_{\widetilde{X}}(p,q))=H^0(X,\widetilde{I^q}(p+qd))$, where the first equality follows from Lemma 2.4. On the other hand, for $q\gg 0$, $H^0(\bar{X},\widetilde{\mathcal{R}_p^2}(q))=(\mathcal{R}_p^2)_q=\mathcal{R}_{(p,q)}=[I^q]_{p+qd}$. Thus, for $q\gg 0$, $H^0(X,\widetilde{I^q}(p+qd))=[I^q]_{p+qd}$. This and (2.5) imply that for $q\gg 0$,

$$a^*(I^q) \le qd + a^*(\phi).$$

To prove the other inequality, let r_{ϕ} be defined as in Remark 2.2. We consider two cases: $r_{\phi} \leq 1$ and $r_{\phi} \geq 2$. If $r_{\phi} \leq 1$ then by Lemma 2.5, $H^{0}(\widetilde{X}, \mathcal{O}_{\widetilde{X}}(a^{*}(\phi), q)) \neq \mathcal{R}_{(a^{*}(\phi),q)}$ for all $q \gg 0$. This implies that $H^{0}(X, \pi_{*}\mathcal{O}_{\widetilde{X}}(a^{*}(\phi), q)) \neq \mathcal{R}_{(a^{*}(\phi),q)}$ for $q \gg 0$. That is,

$$H^0(X,\widetilde{I^q}(a^*(\phi)+qd))\neq \left[I^q\right]_{a^*(\phi)+qd} \ \forall \ q\gg 0.$$

By the Serre-Grothendieck correspondence, for $q \gg 0$, we have either

$$[H_{R_+}^0(I^q)]_{(a^*(\phi)+qd,q)} \neq 0 \text{ or } [H_{R_+}^1(I^q)]_{(a^*(\phi)+qd,q)} \neq 0.$$

It then follows that $a^*(I^q) \ge qd + a^*(\phi)$ for $q \gg 0$.

If $r_{\phi} \geq 2$, then by Lemma 2.5, $H^{r_{\phi}-1}(\widetilde{X}, \mathcal{O}_{\widetilde{X}}(a^*(\phi), q)) \neq 0$ for $q \gg 0$. Moreover, for $q \gg 0$, it follows from (2.4) that the Leray spectral sequence

$$H^i(X,R^j\pi_*\mathcal{O}_{\widetilde{X}}(p,q))\Rightarrow H^{i+j}(\widetilde{X},\mathcal{O}_{\widetilde{X}}(p,q))$$

degenerates. Thus, for $q\gg 0$, we have $H^{r_\phi-1}(X,\widetilde{I^q}(a^*(\phi)+qd))\neq 0$. By the Serre-Grothendieck correspondence, we have $\left[H^{r_\phi}_{R_+}(I^q)\right]_{a^*(\phi)+qd}\neq 0$ for $q\gg 0$. This implies that $a^*(I^q)\geq qd+a^*(\phi)$ for $q\gg 0$.

Example 2.7. Let $R = \bigoplus_{n\geq 0} R_n$ be a Cohen-Macaulay standard graded domain, and let $A = (a_{ij})_{1\leq i\leq r, 1\leq j\leq s}$ be an $r\times s$ matrix $(r\leq s)$ of entries in R_1 . Let $I_t(A)$ denote the ideal generated by $t\times t$ minors of A, and let $I = I_r(A)$. Assume that for any $1\leq t\leq r$, ht $I_t(A)\geq (r-t+1)(s-r)+1$. Let $i(\omega_R)$ be the least generating degree of ω_R , the canonical module of R. Then for $q\gg 0$,

$$a^*(I^q) = qr - i(\omega_R).$$

Indeed, let S = k[It] denote the homogeneous coordinate ring of \bar{X} , let \wp be any point in \bar{X} , and let $T = \mathcal{R}_{(\wp)}$. By [11, Theorem 3.5], the Rees algebra \mathcal{R} is Cohen-Macaulay. Thus, $\mathcal{R}_{(\wp)}$ is Cohen-Macaulay. This implies that

