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 International Press 2010EXACT LEFSCHETZ FIBRATIONSASSOCIATED WITH DIMER MODELSMasahiro Futaki and Kazushi UedaAbstra
t. We asso
iate an exa
t Lefs
hetz �bration with a pair of a 
onsistent dimermodel and an internal perfe
t mat
hing on it, whose Fukaya 
ategory is derived equiv-alent to the 
ategory of representations of the dire
ted quiver with relations asso
iatedwith the pair. As a 
orollary, we obtain a version of homologi
al mirror symmetry fortwo-dimensional tori
 Fano sta
ks.1. Introdu
tionA dimer model is a bi
olored graph on a 2-torus T = R2=Z2 en
oding the infor-mation of a quiver with relations. It is originally introdu
ed by string theorists (seee.g. a review by Kennaway [16℄ and referen
es therein) and studied by mathemati
iansfrom various points of view. If a dimer model G is 
onsistent, then the quiver � withrelations asso
iated with G has the following properties:� The derived 
ategory Dbmod0 C� of �nitely-generated nilpotent representa-tions of � is Calabi-Yau in the sense that the Serre fun
tor is a shift fun
tor([24, Theorem 6.3℄, see also [3, 5℄).� The moduli spa
e M� of stable representations of � with dimension ve
tor(1; : : : ; 1) and a generi
 stability parameter � is a smooth tori
 Calabi-Yau3-fold [11, Theorem 6.4℄.� There is an equivalen
eDb 
ohM� �= Dbmod C�of triangulated 
ategories between the derived 
ategory of 
oherent sheaves onM� and the derived 
ategory of �nitely generated C�-modules ([10, Theorem14.1℄, see also [2, 33℄). This restri
ts to an equivalen
eDb 
oh0M� �= Dbmod0 C�where Db 
oh0M� is the derived 
ategory of 
oherent sheaves on M� sup-ported at the inverse image of the origin by the natural morphism M� !Spe
 �(OM� ):� A tori
 divisor onM� 
orresponds to a perfe
t mat
hing D on G [11, Lemma6.1℄. A perfe
t mat
hingD is said to be internal if it 
orresponds to a 
ompa
ttori
 divisor of M� for some stability parameter �. One 
an asso
iate adire
ted subquiver �! of � with an internal perfe
t mat
hing on G.Re
eived by the editors February 5, 2010. 1029



1030 MASAHIRO FUTAKI AND KAZUSHI UEDA� For any two-dimensional tori
 Fano sta
k X , there is a pair (G;D) of a 
on-sistent dimer model G and a perfe
t mat
hing D on G su
h that there is anequivalen
e(1) Db 
ohX �= Dbmod C�!of triangulated 
ategories [9, Thoerem 1.1℄.We prove the following in this paper:Theorem 1.1. For a pair (G;D) of a 
onsistent dimer model G and a perfe
t mat
h-ing D on G, there is an exa
t Lefs
hetz �bration p : S ! C su
h thatDb Fuk p �= Dbmod C�! :By 
ombining Theorem 1.1 with (1), one obtains an equivalen
eDb Fuk p �= Db 
ohXof triangulated 
ategories, whi
h is a version of homologi
al mirror symmetry fortwo-dimensional tori
 Fano sta
ks. Homologi
al mirror symmetry is proposed byKontsevi
h, originally for Calabi-Yau manifolds [18℄ and later generalized to Fanomanifolds [19℄. The de�nition of the Fukaya 
ategory of a Lefs
hetz �bration is dueto Seidel [28, 30℄. Homologi
al mirror symmetry for tori
 sta
ks is started in [27℄ andstudied by many people. The relation between dimer models and homologi
al mirrorsymmetry is dis
overed in [6℄ and followed up in [32, 31℄.Theorem 1.1 implies homologi
al mirror symmetry for tori
 Calabi-Yau 3-folds justas in [26, Theorem 1.1℄:Corollary 1.2. For a smooth tori
 Calabi-Yau 3-fold K with a 
ompa
t tori
 divisor,there is an exa
t symple
ti
 manifold H and a full embedding of triangulated 
ategoriesDb 
oh0K ,! Db FukH:The organization of this paper is as follows: In Se
