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A SPECIAL CASE OF THE BUCHSBAUM-EISENBUD-HORROCKS
RANK CONJECTURE

Daniel Erman

Abstract. The Buchsbaum-Eisenbud-Horrocks rank conjecture proposes lower bounds

for the Betti numbers of a graded module M based on the codimension of M . We prove
a special case of this conjecture via Boij-Söderberg theory. More specifically, we show

that the conjecture holds for graded modules where the regularity of M is small relative

to the minimal degree of a first syzygy of M . Our approach also yields an asymptotic
lower bound for the Betti numbers of powers of an ideal generated in a single degree.

1. Introduction

Let k be any field, let S = k[x1, . . . , xn] be the polynomial ring with the usual
grading, and let M be a graded S-module. The Buchsbaum-Eisenbud-Horrocks rank
conjecture (herein the BEH rank conjecture) says roughly that the Koszul complex is
the “smallest” possible minimal free resolution.1 The conjecture was formulated by
Buchsbaum and Eisenbud in [3, p. 453] and, independently, the conjecture is implicit
in a question of Horrocks [15, Problem 24]. Although the conjecture is most commonly
phrased for regular local rings, we consider the graded case. Let

0 // Fp
φp // Fp−1

φp−1 // . . . φ1 // F0
φ0 // M // 0

be the graded minimal free resolution of M . Let βj(M) := rank(Fj).

Conjecture 1.1 (Graded BEH Rank Conjecture). Let M be a graded
Cohen-Macaulay S-module of codimension c. Then:

βj(M) ≥
(

c

j

)
for j = 0, . . . , c.

In this paper, we prove a special case of the graded BEH rank conjecture. We do
not require that M is Cohen-Macaulay.

Theorem 1.2. Let M be a graded S-module of codimension c, generated in degree ≤
0, and let d1(M) be the minimal degree of a first syzygy of M . If reg(M) ≤ 2d1(M)−2,
then

βj(M) ≥ β0(M)
(

c

j

)
.
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1Terminology for this conjecture is inconsistent in the literature. In some places this conjecture is

known as Horrocks’ Conjecture or as the Syzygy Conjecture.
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...
...

...
...

...
...

d1 − 2 − − − . . . −
d1 − 1 − ∗ ∗ . . . ∗

...
...

...
...

...
...

2d1 − 3 − ∗ ∗ . . . ∗
2d1 − 2 − ∗ ∗ . . . ∗


Figure 1. When M has a Betti diagram of the above shape, then
it satisfies the Buchsbaum-Eisenbud-Horrocks Rank Conjecture.

for j = 0, . . . , c.

Common generalizations of the BEH rank conjecture include removing the Cohen-
Macaulay hypothesis and/or strengthening the conclusion to the statement that
rank(φj) ≥

(
c−1
j−1

)
for j = 1, . . . , c − 1. A different generalization, suggested in [4,

Conj II.8], replaces the Betti numbers of a free resolution by the homology ranks of
a differential graded module.

The BEH rank conjecture has been shown to hold for all modules of codimension
at most 4 [14, p. 267]. In codimension at least 5, however, the BEH rank conjecture
has only been settled for families of modules with additional structure.

Theorem 1.2 applies to modules whose Castelnuovo-Mumford regularity is small
relative to the degree of the first syzygies of M . Though the literature on special
cases of the BEH rank conjecture is extensive, Theorem 1.2 moves in a new direction.
The most similar result in the literature is perhaps [5, Thm. 0.1], which shows that
the BEH rank conjecture holds when M is a Cohen-Macaulay module annihilated by
the square of the maximal ideal m. Other known cases of the BEH rank conjecture
include multigraded modules [7, Thm. 3] and [20], cyclic modules in the linkage class
of a complete intersection [18], cyclic quotients by monomial ideals [14, Cor 2.5], and
several more [6], [8], [11], and [17]. See [9, pp. 25-27] for an expository account of
some of this progress.

The method of proof for Theorem 1.2 is quite different from previous work on
the BEH rank conjecture. Our proof is an application of Boij-Söderberg theory, by
which we mean the results of [13] and [1]. At first glance, it might appear that Boij-
Söderberg theory would not apply to Conjecture 1.1: Boij-Söderberg theory is based
on the principle of only considering Betti diagrams up to scalar multiple, whereas the
BEH rank conjecture depends on the integral structure of Betti diagrams. However,
if the Betti diagram of M has shape as in Figure 1, then this imposes conditions
on the pure diagrams which can appear in the Boij-Söderberg decomposition of M .
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This allows us to reduce the proof of Theorem 1.2 to a statement about the numerics
of pure diagrams. We then use a multivariable calculus argument to degenerate the
relevant pure diagrams to a Koszul complex.

