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ASYMPTOTIC LINEARITY OF REGULARITY AND
a*-INVARIANT OF POWERS OF IDEALS

Huy TA1r HA

ABSTRACT. Let X = Proj R be a projective scheme over a field k, and let I C R be an
ideal generated by forms of the same degree d. Let 7 : X — X be the blowing up of X
along the subscheme defined by I, and let ¢ : X — X be the projection given by the
divisor dEy — E, where E is the exceptional divisor of m and Ey is the pullback of a
general hyperplane in X. We investigate how the asymptotic linearity of the regularity
and the a*-invariant of I? (for ¢ > 0) is related to invariants of fibers of ¢.

1. Introduction

Let k be a field and let X = ProjR C P" be a projective scheme over k. Let
I C R be a homogeneous ideal. It is well known (cf. [1, 4, 6, 7, 9, 12, 18, 20]) that
reg(I?) = aq + b, a linear function in ¢, for ¢ > 0. While the linear constant a is
quite well understood from reduction theory (see [20]), the free constant b remains
mysterious (see [10, 19] for partial results). Recently, Eisenbud and Harris [10] showed
that when [ is generated by general forms of the same degree, whose zeros set is empty
in X, b can be related to a set of local data, namely, the regularity of fibers of the
projection map defined by the generators of I. The aim of this paper is to exhibit
a similar phenomenon in a more general situation, when I is generated by arbitrary
forms of the same degree. In this case, the generators of I do not necessarily give
a morphism. The projection map that we will examine is the map from the blowup
of X along the subscheme defined by I, considered as a bi-projective scheme, to its
second coordinate.

Let I = (Fy,...,F,,), where Fy, ..., F,, are homogeneous elements of degree d in
R. Let m: X — X be the blowing up of X along the subscheme defined by I. Let
R = RI[It] be the Rees algebra of I. By letting deg F;t = (d, 1), the Rees algebra R is
naturally bi-graded with R = @, ,cz R(p,q)» Where R, o) = (I?)p44at?. Under this
bi-gradation of R, we can identify X with ProjR C P xP™ (cf. [8, 15, 16]). Also, the
projection ¢ : Proj R — P™ is in fact the morphism given by the divisor D = dFy—F,
where F is the exceptional divisor of w and Ej is the pullback of a general hyperplane
in X. For a close point p € X = image(¢), let )?p =X X ¢ Spec Ox , be the fiber
of ¢ over the affine neighborhood Spec O , of p. Then )?p = ProjR(,), where R,
is the homogeneous localization of R at p. We define the regularity of )?p, denoted

by reg(X,,), to be that of R . Inspired by the work of Eisenbud and Harris [10], we
propose the following conjecture.
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Conjecture 1.1. Let X = Proj R C P" be a projective scheme, and let I C R be a

homogeneous ideal generated by forms of degree d. Let reg(¢) = max{reg(X,,) | p €
X}. Then for ¢ > 0,

reg(1?) = qd + reg(¢).

We provide a strong evidence! for Conjecture 1.1. More precisely, we prove a
similar statement to Conjecture 1.1 for the a*-invariant, a closely related variant of
the regularity. For a closed point p € X, we define the a*-invariant of X, denoted

by a*(X), to be the a*-invariant of its homogeneous coordinate ring R,,y. Our first
main result is stated as follows.

Theorem 1.2 (Theorems 2.6). Let X = ProjR C P™ be a projective scheme, and
let I C R be a homogeneous ideal generated by forms of degree d. Let a*(¢) =

max{a*(X,) | p € X}. Then for ¢ > 0, we have
a*(17) = qd + a” ().

As a consequence of Theorem 1.2, we obtain in Theorem 3.1 an upper and a lower
bounds for the asymptotic linear function reg(I?). We prove that for ¢ > 0,

qd + a*(¢) < reg(I?) < qd + a*(¢) + dim R.

This, in particular, allows us to settle Conjecture 1.1 in an important case. A fiber
)N(p is said to be arithmetically Cohen-Macaulay if its homogeneous coordinate ring
R, is Cohen-Macaulay. Our next result shows that Conjecture 1.1 holds under the
additional condition that each fiber X o is arithmetically Cohen-Macaulay. This hy-
pothesis is satisfied, for instance, when the Rees algebra R is a Cohen-Macaulay
ring.

Theorem 1.3 (Theorem 3.2). Let X = ProjR C P be an irreducible projective
scheme of dimension at least 1, and let I C R be a homogeneous ideal generated by
forms of degree d. Let reg(¢) = max{reg()?p) | p € X}. Assume that each fiber )?p
is an arithmetically Cohen-Macaulay scheme. Then for ¢ > 0, we have

reg(1?) = qd + reg(¢).