tion 2, we re
all basi
 de�nitionson dimer models and A1-
ategories, and introdu
e the A1-
ategory asso
iated with adimer model. In Se
tion 3, we study the sub
ategory ofAG asso
iated with an internalperfe
t mat
hing, and dis
uss its relation with the derived 
ategory of modules overthe path algebra. In Se
tion 4, we 
onstru
t an exa
t Lefs
hetz �bration from a dimermodel and prove Theorem 1.1 and Corollary 1.2.2. An A1-
ategory from a dimer modelWe �rst re
all basi
 de�nitions on dimer models:� A dimer model is a bi
olored graph G = (B;W;E) on an oriented 2-torusT = R2=Z2 whi
h divides T into polygons. Here B is the set of bla
k nodes,W is the set of white nodes, and E is the set of edges. No edge is allowed to
onne
t nodes with the same 
olor.� A quiver 
onsists of a �nite set V 
alled the set of verti
es, another �nite setA 
alled the set of arrows, and two maps s; t : A ! V 
alled the sour
e andthe target map. The quiver Q = (V;A; s; t) asso
iated with G is de�ned asthe dual graph of G, equipped with the orientation so that the white node isalways on the right of an arrow; the set V of verti
es is the set of fa
es of G,
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an naturally be identi�ed with the set E of edges ofG.� For a 
y
li
 path p = (an; : : : ; a1) and an arrow b on a quiver Q, the derivativeof p by b is de�ned by�p�b = nXi=1 Æai;b(ai�1; ai�2; : : : ; a1; an; an�1; : : : ; ai+1);where Æa;b = (1 a = b;0 otherwise:A potential � is a linear 
ombination of 
y
li
 paths on the quiver. Thederivative of � is de�ned by linearity, and the two-sided ideal I = (��)generated by the derivatives ��=�a for all arrows a gives relations of thequiver.� The potential � of the quiver Q asso
iated with a dimer model is de�ned by� = Xw2W 
(w)�Xb2B 
(b);where 
(n) for n 2 B tW is the minimal 
y
li
 path around n.� A perfe
t mat
hing is a subset D � E su
h that for any n 2 B tW , there isa unique edge e 2 D adja
ent to n. A dimer model is non-degenerate if forany edge e 2 E, there is a perfe
t mat
hing D su
h that e 2 D.� Two paths p and q are said to be weakly equivalent if pr is equivalent to qrfor some other path r. A non-degenerate dimer model is said to be 
onsistentif weakly equivalent paths are equivalent.Next we re
all the di�nition of an A1-
ategory. For a Z-graded ve
tor spa
eN =Lj2ZN j and an integer i, the i-th shift of N to the left will be denoted by N [i℄;(N [i℄)j = N i+j . An A1-
ategory A 
onsists of� the set Ob(A) of obje
ts,� for 
1; 
2 2 Ob(A), a Z-graded ve
tor spa
e homA(
1; 
2) 
alled the spa
e ofmorphisms, and� operationsml : homA(
l�1; 
l)
 � � � 
 homA(
0; 
1) �! homA(
0; 
l)of degree 2 � l for l = 1; 2; : : : and 
i 2 Ob(A), i = 0; : : : ; l, satisfying theA1-relationsl�1Xi=0 lXj=i+1(�1)deg a1+���+deg ai�iml+i�j+1(al 
 � � � 
 aj+1 
mj�i(aj 
 � � � 
 ai+1)
ai 
 � � � 
 a1) = 0;(2) for any positive integer l, any sequen
e 
0; : : : ; 
l of obje
ts of A, and anysequen
e of morphisms ai 2 homA(
i�1; 
i) for i = 1; : : : ; l.A 
y
li
 A1-
ategory of dimension d 2 Z is a pair (A; h�; �i) of an A1-
ategory anda non-degenerate pairingh�; �i : hom(
2; 
1)
 hom(
1; 
2)! C [d℄



1032 MASAHIRO FUTAKI AND KAZUSHI UEDAwhi
h is both symmetri
hx; yi+ (�1)(deg x�1)(deg y�1) hy; xi = 0and 
y
li
hmn(xn; : : : ; x1); x0i = (�1)(degxn�1)(degxn�1+���+degx0�n) hmn�1(xn�1; : : : ; x0); xni :As shown in [20, Se
tion 8.1℄, one 
an asso
iate a 
y
li
 A1-
ategory of dimensionthree with any quiver with potential. By applying their 