Our analysis of the numerics of pure diagrams also leads to a proposition about
the asymptotic behavior of the Betti numbers of S/It where I is an ideal generated in
a single a degree δ. Let c = codim(S/I) and let b be the asymptotic regularity defect
of I (see §5 for a definition). We will show that

βj(S/It) ≥ (b!)2δc−1

(j − 1 + b)!(c− j + b)!
tc−1 + O(tc−2)

for all t � 0 and all j ∈ {1, . . . , c}.
This paper is organized as follows. In §2 we review the relevant aspects of Boij-

Söderberg theory. In §3, we investigate the numerics of pure diagrams which satisfy
the conditions of Theorem 1.2. This analysis of pure diagrams is the foundation for
the proof of Theorem 1.2, which appears in §4. In §5, we prove Proposition 5.1 about
asymptotic Betti numbers. In §6, we consider applications of Theorem 1.2.

2. Review of Boij-Söderberg theory

We say that a sequence d = (d0, . . . , ds) ∈ Zs+1 is a degree sequence if di > di−1

for all i > 0. We use the notation deg(Zs+1) for the space of degree sequences of
length s + 1. Given two degree sequence d,d′ ∈ Zs+1, we say that d ≥ d′ if di ≥ d′i
for i = 0, . . . , s. If s ≤ p and d = (d0, . . . , dp) is a degree sequence, then we define
τs(d) to be the truncated degree sequence τs(d) := (d0, . . . , ds).

Each degree sequence d defines a ray in the cone of Betti diagrams; there exists a
unique point π(d) on this ray with β0,d0(π(d)) = 1 (c.f. [13, Thm 0.1]). The diagram
π(d) is the normalized pure diagram of type d.

Note that π(d) may have non-integral entries. For instance

π(0, 1, 2, 4) =
(

1 8
3 2 −

− − − 1
3

)
.

Given any diagram D we define βi(D) :=
∑

j βi,j(D).
Let M be a graded S-module of codimension c and projective dimension p. For

i = 0, . . . , p we define di := min{j|βi,j(M) 6= 0} and di := max{j|βi,j(M) 6= 0}. We
set d := (d0, . . . , dp) and d := (d0, . . . , dp). Boij-Söderberg theory shows that the
Betti diagram of any graded S-module can be expressed as a positive rational sum
of pure diagrams which correspond to degree sequences bounded by d and d. The
following theorem is weaker than the main results of Boij-Söderberg theory, but it
will be sufficient for our purposes.

Theorem 2.1 (Eisenbud-Schreyer (2008), Boij-Söderberg (2008)). Let M be a graded
S-module of projective dimension p and codimension c and let d and d as above. The
Betti diagram β(M) can be expressed as a sum:

β(M) =
∑

c≤s≤p

∑
d∈deg(Zs+1)

τs(d)≤d≤τs(d)

adπ(d)

where each ad is a nonnegative rational number.
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A stronger version of this theorem allows for a unique decomposition of β(M) into
a positive rational sum of pure diagrams and even provides an algorithm for producing
this decomposition. See the introduction of [13] for an expository treatment of the
main results of Boij-Söderberg theory, and see [13, §7] for a proof of of Theorem 2.1
in the case where M is Cohen-Macaulay. See [1, Thm 2] for a proof of Theorem 2.1
when M is not necessarily Cohen-Macaulay.

3. Ranks of Pure Diagrams

In this section, we study the numerics of the pure diagrams which satisfy the
conditions of Theorem 1.2. Given any degree sequence d, the Betti numbers of π(d)
can be expressed as a rational function in the di, and we will use these rational
functions to investigate the pure diagrams.

We introduce auxiliary functions to simplify the notation. For e = (e1, . . . , es) ∈
Rs, we define linear functions, Ti, Ui,j , and Vi,j from Rs to R by the following formulas:

Ti(e) := i + e1 + e2 + · · ·+ ei, for i = 1, . . . , s

Ui,j(e) := (j − i + 1) + ei + ei+1 + . . . ej , whenever i < j

Vi,j(e) := (i− j) + ej+1 + · · ·+ ei, whenever i > j

Let d : Rs → Rs+1 be the linear map:

dj(e) =

{
0 for j = 0
j +

∑j
i=0 ei, for j = 1, . . . , s.