Our method in proving Theorem 1.2, and subsequently Theorem 1.3, is based upon
investigating different graded structures of the Rees algebra R. More precisely, beside
the natural bi-graded structure mentioned above, R possesses two other N-graded
structures; namely

R = @’Ré, where R; = @’R(p’q), and

q€Z pEL
R =P R}, where R} = P R.q)-
PEZ qEZ

Under these N-graded structures, it can be seen that R = R} — R, R}] is a graded
R-modules for any q € Z, S = R3 — R, and Rg is a graded S-modules for any p € Z.

Let 752 be the coherent sheaf associated to Ré on X, and let 7/3:2) be the coherent

IMarc Chardin in a recent preprint [5] has proved that Conjecture 1.1 holds in general.
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sheaf associated to R on X. Observe further that Ry = P,z [Iq]p+qd = 19(qd),
the module 19 shifted by gd. As a consequence, for any p, q € Z we have

7’531(10) = I9(p + qd).

Thus, to study the regularity of 19, we examine sheaf cohomology groups of R} (p).
Our results are obtained by investigating how these sheaf cohomology groups behave
by pulling back via the blowup map 7 and pushing forward through the projection
map ¢.

Our paper is outlined as follows. In the next section, we consider X asa biprojective
scheme and prove a similar statement to Conjecture 1.1 for the a*-invariant. In the
last section, we prove an important case of Conjectures 1.1.

2. Bi-projective schemes and a*-invariants

The goal of this section is to give a similar statement to Conjecture 1.1 for the
a*-invariant of powers of an ideal. We first recall the definition of regularity and
a*-invariant.

Definition 2.1. For any N-graded algebra T, let T denote its irrelevant ideal. For
i >0, let a'(T) = max{l | [Hy, (T)]; # 0} (if Hp, (T) = 0 then take a'(T) = —o0).
The a*-invariant and the reqularity of T are defined to be

a*(T) = rznzag({ai (T)} and reg(T) = rznzag({ai (T) + i}

Note that H}+ (T)=0for ¢ > dimT, so a*(T) and reg(T) are well-defined and finite
invariants.

Let S denote the homogeneous coordinate ring of X C P™. For each closed point
o € X, ie., p is a homogeneous prime ideal in S, let R, be the localization of R at
©; that is, R, = R®g Sy,. The homogeneous localization of R at p, denoted by R,
is the collection of all element of degree 0 (in t) of R,. Observe that homogeneous
localization at g annihilates the grading with respect to powers of t. Thus, inheriting
from the bi-graded structure of R, the homogeneous localization R, is a N-graded
ring. The regularity and a*-invariant of R, are therefore defined as usual.

Associated to ¢ : X — X, let
a'(¢) = max{a’(R,)) | p € X} for i >0,

a*(¢) = max{a*(R(,)) | p € X}, and

reg(¢) = max{reg(R(,)) | p € X}.
Remark 2.2. By definition, a*(¢) = max;>o{a’(¢)} and reg(¢) = max;>o{a’(¢)+i}.
Note that H7i3(@)+ (R(p)) = [Hf}er (R)](p), where on the right hand side we view R
under its N-graded structure R = GBPGZ Rfﬁ which induces the embedding S — R.
Thus, a’(¢) is a well-defined and finite invariant for any i > 0. As a consequence,
a*(¢) and reg(¢) are well-defined and finite invariants. These invariants are defined

in a similar fashion to the projective a*-invariant that was introduced in [16]. We
shall also let r4 denote the smallest integer 7 such that

a*(¢) = a"(9)-
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Recall further that the Rees algebra R = R[[t] of I is naturally bi-graded with
Ripg) = ({q)pﬂdfq, and we identify X with ProjR C P™ x P™. It can also be
seen that X and X can be realized as the (closure of the) graph and the (closure of
the) image of the rational map ¢ : X --» P™ given by P + [Fy(P) : -+ : Fpp(P)]
(cf. [8, 15, 16]). Under this identification, 7 and ¢ are restrictions on X of natural
projections P™ x P™ — P™ and P x P™ — P™. We have the following diagram:

X C PrxPp”
T/ No¢

X % X

Let Z be the ideal sheaf of I, and let £L =705 = 0%(0,1).

Lemma 2.3. With notations as above.