onstru
tion to the quiverwith potential asso
iated with a dimer model, one obtains the following 
y
li
 A1-
ategory:De�nition 2.1. Let G = (B;W;E) be a dimer model and � = (V;A; s; t; I) be thequiver with relations asso
iated with G. Then the A1-
ategory A asso
iated with Gis de�ned as follows:� The set of obje
ts is the set V of verti
es of �.� For two obje
ts v and w in A, the spa
e of morphisms is given byhomiA(v; w) = 8>>>>>><>>>>>>:C � idv i = 0 and v = w;spanfa j a : w ! vg i = 1;spanfa_ j a : v ! wg i = 2;C � id_v i = 3 and v = w;0 otherwise:� Non-zero A1-operations aremA2 (x; idv) = mA2 (idw; x) = xfor any x 2 homA(v; w), mA2 (a; a_) = id_vand mA2 (a_; a) = id_wfor any arrow a from v to w,mAk (a1; : : : ; ak) = a0:for any 
y
le (a0; : : : ; ak) of the quiver going around a white node, andmAk (a1; : : : ; ak) = �a0:for any 
y
le (a0; : : : ; ak) of the quiver going around a bla
k node.� The pairing h�; �i : homA(w; v)
 homA(v; w)! C [3℄is de�ned by ha_; ai = 
id_v ; idv� = 1and zero otherwise.If a dimer model G is 
onsistent, then the derived 
ategoryDbA of the A1-
ategoryA asso
iated with G is equivalent to the derived 
ategory Dbmod0 C� of nilpotentrepresentations of �:
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y
li
 A1-
ategory asso
iatedwith G and � be the quiver with relations asso
iated with G. If G is 
onsistent, thenthere is an equivalen
e(3) DbA �= Dbmod0 C�of triangulated 
ategories.Sket
h of proof. Let C be the full sub
ategory of the di�erential graded enhan
ementof Dbmod C� 
onsisting of simple modules. Sin
e Dbmod0 C� is the smallest trian-gulated sub
ategory of Dbmod C� 
ontaining simple modules, one has an equivalen
eDbC �= Dbmod0 C�by Bondal and Kapranov [1, x4, Theorem 1℄. Hen
e the equivalen
e (3) follows fromthe quasi-equivalen
e C �= Aof A1-
ategories, whi
h 
an be shown dire
tly using homologi
al perturbation theory[12, 8, 23, 21℄, or dedu
ed from the 
ase of a dire
ted sub
ategory dis
ussed in Se
tion3 by noting that A is the trivial extension of its dire
ted sub
ategory [4℄.An alternative approa
h, suggested to the authors by Bernhard Keller, is to useKoszul duality forA1-
ategories developed by Lef�evre-Hasegawa [22℄ and summarizedin [13℄: As A is augmented over the produ
t of 
opies of C indexed by the verti
es ofQ, the bar 
onstru
tion C = BA = 1Mn=0A
nequipped with the 
o-di�erential Æ : C ! C de�ned byÆ(al 
 � � � 
 a1) = l�1Xi=0 lXj=i+1(�1)deg a1+���+deg ai�ial 
 � � � 
 aj+1
mj�i(aj 
 � � � 
 ai+1)
 ai 
 � � � 
 a1;is a 
o-augmented di�erential graded 
oalgebra, and ea
h A1-module M over Ayields a di�erential graded 
omoduleBM = 1Mn=0M
A
nover C. The fun
tor M 7! BM indu
es an equivalen
eDbA ! D0Cfrom the bounded derived 
ategory of A to the full triangulated sub
ategory D0 C ofthe 
oderived 
ategory DC of C generated by di�erential graded 
omodules 
omingfrom the 
o-augmentation.Now let G be the 
ompletion of the di�erential graded algebra asso
iated withthe quiver (Q;�) with potential by Ginzburg [7, Se
tion 1.4℄. Then G is the C -dual of C as observed in [15, Se
tion 5.3℄, and C -duality transforms ea
h di�erentialgraded C-
omodule into a di�erential graded G-module. This indu
es a 
ontravariantequivalen
e HomC (�; C ) : D0 C ! D0(G)



1034 MASAHIRO FUTAKI AND KAZUSHI UEDAfrom D0C to the full triangulated sub
ategoryD0(G) of the derived 
ategoryD(G) ofG 
ontaining simple modules. If the dimer model is 