Note that e ∈ Zs
≥0 if and only if d(e) is a degree sequence with first entry equal to 0.

We define the rational function bj : Rs → R by:

(1) bj(e) :=

(∏s
i=1,i 6=j Ti

)
(∏j−1

i=2 Ui,j

)(∏s
i=j+1 Vi,j

)
for j = 1, . . . , s. The rational function bj has no poles on Rs

≥0. The purpose of these
definitions is summarized in the following lemma:

Lemma 3.1. Let e ∈ Zs
≥0. Then we have:

bj(e) = βj (π (d (e)))

Proof. For any degree sequence d of length s, a result of [16] can be used to give the
explicit formulas

βj (π (d)) =
∏

1≤i≤s

i 6=j

|di − d0|
|di − dj |

(c.f. [2, Defn 2.3]). Now let d = d (e) and fix some i 6= j. Observe that |di− d0| = Ti;
further, |di−dj | = Ui,j if i < j and |di−dj | = Vi,j if i > j. This proves the lemma. �

Lemma 3.2. On the domain e ∈ Rs
≥0, we have ∂

∂e1
bj ≥ 0.

Proof. Consider the expression for bj given in (1), and observe that the denominator

is not a function of e1. Hence it is sufficient to show that ∂
∂e1

(∏s
i=1,i 6=j Ti

)
≥ 0 when

e ∈ Rs
≥0, and this is immediately verified. �
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Lemma 3.3. Let e ∈ Rs
≥0 and fix some j, k ∈ {1, . . . , s}.

(1) If k < j then
(

∂

∂ej
− ∂

∂ek

)
bj ≤ 0.

(2) If k > j + 1 then
(

∂

∂ej+1
− ∂

∂ek

)
bj ≤ 0.

Proof. Throughout this proof, we restrict all functions to the domain e ∈ Rs
≥0. It is

sufficient to prove the statements for log bj . We may write:

(2) log bj =
∑

1≤i≤s

i 6=j

log Ti −
j−1∑
i=1

log Ui,j −
s∑

i=j+1

log Vi,j .

To prove part (1) of the lemma, we assume that k < j and we fix some i ∈ {1, . . . , s}
where i 6= j. Observe that(

∂

∂ej
− ∂

∂ek

)
log Ti =

(
∂

∂ej
− ∂

∂ek

)
log(i + e1 + e2 + · · ·+ ei) ≤ 0

with equality if and only if i < k or i > j. Similarly, if i ∈ {1, . . . , j − 1}, then

(
∂

∂ej
− ∂

∂ek

)
log Ui,j =

(
∂

∂ej
− ∂

∂ek

)
log(j − i + 1 + ei + ei+1 + · · ·+ ej) ≥ 0

with equality if and only if k < i. Since k < j, we also have that(
∂

∂ej
− ∂

∂ek

)
log Vi,j =

(
∂

∂ej
− ∂

∂ek

)
log(i− j + ej+1 + · · ·+ ei) = 0

for all i ∈ {j + 1, . . . , s}. By combining equation (2) with the results of these three
computations, we conclude that ( ∂

∂ej
− ∂

∂ek
)(log bj) ≤ 0 as desired.

To prove part (2) of the lemma, we now assume that k > j + 1 and we fix some
i ∈ {1, . . . , s} with i 6= j. Observe first that

(
∂

∂ej+1
− ∂

∂ek

)
log Ui,j = 0 for all i;

second, that if i < j + 1 or i ≥ k then
(

∂
∂ej+1

− ∂
∂ek

)
log Ti = 0; and third, that if

i ≥ k then
(

∂
∂ej+1

− ∂
∂ek

)
log Vi,j = 0. It remains to show that

(
∂

∂ej+1
− ∂

∂ek

) k−1∑
i=j+1

log Ti − log Vi,j ≤ 0.