(1) The homogeneous coordinate ring of X is S ~ k[Fot, ..., Fnt].
(2) 9*O0x(q) = LY@ 7 Ox(qd) ¥ q € Z.
(3) Ox(p,q) = Ox(p) ® ¢"Ox(q) ~ LT®@ 7" Ox(p+qd) ¥V p,q € Z.

Proof. (1) follows from the construction of ¢. (2) and (3) follow from the graded
structures of R, R and S. O

The next few lemmas exhibit how the a*-invariant of fibers of ¢ governs sheaf
cohomology groups via a push forward along ¢.

Lemma 2.4. Let p > a*(¢). Then
(1) 6.05(p.q) = R3(q) and K605 (p,q) =0 for any j >0 and any q € Z,
(2) H(X,0%(p,q)) =0 fori >0 and ¢ > 0.
Proof. By Lemma 2.3 and the projection formula we have
$.05(p,q) = $.0%(p,0) ® Ox(q) and R?$.0%(p,q) = R $.05(p,0) ® Ox(q).

Thus, to show (1) it suffices to prove the assertion for ¢ = 0.

Let p be any closed point of X, and consider the restriction oP X o = Proj R, —
Spec Ox , of ¢ over an open affine neighborhood Spec Ox , of p. We have

(21)  Ri6.05(p,0)|,

= 19.(Ri)(p) = H (X, Ry (p)) V20,

pecOx

For any j > 0 and any p € X, we have p > a*(¢) > a/(R(y)); and thus,
I:ng((p)'#(R(p))]p = 0. Moreover, the Serre-Grothendieck correspondence give us an
exact sequence

0 2
0— [HR<p)+(R(@))]p - [R(p)]p = (Rp)(p)
— H°(X, R (p) — [H713(@>+(R(@))]p —0
and isomorphisms

H'(Xy, Rig)(p) = [HE ! (Ry))], for i > 0.
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Therefore, for any j > 0 and any p € X,

—_~—

‘ (X R (o)) R2 for j =0
Re0z®,0)| o =H XpRp)p) :{ é 2)() f2§;>0
ec X, .

This is true for any p € X, and so (1) is proved. )
Now, it follows from (1) that the Leray spectral sequence H*(X, R1¢,O%(p,q)) =
H”j()z, O%(p,q)) degenerates. Thus, for any j > 0,
H(X,0%(p.q) = H (X, R2(q))-

Moreover, since Ox(1) is a very ample divisor, we have Hj(X,ﬁ;%(q)) = 0 for all
g >0, and (2) is proved. O
Lemma 2.5. Let ry be defined as above.

(1) Ifry <1 then H(X, (2§(a*(¢),q)) # R(a=(4),q) for ¢ > 0.

(2) Ifry =2 then H™ (X, 0%(a*(¢),q)) # 0 for ¢ > 0.
Proof. For simplicity, let a = a*(¢). By the definition of ry, we have

{ [H%<g))+(7z(@))]a =0 fori<r,andany p € X

(2.2) [Hg(m(R(q))]a #0 for some q € X.

(1) If r4 <1 then it follows from (2.2) and the Serre-Grothendieck correspondence
that H%(Xq,Rq)(a)) # [Re], = (R2) g This and (2.1) imply that ¢.O%(a,0) #

R2, and so

(

6.0 (a,q) # R2(q) for any q € Z.
Since both ¢.0%(a,q) = ¢.0%(a,0) ® Ox(q) (by Lemma 2.3 and the projection
formula) and R2(q) are generated by global sections for ¢ > 0, we must have
H°(X,$.05(a,q)) # H*(X,R2(q)) = R(aq ¥ ¢ > 0.
Moreover, H'(X,0(a,q)) = H*(X,¢$.0%(a,q)). Thus,
HO()FZ, O)z(a, q)) # R(a’q) for ¢ > 0.
(2) If r4 > 2, then it follows from (2.2) and (2.1) that
Ri¢,O%(a,q)=0for 0 < j<rg—1,
R+~1$, 0% (a,q) # 0.

By Lemma 2.3 and the projection formula, ¢.05(a,q) = ¢.05(a,0) ® Ox(q). Thus,
for ¢ > 0 we have H™*~!(X, ¢+0%(a,q)) = 0. From this, together with (2.3) and the

Leray spectral sequence H'(X, Ri¢.0%(a,q) = Hi“‘j()?, O%(a,q)), we can deduce
that

(2.3)

H™ "1 (X,05%(a,q)) = H(X, R $.0%(a, q)) for ¢ > 0.
It then follows, since R™ ¢, O%(a,q) = R 1¢,.0%(a,0) ® Ox(q) is globally gen-
erated for ¢ > 0, that

H™ Y(X,0%(a,q)) # 0 for ¢ > 0.
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Our first main result is a similar statement to Conjecture 1.1 for the a*-invariant.

