Math. Res. Lett. 17(2010),n0. 06, 1055-1063 © International Press 2010

MILNOR FILLABLE CONTACT STRUCTURES ARE UNIVERSALLY TIGHT

YANKI LEKILI AND BURAK OZBAGCI

ABSTRACT. We show that the canonical contact structure on the linkrafranal complex singularity

is universally tight. As a corollary we show the existenceloked, oriented, atoroid@tmanifolds
with infinite fundamental groups which carry universaligtti contact structures that are not deforma-
tions of taut (or Reebless) foliations. This answers twostjoas of Etnyre in [12].

1. Introduction

Let (X, z) be a normal complex surface singularity. Fix a local embegldf (X, z) in
(CY,0). Then a small spherg?Y—1 c CV centered at the origin intersectstransversely,
and the complex hyperplane distributign,, on M = X N S?¥~! induced by the complex
structure onX is called thecanonicalcontact structure. For sufficiently small radiughe
contact manifold is independenteo&nd the embedding, up to isomorphism. Bheanifold
M is called the link of the singularity, ar(d/, £..,,) is called thecontact boundaref (X, z).

A contact manifold(Y; ¢) is said to beMilnor fillable if it is isomorphic to the contact
boundary(M, ..., ) of some isolated complex surface singula(i§, z). In addition, we say
that a closed and orienteddmanifold Y is Milnor fillable if it carries a contact structuie
so that(Y, &) is Milnor fillable. It is known that a closed and orientgamanifold is Milnor
fillable if and only if it can be obtained by plumbing accorglito a weighted graph with
negative definite intersection matrix (cf. [25] and [18]).oMover any3-manifold has at
most one Milnor fillable contact structure up ismorphism(cf. [5]). Note that Milnor
fillable contact structures are Stein fillable (see [4]) aedde tight [10]. Here we prove
that every Milnor fillable contact structure is in fact unisally tight, i.e., the pullback to
the universal cover is tight. We would like to point out thaiuersal tightness of a contact
structure is not implied by any other type of fillability.

In [12], Etnyre settled a question of Eliashberg and Thur$id] by proving that every
contact structure on a closed oriengzchanifold is obtained by a deformation of a foliation
and raised two other related questions:

(Question4 in [12]) Is every universally tight contact structure on a closethanifold
with infinite fundamental group the deformation of a Reebfekation?

(Question5 in [12]) Is every universally tight contact structure on an atordidbsed
3-manifold with infinite fundamental group the deformatidradaut foliation?

In this note we answer both questions negatively as a coeseguof our main result,
although one does not necessarily need our main result tedindterexamples. As a matter
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of fact, one can drive the same consequence by the existérisenall) Seifert fibered.-
spaces carrying transverse contact structures which anerkio be universally tight (see
Remark 3.4).

The assumption on the fundamental group is necessary siecg ®liation on a closed
3-manifold with finite fundamental group has a Reeb compo(erd hence is not taut) by a
theorem of Novikov. Moreover Ghiggini [14] gave examplegarbidal 3-manifolds which
carry universally tight contact structures that are notklyefillable (and therefore can not be
perturbations of taut foliations by [11]).

We contrast our result with the result of Honda, Kazez andéMa{21], where they show
that for a sutured manifold with annular sutures, the eristeof a (universally) tight contact
structure is equivalent to the existence of a taut foliation

We assume that all tiemanifolds are compact and oriented, all the contact sirastare
co-oriented and positive and all the surface singularéressolated and normal.

2. Milnor fillable implies universally tight

A graph manifoldis a 3-manifoldM (T") obtained by plumbing circle bundles according
to a connected weighted plumbing graphMore precisely, letd,, ..., A, denote vertices
of a connected graph. Each vertex is decorated with a paif;, ¢;) of integral weights,
whereg; > 0. Here theith vertex represents an oriented circle bundle of Euler rermb
e; over a closed Riemann surface of gemus Then M (T') is the 3-manifold obtained by
plumbing these circle bundles accordingtoThis means that if there is an edge connecting
two vertices inl", then one glues the circle bundles corresponding to thetieagas follows.
First one removes a neighborhood of a circle fibre on eacledmendle which is given by
the preimage of a disk on the base. The resulting boundaurg tor each circle bundle can be
identified withS* x S using the natural trivialization of the circle fibration ovke disk that
is removed. Now one glues these bundles together using fieemiorphism that exchanges
the two circle factors on the boundary tori.