This follows from the computation:
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(
∂

∂ej+1
− ∂

∂ek

) k−1∑
i=j+1

log Ti − log Vi,j =

k−1∑
i=j+1

1
i + e1 + · · ·+ ei

− 1
i− j + ej+1 + · · ·+ ei

=
(i− j + ej+1 + · · ·+ ei)− (i + e1 + · · ·+ ei)
(i + e1 + · · ·+ ei) (i− j + ej+1 + · · ·+ ei)

=
−j − e1 − · · · − ej

(i + e1 + · · ·+ ei) (j − i + ej+1 + · · ·+ ei)
< 0

which completes the proof. �

Lemma 3.4. Let e ∈ Rs
≥0 with e1 ≥

∑s
j=1 ej. Then

bj(e) ≥
(

s

j

)
.

Proof. By Lemma 3.2, it is sufficient to prove the lemma in the case e1 =
∑n

i=2 ei.
Furthermore, by Lemma 3.3, we may assume that ei = 0 for i /∈ {1, j, j + 1}.

Assume for the moment that j /∈ {1, s} and let ẽ = (e1, ej , ej+1). Under these
assumptions we may write bj as a function of ẽ. Our goal is to show that bj(ẽ) ≥

(
s
j

)
given the constraint e1 = ej + ej+1 and the domain ẽ ∈ R3

≥0.
We introduce a new variable t and write ej = te1 and ej+1 = (1 − t)e1. Under

this change of coordinates, our constrained minimization problem is now equivalent
to minimizing the function:

cj :=
(1 + e1)(2 + e1) · · · (j − 1 + e1) · (j + 1 + 2e1) · · · (n + 2e1)

(j − 1 + te1) · · · (1 + te1)(1 + (1− t)e1) · · · ((n− j) + (1− t)e1)

over the domain (t, e1) ∈ [0, 1]× [0,∞).
We claim that the minimum of log cj on the domain [0, 1] × [0,∞) occurs when

e1 = 0. The partial derivative ∂ log cj

∂e1
is the sum of the following 4 functions:

• f1 :=
1

1 + e1
+ · · ·+ 1

j − 1 + e1

• f2 :=
2

j + 1 + 2e1
+ · · ·+ 2

n + 2e1

• f3 := − t

1 + te1
− · · · − t

j − 1 + te1

• f4 := − 1− t

1 + (1− t)e1
− · · · − 1− t

(n− j) + (1− t)e1



A SPECIAL CASE OF THE BEH RANK CONJECTURE 1085

We observe first that:

−f1 − f3 =
j−1∑
i=1

−1
i + e1

+
t

i + te1

=
j−1∑
i=1

−(i + te1) + t(i + e1)
(i + e1)(i + te1)

=
j−1∑
i=1

(−1 + t)i
(i + e1)(i + te1)

.

Hence −f1 − f3 ≤ 0 whenever (t, e1) ∈ [0, 1]× [0,∞). We next observe that:

−f2 − f4 =
n∑

i=j+1

−2
i + 2e1

+
1− t

i + (1− t)e1

=
n∑

i=j+1

(−2i− 2(1− t)e1) + ((1− t)i + 2(1− t)e1)
(i + 2e1)(i + (1− t)e1)

=
n∑

i=j+1

−i− it

(i + 2e1)(i + (1− t)e1)
.

Hence −f2 − f4 ≤ 0 whenever (t, e1) ∈ [0, 1]× [0,∞). Combining these two observa-
tions, we have that:

−∂ log cj

∂e1
= −f1 − f2 − f3 − f4 ≤ 0

on the domain [0, 1] × [0,∞). A minimum of the function log cj on the domain
[0, 1]× [0,∞) thus occurs when e1 = 0, and it follows that the same statement holds
for the function cj . Direct computation yields that cj(t, 0) =

(
s
j

)
, which completes

the proof when j /∈ {1, s}.
If j = 1, then we may still apply Lemma 3.3 and reduce to the case that ei = 0 for

i 6= 1. Then we have:

b1(e1) =
(2 + e1)(3 + e1) · · · (s + e1)

(s− 1)!

which is at least than
(

s
1

)
whenever e1 ≥ 0. If j = s, we reduce to the case that

es = e1 and we have:

bs(e1, es) =
(1 + e1) · · · (s− 1 + e1)

(s− 1)!

which is at least
(
s
s

)
whenever e1 ≥ 0. �

Corollary 3.5. Let d ∈ Zs+1 such that d0 ≤ 0 and such that ds− s ≤ 2d1−2. Then:

βj(π(d)) ≥
(

s

j

)
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Proof. Let e = (e1, . . . , es) where ei = di − di−1 − 1, so that d(e) = d. Since
ds = d0 + s +

∑s
i=1 ei and d1 = d0 + e1 + 1, we have that:

s∑
i=2

ei = (ds − s)− d0 − e1 ≤ (2d1 − 2)− d0 − e1 = d1 − 1 ≤ e1.