Theorem 2.6. Let X = ProjR C P" be a projective scheme, and let I C R be a
homogeneous ideal generated by forms of degree d. Let a*(¢) = max{a*(X,) | p € X}.
Then for ¢ > 0, we have

a*(I17) = qd + a* ().

Proof. By a similar argument as in Lemma 2.4, considering 7, instead of ¢, we can
show that for ¢ > 0,

(24)  mOx(p.q) = RL(p) = I1(p + qd) and R0 (p,q) =0V j > 0.

This implies that for ¢ > 0, the Leray spectral sequence H'(X, Rim,O%(p,q)) =
HT (X, O%(p,q)) degenerates and we have

Hj()?70)}(pa Q>) = H%X,f‘l(p-‘,-qd)) vVj=>0.

Therefore, for j > 0, ¢ > 0 and p > a*(¢), it follows from Lemma 2.4 that
HI(X,I9(p+ qd)) = 0. That is,

(2.5) [HE (1) 0.

p+aqd =

Furthermore, for j = 0 and ¢ > 0, we have HO()_(,TQ;%(q)) = HO()?, O%(p.q) =
H°(X, Ia (p + qd)), where the first equality follows from Lemma 2.4. On the other
hand, for ¢ > 0, HO(XJA%%(q)) = (R2)q = Rp,g) = [Yptqa- Thus, for ¢ > 0,
HO(X,19(p+ qd)) = [19),4 4a. This and (2.5) imply that for ¢ > 0,

a*(I?) < qd + a™(¢).

To prove the other inequality, let r4 be defined as in Remark 2.2. We consider two
cases: 74 < 1 and 74 > 2. If 74 < 1 then by Lemma 2.5, H(X, O (a*(¢),q)) #
Ra*(4),q for all ¢ > 0. This implies that H(X,m, O (a*(9),q)) # R(a*(4),q) for
q > 0. That is,

HO(X, I(a*(¢) + qd)) # [I7] Vg 0.

a*(¢)+qd

By the Serre-Grothendieck correspondence, for g > 0, we have either
0 1
Hr 0] e (g 2qa) # 00 [HR D] (00 910000 #

It then follows that a*(I?) > qd + a*(¢) for ¢ > 0.

If ry > 2, then by Lemma 2.5, Hre=1(X, Ox(a*(¢),q)) # 0 for ¢ > 0. Moreover,
for ¢ > 0, it follows from (2.4) that the Leray spectral sequence

H(X,R'm.0%(p,q)) = H(X,05(p,q))

degenerates. Thus, for ¢ > 0, we have H"*~'(X, I4(a*(¢) + qd)) # 0. By the Serre-
Grothendieck correspondence, we have [H }z‘i (19)],. (6)+qa 7 0 for ¢>> 0. This implies

that a*(1?) > gd 4 a*(¢) for ¢ > 0. O



ASYMPTOTIC LINEARITY OF REGULARITY AND a*-INVARIANT 7

Example 2.7. Let R = @,,», R, be a Cohen-Macaulay standard graded domain,
and let A = (a;j)1<i<r1<j<s be an r x s matrix (r < s) of entries in R;. Let I;(A)
denote the ideal generated by ¢ x ¢t minors of A, and let I = I,.(A). Assume that for
any 1 <t <7, htI;(A) > (r—t+1)(s—r)+ 1. Let 2(wgr) be the least generating

degree of wg, the canonical module of R. Then for ¢ > 0,
a*(I?) = qr —1(wg).
Indeed, let S = k[It] denote the homogeneous coordinate ring of X, let o be any point

in X, andlet T = R(e)- By [11, Theorem 3.5], the Rees algebra R is Cohen-Macaulay.
Thus, R () is Cohen-Macaulay. This implies that

a*(T) = a®™T(T) = —min{s | [wr]s # 0}.
Furthermore, by [17, Example 3.8],
wr =wr(L,)9 > =wWROWRt® - Pwrt 2 GwWRrIt" 1 @ ...,
where g = ht I. Hence, by localizing at g, we obtain
wp = (wR)(p) = (wR(l,t)Q*Q)(p).
Observe that the homogeneous localization at p annihilates the grading inherited

from powers of ¢, so it follows that the degrees of wr arise from the degrees of wg.
That is, ¢(wr) = 1(wgr), and the conclusion follows from Theorem 2.6.