$$a^*(T) = a^{\dim T}(T) = -\min\{s \mid [\omega_T]_s \neq 0\}.$$

Furthermore, by [17, Example 3.8],

$$\omega_{\mathcal{R}} = \omega_{\mathcal{R}}(1,t)^{g-2} = \omega_{\mathcal{R}} \oplus \omega_{\mathcal{R}}t \oplus \cdots \oplus \omega_{\mathcal{R}}t^{g-2} \oplus \omega_{\mathcal{R}}It^{g-1} \oplus \cdots,$$

where g = ht I. Hence, by localizing at \wp , we obtain

$$\omega_T = (\omega_R)_{(\wp)} = (\omega_R(1, t)^{g-2})_{(\wp)}.$$

Observe that the homogeneous localization at \wp annihilates the grading inherited from powers of t, so it follows that the degrees of ω_T arise from the degrees of ω_R . That is, $\iota(\omega_T) = \iota(\omega_R)$, and the conclusion follows from Theorem 2.6.

3. Regularity of powers of ideals

In this section, we investigate the asymptotic linearity of regularity and prove a special case of Conjecture 1.1.

We start by giving an upper and a lower bound for the free constant of reg(I^q) in terms of $a^*(\phi)$.

Theorem 3.1. Let $X = \operatorname{Proj} R \subseteq \mathbb{P}^n$ be a projective scheme, and let $I \subseteq R$ be a homogeneous ideal generated by forms of degree d. Let $a^*(\phi) = \max\{a^*(\widetilde{X}_\wp) \mid \wp \in \overline{X}\}$. Then there exists an integer $0 \le r \le \dim R$ such that for $q \gg 0$, we have $\operatorname{reg}(I^q) = qd + a^*(\phi) + r$. In particular, for $q \gg 0$,

$$qd + a^*(\phi) \le \operatorname{reg}(I^q) \le qd + a^*(\phi) + \dim R.$$

Proof. Suppose $\operatorname{reg}(I^q) = aq + b$ for $q \gg 0$. It can be easily seen from the definition of the regularity and a^* -invariant of graded R-modules that $a^*(I^q) \leq \operatorname{reg}(I^q) \leq a^*(I^q) + \dim R$ for any q. This and Theorem 2.6 imply that a = d; that is, $\operatorname{reg}(I^q) = qd + b$ for $q \gg 0$. Let $r = b - a^*(\phi)$. Then $\operatorname{reg}(I^q) = qd + a^*(\phi) + r$, and since $a^*(I^q) \leq \operatorname{reg}(I^q) \leq a^*(I^q) + \dim R$, we have $0 \leq r \leq \dim R$.

Our next result shows that Conjecture 1.1 holds under an extra condition that each fiber \widetilde{X}_\wp is an arithmetically Cohen-Macaulay scheme.

Theorem 3.2. Let $X = \operatorname{Proj} R \subseteq \mathbb{P}^n$ be an irreducible projective scheme of dimension at least 1, and let $I \subseteq R$ be a homogeneous ideal generated by forms of degree d. Let $\operatorname{reg}(\phi) = \max\{\operatorname{reg}(\widetilde{X}_\wp) \mid \wp \in \overline{X}\}$. Assume that each fiber \widetilde{X}_\wp is an arithmetically Cohen-Macaulay scheme. Then for $q \gg 0$, we have

$$reg(I^q) = qd + reg(\phi).$$

Proof. Let $l=\dim X\geq 1$. Since X is irreducible, \widetilde{X} is also irreducible. Moreover, for any point $\wp\in \overline{X}$, $\operatorname{Spec}\mathcal{O}_{\overline{X},\wp}$ is an open neighborhood of \wp , and so $\widetilde{X}_\wp=\phi^{-1}(\operatorname{Spec}\mathcal{O}_{\overline{X},\wp})$ is an open subset in \widetilde{X} . Thus, $\dim \widetilde{X}_\wp=\dim \widetilde{X}=\dim X$.