The corollary now follows from Lemmas 3.1 and 3.4. �

4. Proof of Theorem 1.2

We now prove our main result.

Proof of Theorem 1.2. By Theorem 2.1, we may write the Betti diagram of M as a
positive rational sum of pure diagrams:

(3) β(M) =
∑

c≤s≤p

∑
d∈deg(Zp+1)

τs(d)≤d≤τs(d)

adπ(d)

By linearity, it is sufficient to show that:

(4) βj(π(d)) ≥
(

c

j

)
for every pure diagram appearing with nonzero coefficient in (3) and for every j ∈
{1, . . . , c}. Let d = (d0, . . . , ds) be a degree sequence corresponding to such a pure
diagram, and let e = (e1, . . . , es) defined by ei := di − di−1 − 1. Since π(d) appears
with positive coefficient in equation (3), it must contribute to the Betti diagram β(M).
It follows that d0 ≤ 0 and that

ds − s ≤ reg(M) ≤ 2d1(M)− 2 ≤ 2d1 − 2.

Hence d satisfies the hypotheses of Corollary 3.5, and βj(π(d)) ≥
(
s
j

)
. Since s ≥ c, it

follows that
(
s
j

)
≥
(
c
j

)
, and we obtain inequality (4). �

Remark 4.1. With more care, one could show that equality in Theorem 1.2 may only
occur in cases where codim(M) ≤ 2 or where there exists m ∈ N such that M ∼= km

as a graded S-module.

5. Asymptotic Betti Numbers

Let I be an ideal generated in a single degree δ. The regularity of It becomes a
linear function reg(It) = δt+ b for t � 0 (c.f. [22, Thm 3.2], [19, Cor 3]). We define b
to be the asymptotic regularity defect of I. The following theorem gives lower bounds
for the Betti numbers of S/It.

Theorem 5.1. Let I be an ideal of codimension c generated in a single degree δ and
with asymptotic regularity defect b. We have the following lower bound on the Betti
numbers of S/It:

βj(S/It) ≥ (b!)2δc−1

(j − 1 + b)!(c− j + b)!
tc−1 + O(tc−2)

for all j = 1, . . . , c and for all t � 0.
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Proof. By Theorem 2.1 we may write β(S/It) as a sum of pure diagrams as in equa-
tion (3). Let d = (d0, . . . , ds) be some degree sequence such that π(d) appears with
nonzero coefficient in this sum. The equality codim(It) = codim(I) = c, implies
that s ≥ c. Let e = (e1, . . . , es) defined by ei = di − di−1 − 1. Since It is gener-
ated in degree tδ, we have e1 = tδ. Let t � 0 so that reg(S/It) = tδ + b. Since
reg(S/It) = dp(S/It)− p we have that

∑s
i=2 ei ≤ b.

It is sufficient to prove the lower bound for the Betti numbers of the pure diagram
π(d). In fact, it is sufficient to prove the lower bound for the functions bj(e) under
the constraints e1 = tδ and

∑s
i=2 ei ≤ b. Let j ∈ {1, . . . , c}. By Lemma 3.3, we

may assume that ei = 0 unless i ∈ {1, j, j + 1}. Hence we reduce to the case that
ej + ej+1 ≤ b. We now seek to compute bj .

bj(e) =
(1 + tδ)(2 + tδ) · · · (j − 1 + tδ)(j + 1 + tδ + b) · · · (s + tδ + b)

(j − 1 + ej) · · · (1 + ej)(1 + ej+1) · · · (s− j + ej+1)

Note that ej and ej+1 only appear in the denominator, and both are positive numbers
less than b. Hence setting ej = ej+1 = b only decreases the right-hand side. This
yields:

(5) bj(e) ≥ (1 + tδ)(2 + tδ) · · · (j − 1 + tδ)(j + 1 + tδ + b) · · · (s + tδ + b)
(j − 1 + b) · · · (1 + b)(1 + b) · · · (s− j + b)

Since s ≥ c we may rewrite the right-hand side of (5) as(
(1 + tδ)(2 + tδ) · · · (j − 1 + tδ)(j + 1 + tδ + b) · · · (c + tδ + b)

(1 + b) · · · (j − 1 + b)(1 + b) · · · (c− j + b)

)(s−c∏
i=1

(c + i + tδ + b)
(c + i− j + b)

)
.