A horizontalopen book inM (T") is an open book whose binding consists of some fibers
in the circle bundles and whose (open) pages are transwetbe fibers. We also require
that the orientation induced on the binding by the pagescod@s with the orientation of the
fibers induced by the fibration.

In this paper, we will consider horizontal open books on gnaanifolds coming from iso-
lated normal complex singularities. Given an analytic fiorcf: (X, 2) — (C, 0) vanishing
atz, with an isolated singularity at, the open book decompositid?5 ; of the boundari/
of (X, z) with binding L = M n f~*(0) and projectionr = ﬁ : M\ L — S' C Ciscalled
theMilnor open bookinduced byf.

Theorem 2.1. A Milnor fillable contact structure is universally tight.

Proof. Given a Milnor fillable contacs-manifold (Y, £). By definition (Y, ¢) is isomorphic
to the link (M, &..,,) of some surface singularity. Hence it suffices to show tdt¢...,,)

is universally tight. It is known thad/ is an irreducible graph manifold/ (I') whereT" is

a negative definite plumbing graph [27]. Moreover, such aifolthis characterized by the
property that there exists a unique minimal ge{possibly empty) consisting of pairwise
disjointincompressibléori in M such that each componentif — 7 is an orientable Seifert
fibered manifold with an orientable base [27]. In terms of phenbing descriptior? is a
subset of the tori that are used to glue the circle bundlesardefinition of M (I"). The set
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7 is minimal if in plumbing of two circle bundles the homotophass of circle fiber in one
boundary torus is not identified with the homotopy class effiber in the other boundary
torus.

Recall that an arbitrary Milnor open bodRkB on M has the following essential features
[5]: It is compatible with the canonical contact structgrg,, horizontal when restricted to
each Seifert fibered piece i — 7 which means that the Seifert fibres intersect the pages
of the open book transversely, and the binding of the operk lsoasists of some number
(which we can take to be non-zero) of regular fibres of theesgfibration in each Seifert
fibred piece.

In the rest of the proof, we will construct a universally tigitontact structuré on M
which is compatible with the Milnor open bodR5. This implies that the canonical contact
structuret,.,., is isotopic ta¢ (since they are both compatible with3) and thus we conclude
that&..., on the singularity link)M is universally tight.

Let V; denote a Seifert fibere®imanifold with boundary, which is a componentif —
N(T), where N(7T) denotes a regular neighborhoodBf Consider the3-manifold V/
obtained by removing a regular neighborhood of the bindih@® from V;. Note that
V. is also a Seifert fibered manifold since the binding consistegular fibers of the Seifert
fibration onV;. Then the restriction of a page 65 to V; is a connected horizontal surface
(see the proof of Propositioh6 in [5]) which we denote by.. It follows thatV/ is a surface
bundle overS* whose fibers are precisely the restriction of the page8®to V;, sinceX;
does not separalé’. Note that™; is a branched cover of the base of the Seifert fibration on
V! and the monodromy, of this surface bundle is a periodic self-diffeomorphisntjfof
some orden; (cf. Sectionl.2 in [19]).

Now we construct, as in Secti@nin [14], a contact structur€ on V; which is “compati-
ble” with the surface fibratiofry — S*. Here compatibility means that the Reeb vector field
of the contact form is transverse to the fibers, keeping irdrttiat a fiber of this fibration is
cut out from a page of the open bodk3. Let 3; denote al-form on X! such thatds,; is a
volume form onX; and ;s is a volume form ord>}. Then thel-form

1 n;—1
Bi=—" (&) B

i o
which also satisfies the above conditions, ig;anvariantl-form on%’. Lett denote the
coordinate orb™. It follows that for every real number> 0, the kernel of the-form dt +¢/3;
is a contact structure ovi/ which is compatible with the fibers. Note that the charastieri
foliation on every torus iV} is linear with a slope arbitrarily close to the slope of the
foliation induced by the pages when- 0. Here we point out that, for fixed> 0, different
choices of3; give isotopic contact structures by Gray’s theorem, whike ¢hoice of will
not play any role in our construction as long as it is suffitieemall. Therefore, we will fix
a sufficiently smalk and denote the isotopy type of this contact structurgbiMoreover the
Reeb vector field?; is tangent to the circle fibers in the Seifert fibration anddeemnansverse
to the fibers of the surface bundlg — S*.