By the hypothesis, for each $\wp \in \bar{X}$, $\mathcal{R}_{(\wp)}$ is a Cohen-Macaulay ring of dimension $\dim \widetilde{X}_\wp + 1 = l + 1$. This implies that $a^*(\mathcal{R}_{(\wp)}) = a^{l+1}(\mathcal{R}_{(\wp)})$ and $\operatorname{reg}(\mathcal{R}_{(\wp)}) = a^{l+1}(\mathcal{R}_{(\wp)}) + (l+1)$. Therefore,

(3.1)
$$a^*(\phi) = a^{l+1}(\phi),$$

(3.2)
$$reg(\phi) = a^*(\phi) + l + 1.$$

It follows from (3.1) that $r_{\phi} = l + 1 \geq 2$. By the same arguments as the last part of the proof of Theorem 2.6, we have that for $q \gg 0$, $\operatorname{reg}(I^q) \geq qd + a^*(\phi) + r_{\phi} = qd + a^*(\phi) + \dim R$. This, together with Theorem 3.1, implies that for $q \gg 0$, $\operatorname{reg}(I^q) = qd + a^*(\phi) + \dim R$. The conclusion now follows from (3.2).

Corollary 3.3. Let $X = \operatorname{Proj} R \subseteq \mathbb{P}^n$ be an irreducible projective scheme of dimension at least 1, and let $I \subseteq R$ be a homogeneous ideal generated by forms of degree d. Assume that \mathcal{R} is a Cohen-Macaulay ring. Then for $q \gg 0$,

$$reg(I^q) = qd + reg(\phi).$$

Proof. Since \mathcal{R} is Cohen-Macaulay, so is $\mathcal{R}_{(\wp)}$ for any $\wp \in \bar{X}$. Thus, each fiber \widetilde{X}_{\wp} is arithmetically Cohen-Macaulay. The conclusion follows from Theorem 3.2.

We shall end the paper with a number of examples in which the hypotheses of Corollary 3.3 are satisfied.

Example 3.4. Let R and I be as in Example 2.7. In this case, I is generated in degree r. As noted before, the Rees algebra \mathcal{R} is Cohen-Macaulay. Notice further that $X = \operatorname{Proj} R$ is an irreducible projective scheme. Thus, by Corollary 3.3, we have

$$reg(I^q) = qr + reg(\phi) \ \forall \ q \gg 0.$$

Example 3.5. Let $R = k[x_{ij}]_{1 \le i \le r, 1 \le j \le s}$ and let I be the ideal generated by $t \times t$ minors of $M = (x_{ij})_{1 \le i \le r, 1 \le j \le s}$ for some $1 \le t \le \min\{r, s\}$. By [11, Theorem 3.5] and [3, Corollary 3.3], the Rees algebra \mathcal{R} of I is Cohen-Macaulay. Also, $X = \operatorname{Proj} R$ is an irreducible projective scheme. It follows from Corollary 3.3 that

$$reg(I^q) = qt + reg(\phi) \ \forall \ q \gg 0.$$

Example 3.6. Let R be a Cohen-Macaulay graded domain of dimension at least 2. Let I be either a complete intersection, or an almost complete intersection that is also generically a complete intersection. Assume that I is generated in degree d. Then the Rees algebra \mathcal{R} of I is Cohen-Macaulay (cf. [2, 21]). By Corollary 3.3, we have

$$reg(I^q) = qd + reg(\phi) \ \forall \ q \gg 0.$$

Acknowledgement

The author thanks M. Chardin, C. Polini and B. Ulrich for stimulating discussions on the topic, and thanks D. Eisenbud for explaining their results in [10]. The author is partially supported by Board of Regents Grant LEQSF(2007-10)-RD-A-30 and Tulane's Research Enhancement Fund.