onsistent, then C� is a Calabi-Yau 3 algebra and one has a quasi-isomorphism C� ��! G by [7, Theorem 5.3.1℄, sothat D0(G) is equivalent to Dbmod0 C�. One 
an obtain a 
ovariant equivalen
einstead of a 
ontravariant one by 
omposing with the duality fun
tor RHomG(�; G) :D0(G)! D0(G): �3. The dire
ted sub
ategoryLet G = (B;W;E) be a dimer model and Q = (V;A; s; t) be the quiver asso
iatedwith G. A perfe
t mat
hing D de�nes a subquiverQD = (V;AD ; sD; tD)of Q with the same set of verti
es as Q and the setAD = A nDof arrows 
onsisting of those not in D � E = A. The path algebra CQD is naturallya subalgebra of CQ, and the interse
tion ID = CQD \I of the ideal I of relations onQ with CQD gives an ideal of relations on QD. We write the resulting quiver withrelations as �D = (QD; ID).LetM� be the moduli spa
e of stable representations of � with respe
t to a stabilityparameter � in the sense of King [17℄. If G is non-degenerate, then M� is a smoothtori
 variety for a generi
 �, and for any tori
 divisor inM�, there is a perfe
t mat
hingD su
h that the divisor is de�ned as the zero lo
us of the arrows dual to edges in D[11℄. In addition, for any perfe
t mat
hing D, there is a generi
 stability parameter �su
h that D 
orresponds to a tori
 divisor in M� in this way.A perfe
t mat
hing D is said to be internal if the tori
 divisor inM� 
orrespondingto D for some � is 
ompa
t. It is easy to see that a perfe
t mat
hing D is internal ifand only if QD does not have an oriented 
y
le.For a total order > on the set V of verti
es of Q, the dire
ted subquiver Q! isde�ned as the subquiver of Q whose set of verti
es is the same as Q and whose set ofarrows A! is given by A! = fa 2 A j s(a) < t(a)g :The subquiver Q! equipped with the relations I! = CQ! \ I will be denoted by�!. A perfe
t mat
hing D is said to 
ome from a total order > if �D = �!.Lemma 3.1. A perfe
t mat
hing D of a dimer model G is internal if and only if it
omes from a total order < on the set of fa
es of G.Proof. It is 
lear that a perfe
t mat
hing 
oming from a total order on the set offa
es is internal. To show the 
onverse, assume that a perfe
t mat
hing D is internal.The non-existen
e of oriented 
y
les ensures that this quiver de�nes a partial orderon the set of verti
es of the quiver. Choose any total order < 
ompatible with thispartial order. Then the 
ondition that D is a perfe
t mat
hing implies that the arrows
ontained in D is pre
isely the arrows a su
h that s(a) > t(a); the path p(a) fromt(a) to s(a) whi
h goes around either node adja
ent to the edge dual to a is 
ontainedin the subquiver and indu
es the order s(a) > t(a). �
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ategory A and a sequen
e Y = (Y1; : : : ; Ym) of obje
ts, the asso
iateddire
ted sub
ategory A! = A(Y ) is the A1-sub
ategory 
onsisting of Y su
h thatthe spa
es of morphisms are given byhomA!(Yi; Yj) = 8><>:C � idYi i = j;homA(Yi; Yj) i < j;0 otherwise;with the A1-operations inherited from A. If A 
omes from a dimer model G as inSe
tion 2 and < is a total order on the set of verti
es of the quiver asso
iated withG, then we set Y = (Y1; : : : ; Ym) to be the set of obje
ts of A, arranged in the orderinverse to the one indu
ed by <.Proposition 3.2. Let G be a 
onsistent dimer model and > be a total order on theset of fa
es of G giving an internal perfe
t mat
hing. Then one has an equivalen
eDbA! �= Dbmod C�!of triangulated 
ategories.Proposition 3.2 
omes from a quasi-equivalen
e A! �= C! with the the full sub
at-egory C! of the di�erential graded enhan
ement of Dbmod C�! 