Furthermore, we observe thgt is transverse to the Seifert fibration & and can be
extended over td@; along the neighborhood of the binding so that it remainssirarse to
the Seifert fibration. Now we claim that the resulting coh&iructureS; on'V; is universally
tight. This essentially follows from an argumentin Propiosi4.4 in [24] where the universal
tightness of transverse contact structures on closedrBifered 3-manifolds is proven (see
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also Corollary 2.2 in [22]). The difference in our case isttiiamay have toroidal bound-
ary. Nevertheless, the argument in [24] still applies. Nigmeny contact structure which
is transverse to the fibers of a Seifert manifold (possibighwioundary or non-compact) is
universally tight. Consider first the universal cover of tiase of the Seifert fibration. This
can be eithes? orR?. If itis S?, then thel; cannot have any boundary, as we arranged that
if there is a boundary t®7, it should be incompressible. Therefore, in that case: () and

M is closed Seifert fibred space with basewith a contact structure transverse to the fibres
of the Seifert fibration. The universal cover bf is now obtained by unwrapping the fibre
direction. Hence it is eithe$® or S? x R depending on whether; (M) is finite or infinite.
However, it cannot b&? x R asM is irreducible. In particular, whef = 0, it follows that

M is either a small Seifert fibered or a lens space and its wsaveover isS>. The contact
structure and the Seifert fibration lifts to a transverse@arstructure ors?. It follows that
this is the standard tight contact structureh(for example, see [24]). Next, suppose that
the base of the Seifert fibration 67 has universal cover homeomorphickd. We then lift
the Seifert fibration and the contact structure to get a @bstaucture orR? x S!, such that
the contact structure is transverse to fefactor. Next, we unwrap th8! direction to get

a contact structure oR? x R such that the contact structure is transverse toRttfactor
and invariant under integral translations in this direttidt follows that this latter contact
structure is the standard tight contact structur@®drfsee [16] Section 2.B.c).

LetV,...,V, denote the Seifert fibered manifolds in the decompositioh/of N (7).
Our goal is to glue togethe&s’s on V;'s to get a universally tight contact structuyeon M
which iscompatiblewith O5. We should point out that if one ignores the compatibilitytwi
OB, theng;’s can be glued along the incompressible pre-LagrangiarotodV;’s to yield
a universally tight contact structure ai, by Colin’s gluing theorem [6]. This was already
described in Theorem4 in [7], although the contact structures on Seifert fiberedes were
obtained by perturbing Gabai’s taut foliations [13].

By construction, the contact structugeon V; is compatible with the restriction @5 to
V;. We first modify¢,; near each component8¥/; to putit in a certain standard form. To this
end, letN (7;;) denote the normal neighborhood of a tofys € 7 along which plumbing is
performed betweel; andV/;.

Recall that the plumbing was perfomed by trivializing theibdary of the circle bundles
hence identifying them witlT? = S' x S' and then exchanging the two circle factors.
We can extend these trivialization in a neighborhood’gf by picking sections; nearT;;
which extends the section used for the plumbing. Letlenote the fibre direction of the
Seifert fibration onl;. Then, we can identify the boundary &f(T;;) in V; with T2 so
that the basigr;, s;) is sent to the standard bagi,, d,} of T2. Hence, we can identify
N(TZ]) =T? x [ai,bi] Upij —T? x [aj,bj] Wherepij cT? x {bl} — —T?% x {bj} is the
gluing map used in plumbing sendigg, s;) — (s;,7;).