Each term of the product on the right is greater than 1, so by deleting this product
and substituting back into (5), we obtain the inequality:

bj(e) ≥ (1 + tδ)(2 + tδ) · · · (j − 1 + tδ)(j + 1 + tδ + b) · · · (c + tδ + b)
(1 + b) · · · (j − 1 + b)(1 + b) · · · (c− j + b)

=
(b!)2δc−1

(j − 1 + b)!(c− j + b)!
tc−1 + O(tc−2).

This completes the proof. �

6. Examples

In this section, we consider several applications of Theorem 1.2, and we remark on
the necessity of the hypothesis that reg(M) ≤ 2d1(M)− 2.

Example 6.1. Let V ⊆ Sd be any vector space of forms of degree d with d > 1, and
let I ⊆ S be the ideal V + md+1. Then S/I satisfies the hypotheses of Theorem 1.2.
More generally, if e ≤ 2d− 1 and J is the ideal generated by V and by me, then S/J
satisfies the hypotheses of Theorem 1.2.

Example 6.2 (Curves of High Degree). Let C ⊆ Pn be a smooth curve of genus
embedded by a complete linear system of degree at least 2g +1. Let IC ⊆ k[x0, . . . , xn]
be the ideal defining C. Then reg(S/IC) ≤ 2 by [12, Corollary 8.2]. Hence S/IC

satisfies the hypotheses of Theorem 1.2, and thus βi(S/IC) ≥
(
n−1

i

)
.
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Example 6.3 (Toric Surfaces). Let X ⊆ Pn be a toric surface embedded by a complete
linear system |A|. Let IX ⊆ S = k[x0, . . . , xn] be the defining ideal of X. We claim
that S/IX satisfies the hypotheses of Theorem 1.2, and hence that βi(S/IX) ≥

(
n−2

i

)
.

Since IX has no generators in degree 1, this amounts to showing that reg(S/IX) ≤ 2.
It is equivalent to show that the sheaf IX := ĨX is 3-regular [12, Prop 4.16].

We first check that H1(Pn, IX(2)) = 0. Since X is a toric surface and A is an
ample divisor, it follows from, for instance [21, Cor 2.1], that X satisfies condition
N0, and hence that X is projectively normal. The surjectivity of the map

H0(Pn,OPn(2)) → H0(X,OX(2))

and the vanishing of H1(Pn,OPn(2)) then imply that H1(Pn, IX(2)) = 0.
We next check that H2(Pn, IX(1)) = 0. This follows from the exact sequence:

H1(X,OX(1)) → H2(Pn, IX(1)) → H2(Pn,OPn(1))

and the fact that higher cohomology of ample line bundles vanishes on toric varieties.
We conclude that IX is 3-regular, which implies that S/IX satisfies the hypotheses of
Theorem 1.2.

Example 6.4. Let I be any ideal with minimal degree generator in degree d1 and
maximal degree generator in degree d1. Assume that d1(I) < 2d1(I). Then

reg(S/It) ≤ td1 + b

for some b and for all t ≥ 1 [10, Thm 1.1(i)]. Since d1(I) < 2d1(I), it follows that,
for all t � 0, td1(I)+ b < 2td1(I)− 2. Hence, for all t � 0, the module S/It satisfies
the hyoptheses of Theorem 1.2.

The method of proof for Theorem 1.2 breaks down if one removes the hypothesis
that reg(M) ≤ 2d1(M)− 2. One issue is that the statement:

βj(M) ≥ β0(M)
(

codim(M)
j

)
is not true in general. For example, if S = k[x, y] and N is the cokernel of a generic
2× 3 matrix of linear forms, then

β1(N) = 3 < 4 = β0(N)
(

codim(N)
1

)
.

There also exist pure diagrams with integral entries which do not satisfy the graded
BEH rank conjecture. For instance, the diagram:

π(0, 1, 2, 3, 5, 6) =
(

1 9
2

15
2 5 − −

− − − − 3
2

1
2

)
does not satisfy any version of Conjecture 1.1.
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