onsisting of simplemodules. This is an easy exer
ise in homologi
al perturbation theory, and 
an alsobe dedu
ed from [14, Proposition 2℄ as dis
ussed in [4℄.4. An exa
t Lefs
hetz �bration from a dimer modelWe prove the following in this se
tion, whi
h together with Proposition 3.2 imme-diately implies Theorem 1.1:Theorem 4.1. Let G be a 
onsistent dimer model and D be an internal perfe
tmat
hing on G. Then there is an exa
t Lefs
hetz �bration p : X ! C whose Fukaya
ategory is equivalent to the dire
ted A1-
ategory A! asso
iated with (G;D).An exa
t Lefs
hetz �bration is a J-holomorphi
 fun
tion p : S ! C on an exa
talmost K�ahler manifold (S; !; J) su
h that all the 
riti
al points are non-degenerate.We also assume that J is integrable near the 
riti
al points, and the horizontal lift e
x :[0; 1℄! X of a smooth path 
 : [0; 1℄! C starting at x 2 p�1(
(0)) is always de�ned.A distinguished basis of vanishing 
y
les is a 
olle
tion (C1; : : : ; Cm) of Lagrangianspheres in the regular �ber of p whi
h 
ollapse to 
riti
al points by parallel transportalong a distinguished set of vanishing paths, 
f. [30, Se
tion 16℄. By the Fukaya
ategory of p, we mean the dire
ted sub
ategory of the Fukaya 
ategory of the regular�ber of p 
onsisting of a distinguished basis of vanishing 
y
les. Re
all from [30,Lemma 16.9℄ that any 
olle
tion of framed exa
t Lagrangian spheres in an exa
tsymple
ti
 manifold 
an be realized as a distinguished basis of vanishing 
y
les of anexa
t Lefs
hetz �bration.Lemma 4.2. There is a 2-manifold M and a 
olle
tion (Cv)v2V of embedded 
ir
leson M su
h that interse
tions of Cv and Cv0 are transverse and in natural bije
tionwith arrows between v and v0.