Let F; denote the foliation by circles with a certain rational €op; /m; on T? x {a;}
induced by the pages @13. This means that the page intersettsx {a;} at a linear curve
tangent tom,;r; + m;s; , we also scalen; andm,; so that we haveg,(m,r; + m;s;) = 1
(The latter can be arranged as by constructiprestricts to a volume form on the boundary
of the pages of the open book when restricted’fp The pages extend int6? x [a;, b;]
linearly, as they intersect ead¥ x {c} transversely with slope:;/m;, thus we obtain the
foliation 7; x [a;, b;]. Similarly, F; denote the foliation by circles given by the intersection
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of the pages 0®B with T2 x {a;} which necessarily has rational slopg /m; so that the
gluing mapp;; glues the pages in each piece together to 6t

For later convenience, in our identificatiof(7;;) = T2 x [a;, b;] Up,, =12 x [a;,b;],
we will choose—75 < a; < b; < § so that—cota; = m;/(m; — €) is the slope of the
characteristic foliation of the contact structuseon T2 x {a;} andb; so that—cotb; =
m;/m; is the slope of the pages ¢I3. By our construction, the characteristic foliation is
the integral of the vector field-er; + (m;r; + m;s;) and we can chooseas small as we
need, so that the slope of the characteristic foliation listirily close to the slope of the
pages. In particular, we can arrange that (a;, a; + 5 ).

We now need to glue together the contact forms that we cartetflonV; by extending
them toN (T;;). For our purposes, we need to pay special attention to cabilfggwith OB
on N(TZJ)

Consider the contact form; = costdx + sintdy onT? x [a;, b;]. By [8] Lemma9.1
we can isotop€; on V; near the boundary so that it is defined by a contact form that gl
to o; (note that the slopes of the characteristic foliationg8nx {a;} induced by¢; anda;
agree). Moreover, after this isotopy the Reeb vector fielg} still remains transverse to the
pages ofOB on V;. Furthermore, the Reeb vector field @f, has slopgan a; hence it is
perpendicular to the slope cota; atT? x {a;} which we know to be arbitrarily close the
slope of the foliationF; x {a;} induced by the page dPB. Since the slope of the Reeb
vector field changes by strictly less thayi2 as we go fronu; to b;, the Reeb vector field
still remains transverse t&; x [a;, b;]. Therefore, the form; is compatible withOB in
T? x |[a;, b;]. Finally, to finish the construction of the contact struetglion M, we observe
that the gluing map;; sendsy; to o, since we arranged that the slopengfand the slope
of the characteristic foliation induced by the page are #meesatl™ x {b;}.

We constructed a contact structyrevhich is compatible with a Milnor open book (hence
is isomorphic tct..,,) such that is isotopic tog; onV;, a universally tight contact structure,
furthermore for each incompressible tofliss 7, the characteristic foliation &f is a linear
foliation (with slopem;/m;). Therefore, we are in a position to apply the gluing result
of Colin [6] which states that universally tight contactustiures can be glued along pre-
Lagrangian tori to a universally tight contact structurdisTshows thaf....,, is a universally
tight contact structure. O

Remark 2.2. The above construction shows that when the fibres of eachrSgifered piece

is not contractible, theé..,, is hypertight that is, it can be defined by a contact form whose
associated Reeb vector field has no contractible orbits.s,Tton example whery™ # (),
¢.an 1S hypertight. Note that hypertight contact structurestigtet [20] and any finite cover
of a hypertight contact manifold is hypertight [14]. Thessults together with the fact that
graph manifolds have residually finite fundamental groupe gnother proof of universally
tightness (avoiding Colin’s gluing result). Sindé is irreducible, its universal cover is dif-
feomorphic to eithef? or R? depending on whether (1) is finite or infinite. The universal
cover isS? if and only if M is atoroidal, thenV/ is either a small Seifert fibered space or a
lens space and these have no hypertight contact struciittresefore M is hypertight if and
only if 71 (M) is infinite (or equivalently its universal coverfi¥’).

Remark 2.3. It is known that any finite cover of a singularity link is a sirgrity link.
Therefore, another approach to prove Theorem 2.1 would Isddw that a finite cover of
a Milnor fillable contact structure is Milnor fillable. It isoh clear to the authors of this
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paper whether this is indeed true. Note that there exiseftowers of Stein fillable contact
structures which are not tight (in particular, not Steirafile) [17].

Remark 2.4. Since any Milnor fillable contaci-manifold (Y, £) is Stein fillable (see [4]) ,
it follows from Theorem 1.5 in [28] that the contact invaria(t) € HF(—Y)/(+1) is non-

trivial. Therefore, by [15], the Giroux torsion &f is zero. In particular, the incompressible
tori in 7" have zero torsion. This was predicted in [26] and was raisedlquestion there.