References

- [1] A. Bertram, L. Ein and R. Lazarsfeld. Vanishing theorems, a theorem of Severi, and the equations defining projective varieties. J. Amer. Math. Soc. 4 (1991), no. 3, 587-602.
- [2] M. Brodmann. Rees rings and form rings of almost complete intersections. Nagoya Math. J. 88 (1982), 1-16.
- [3] W. Bruns. Algebras defined by powers of determinantal ideals. J. Algebra, 142 (1991), no. 1, 150-163.
- [4] K.A. Chandler. Regularity of the powers of an ideal. Comm. Algebra, 25 (1997), no. 12, 3773-3776.
- [5] M. Chardin. Powers of ideals and the cohomology of stalks and fibers of morphisms. Preprint, arXiv:1009:1271.
- [6] S.D. Cutkosky. Irrational asymptotic behaviour of Castelnuovo-Mumford regularity. J. Reine Angew. Math. 522 (2000), 93-103.
- [7] S.D. Cutkosky, L. Ein and R. Lazarsfeld. Positivity and complexity of ideal sheaves. Math. Ann. 321 (2001), no. 2, 213-234.
- [8] S.D. Cutkosky and H.T. Hà. Arithmetic Macaulayfication of projective schemes. J. Pure Appl. Algebra, 201 (2005), no. 1-3, 49-61.
- [9] S.D. Cutkosky, J. Herzog, and N.V. Trung. Asymptotic behaviour of the Castelnuovo-Mumford regularity. Composito Mathematica, 118 (1999), 243-261.
- [10] D. Eisenbud and J. Harris. Powers of ideals and fibers of morphisms. Math. Res. Lett. 17 (2010), no. 2, 267-273.
- [11] D. Eisenbud and C. Huneke. Cohen-Macaulay Rees algebras and their specialization. J. Algebra, 81 (1983), 202-224.
- [12] A.V. Geramita, A. Gimigliano and Y. Pitteloud. Graded Betti numbers of some embedded rational n-folds. Math. Ann. **301** (1995), 363-380.
- [13] S. Goto and K. Watanabe. On graded ring I. J. Math. Soc. Japan, 30 (1978), no. 2, 179-213.
- [14] R. Hartshorne. Algebraic Geometry. Graduate Texts in Mathematics 52, Springer-Verlag, New York, 1977.
- [15] H.T. Hà. On the Rees algebra of certain codimension two perfect ideals. Manuscripta Math. 107 (2002), no. 4, 479501.
- [16] H.T. Hà and N.V. Trung. Asymptotic behavior of arithmetically Cohen-Macaulay blow-ups. Trans. Amer. Math. Soc. 357 (2005), no. 9, 3655-3672.
- [17] J. Herzog, A. Simis and W.V. Vasconcelos. On the canonical module of the Rees algebra and the associated graded ring of an ideal. J. Algebra, 105 (1987), no. 2, 285-302.
- [18] V. Kodiyalam. Asymptotic behaviour of Castelnuovo-Mumford regularity. Proceedings of the American Mathematical Society, 128, no. 2, (1999), 407-411.
- [19] T. Römer. Homological properties of bigraded algebras. Illinois J. Math. 45 (2001), no. 4, 1361-1376.
- [20] N.V. Trung and H. Wang. On the asymptotic behavior of Castelnuovo-Mumford regularity. J. Pure Appl. Algebra, 201 (2005), no. 1-3, 42-48.
- [21] G. Valla. Certain graded algebras are always Cohen-Macaulay. J. Algebra, 42 (1976), 537-548.

Tulane University, Department of Mathematics, $6823~\mathrm{St.}$ Charles Ave., New Orleans, LA $70118,~\mathrm{USA}$

E-mail address: tai@math.tulane.edu

URL: http://www.math.tulane.edu/~tai/