3. Regularity of powers of ideals

In this section, we investigate the asymptotic linearity of regularity and prove a
special case of Conjecture 1.1.

We start by giving an upper and a lower bound for the free constant of reg(7?) in
terms of a*(¢).

Theorem 3.1. Let X = ProjR C P™ be a projective scheme, and let I C R be a
homogeneous ideal generated by forms of degree d. Let a*(¢) = max{a* (X'p) | p €
X}. Then there exists an integer 0 < r < dim R such that for ¢ > 0, we have
reg(1?) = gd + a*(¢) + r. In particular, for ¢ > 0,

qd + a*(¢) <reg(l?) < gd+ a*(¢) + dim R.

Proof. Suppose reg(I?) = aq + b for ¢ > 0. It can be easily seen from the definition
of the regularity and a*-invariant of graded R-modules that a*([%) < reg(I?) <
a*(I?) 4+ dim R for any ¢. This and Theorem 2.6 imply that a = d; that is, reg(1?) =
gd +b for ¢ > 0. Let r = b — a*(¢). Then reg(I?) = gd + a*(¢) + r, and since
a*(I?) <reg(I?) < a*(I9) + dim R, we have 0 <r < dim R. O

Our next result shows that Conjecture 1.1 holds under an extra condition that each
fiber X, is an arithmetically Cohen-Macaulay scheme.

Theorem 3.2. Let X = Proj R C P" be an irreducible projective scheme of dimension
at least 1, and let I C R be a homogeneous ideal generated by forms of degree d. Let

reg(¢) = max{reg(X,) | ¢ € X}. Assume that each fiber X, is an arithmetically
Cohen-Macaulay scheme. Then for g > 0, we have

reg(I?) = qd + reg(¢).
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Proof. Let | = dim X > 1. Since X is irreducible, X is also irreducible. More-
over, for any point p € X, Spec Ox ,, is an open neighborhood of p, and so )N(p =
¢~ (Spec Ox ) is an open subset in X. Thus, dim X, = dim X = dim X.

By the hypothesis, for each p € X, Ry, is a Cohen-Macaulay ring of dimension
dimf(p +1 = 1+ 1. This implies that a*(R(,)) = a'"*(R(y)) and reg(R(,)) =
aT (R(y)) + (L + 1). Therefore,

(3.1) a’(9) = a"(9),

(3.2) reg(¢) =a*(¢) +1+ 1.

It follows from (3.1) that r, = [+ 1 > 2. By the same arguments as the last
part of the proof of Theorem 2.6, we have that for ¢ > 0, reg(I?) > qd + a*(¢) +

ry = qd + a*(¢) + dim R. This, together with Theorem 3.1, implies that for ¢ > 0,
reg(I?) = qd + a*(¢) + dim R. The conclusion now follows from (3.2). O

Corollary 3.3. Let X = Proj R C P" be an irreducible projective scheme of dimen-
sion at least 1, and let I C R be a homogeneous ideal generated by forms of degree d.
Assume that R is a Cohen-Macaulay ring. Then for ¢ > 0,

reg(I?) = qd + reg(¢).

Proof. Since R is Cohen-Macaulay, so is Ry, for any p € X. Thus, each fiber )?p is
arithmetically Cohen-Macaulay. The conclusion follows from Theorem 3.2. (|

We shall end the paper with a number of examples in which the hypotheses of
Corollary 3.3 are satisfied.

Example 3.4. Let R and I be as in Example 2.7. In this case, I is generated in
degree r. As noted before, the Rees algebra R is Cohen-Macaulay. Notice further
that X = Proj R is an irreducible projective scheme. Thus, by Corollary 3.3, we have

reg(I?) = gr +reg(¢p) V ¢ > 0.
Example 3.5. Let R = k[z;;]1<i<r,1<j<s and let T be the ideal generated by ¢ x ¢

I W

and [3, Corollary 3.3], the Rees algebra R of I is Cohen-Macaulay. Also, X = Proj R
is an irreducible projective scheme. It follows from Corollary 3.3 that

reg(I7) = gt + reg() ¥ g > 0.

Example 3.6. Let R be a Cohen-Macaulay graded domain of dimension at least 2.
Let I be either a complete intersection, or an almost complete intersection that is also
generically a complete intersection. Assume that I is generated in degree d. Then
the Rees algebra R of I is Cohen-Macaulay (cf. [2, 21]). By Corollary 3.3, we have

reg(I?) = qd + reg(p) V g > 0.
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