3. Universally tight but no taut

A rational homology sphere is called drspace ifrk f[TT(Y) = |H1(Y;Z)|. Lens spaces
are basic examples df-spaces which explains the name. A characterizatioh-spaces
among Seifert fibered-manifolds is given by

Theorem 3.1.[23] A rational homology sphere which is Seifert fibered o¥&is an L-space
if and only if it does not carry a taut foliation.

A huge class of examples d@f-spaces come from complex surface singularities. Recall
that an isolated normal surface singulafiy, =) is rational (cf. [1]) if the geometric genus

Dg = dimcH (X, O) is equal to zero, wher® — X is a resolution of the singular point
x € X. This definition does not depend on the resolution.

Theorem 3.2.[26] The link of a rational surface singularity is afxspace.

Corollary 3.3. If Y is the link of a rational surface singularity which is Setfébered over
S?, thenY carries a universally tight contact structure that can netdbtained by a defor-
mation of a taut foliation.

Proof. The link of a rational surface singularity is dnspace by Theorem 3.2 and hence it
does not carry any taut foliations by Theorem 3.1. MoreoVeeorem 2.1 implies that the
canonical contact structure on this link is universallytig O

Remark 3.4. Note that Seifert fibered-manifolds as above carry transverse contact struc-
tures (by Theoreni.3 in [22]) and such contact structures are known to be unillgrsght
(cf. Corollary2.2 in [22] and also Propositio#.4 in [24]).

Corollary 3.5. There exist infinitely many atoroiddtmanifolds with infinite fundamental
groups which carry universally tight contact structureattlare not deformations of taut (or
Reebless) foliations.

Proof. Itis known (cf. [9]) that the link of a complex surface singrity has finite fundamen-
tal group if and only if it is a quotient singularity. Thus tliek of a rational but not quotient
surface singularity has an infinite fundamental group. Nbé&t the links of a quotient sur-
face singularities (all small Seifert fiber8dmanifolds) are explicitly listed in [2] via their
dual resolution graphs. It is easy to see that there are nmdimjté families of small Seifert
fibered3-manifolds which are links of rational but not quotient sé singularities. This
finishes the proof using Corollary 3.3 since all small S¢ifisered3-manifolds are known
to be atoroidal. Note that on an atoroidamanifold, a Reebless foliation is taut. O

Consequently, Corollary 3.5 answers Questions 4 and 5 ofr&fi2] negatively. For
the sake of completeness we give an infinite family of coxtamples. The small Seifert
fibered3-manifold
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can be described by the surgery diagram depicted in Figurdérep is a positive integer.
Note thatY), is the link of a complex surface singularity whose dual resoh graph is given
in Figure 2.

FIGURE 1. Rational surgery diagram fof,

—2 -2 —2 -2 —2 —2
O—0 °°° & @ @
p vertices

-3

FIGURE 2. Dual resolution graph

Let (X, z) be a germ of a complex surface singularity. Fix a resolutior — X and
denote the irreducible components of the exceptionalalivis= 7' (z) by | J;, E;. The
fundamental cyclef E is by definition the componentwise smallest nonzero effedivisor
7 =3 z;F; satisfyingZ - E; < 0forall 1 <14 < n. Itturns out that the singularityX, x) is
rational if each irreducible componen} of the exceptional divisoFE is isomorphic taC P!
and

n

Z-Z+Y z(-E] -2)=-2,
=1
whereZ = " z, E; is the fundamental cycle df.
Enumerate the vertices in the dual resolution graphjoirom left to right along the top

row with the bottom vertex coming last (see Figure 2). It isrtleasy to check (cf. [3]) that
the coefficient$z1, 2o, .. ., 2,,) of the corresponding fundamental cycle is given by

(1,2,3,3,...,3,3,2,1,1)

It follows thatY), is the link of a rational surface singularity and hence itns_aspace. We
conclude that the canonical contact struct§ug, on Y, is universally tight but it can not
be obtained by perturbing a taut foliation. Moreoverpif> 2, thenY,, is not a quotient
singularity [2] and thus its fundamental group is infinite.
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