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Figure 1. The surfa
e and immersed 
ir
les asso
iated with a dimer modelProof. Re
all that a ribbon graph is a graph together with the 
hoi
e of a 
y
li
 orderon the set of edges 
onne
ted to ea
h node. A graph underlying a dimer modelnaturally has a ribbon stru
ture by �rst giving the 
y
li
 order on the set of edgesaround ea
h node 
oming from the orientation of T , and then reversing those aroundthe bla
k nodes. A ribbon graph determines a 2-manifold M by assigning a disk toea
h node and gluing them together as designated by the ribbon stru
ture.This 
onstru
tion 
an be des
ribed pi
torially as follows: One �rst asso
iates a diskwith ea
h node of the dimer model, and reverse the orientation of the disks asos
iatedwith bla
k nodes. Then the surfa
e is obtained by 
onne
ting adja
ent disks with a\twisted strip", so that the dimer model one has started with is naturally embeddedon the surfa
e (and in fa
t a deformation retra
tion of it). Figure 1 shows a part ofa dimer model and the resulting surfa
e near an edge.For ea
h vertex v of � (i.e. for ea
h fa
e of G), one 
an asso
iate an immersed 
ir
leCv in M as shown in light gray in Figure 1, so that arrows of � naturally 
orrespondto interse
tion points between them. They do not have self-interse
tions sin
e thequiver � does not have a loop, i.e. an arrow a su
h that s(a) = t(a); if su
h an arrowexists, no perfe
t mat
hing 
omes from a total order on the set of verti
es of �, sothat there 
an be no internal perfe
t mat
hing by Lemma 3.1. �We let M and Cv denote the 2-manifold and the embedded 
ir
les 
onstru
ted inthe proof of Lemma 4.2 hen
eforth.Lemma 4.3. The 2-manifold M admits an exa
t symple
ti
 form ! su
h that Cv areexa
t Lagrangian submanifolds.Proof. Choose an exa
t 
omplete K�ahler stru
ture on M and let � be a one-form onM su
h that ! = d� is the K�ahler form. Re
all that Cv is said to be exa
t if RCv � = 0.If we perturb Cv to C 0v, then Stokes' theorem states thatZCv � � ZC0v � = ZD !;where D is the region surrounded by Cv and C 0v ; �D = Cv�C 0v: Note that both sidesof Cv 
ontains a point at in�nity, i.e., a point inM nM whereM is a 
ompa
ti�
ationof M . It follows that for any R 2 R, one 
an 
hoose C 0v su
h that RD ! = R. By
hoosing R = RCv �, one obtains RC0v � = 0 as desired. �Let p : S ! Cbe an exa
t Lefs
hetz �bration su
h that p�1(0) �= M and (Cv)v2V forms a distin-guished basis of vanishing 
y
les. To equip the Fukaya 
ategory with a Z-grading,we need gradings of M and Cv : A grading of a symple
ti
 manifold (M;!) is the
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hoi
e of a �berwise universal 
over gLagM of the Lagrangian Grassmannian bundleLagM !M: A Lagrangian submanifold L �M naturally gives a se
tionsL : L ! LagM jL2 2x 7! TxL;and a grading of L is a 
hoi
e of a lift of sL toesL : L! gLagM jL:When M is equipped with a 
ompatible almost 
omplex stru
ture so that (M;!; J) isan almost K�ahler manifold, the 
hoi
e of a grading ofM is equivalent to the 
hoi
e of anowhere-vanishing 
ontinuous se
tion � of the square (�topT �M)
2 of the 
anoni
albundle. Su
h a se
tion exists if and only if 2
1(TM; J) = 0 2 H2(M;Z), and thehomotopy 
lasses of se
tions are 
lassi�ed by H1(M;Z). A se
tion � indu
es a mapdet2� : LagM ! C�=R>0 �= S12 2spanfe1; : : : ; eng 7! [�((e1 ^ � � � ^ en)
2)℄:The 
omposition of sL and det2� will be denoted by �L, and a grading of L is equivalentto a lift e�L : L! R of �L : L! S1 to the universal 
over R ! S1.Given a pair (L1; L2) of graded Lagrangian submanifolds, one 
an de�ne theMaslovindex �(x;L1; L2) for ea
h interse
tion point x 2 L1 \ L2. If dimC M = 1, then it isgiven by the round-up �(x;L1; L2) = be�L2(x) � e�L1(x)
of the di�eren
e of the phase fun
tion at x.Lemma 4.4. There is a grading of (M;!) and Cv su
h that the Maslov index ofe 2 Cv \ Cw for v > w is given by�(e;Cv; Cw) = (1 e 62 D;2 e 2 D:Proof. Sin
e dimRM = 2 in our 
ase, the Lagrangian Grassmannian bundle is theprin
ipal S1-bundle asso
iated with (TM)
2, and a grading is a trivialization (i.e.,a se
tion) of it. Let eG be the pull-ba
k of G on T = R2=Z2 to the universal 
overR2 of T , and fM be the 2-manifold asso
iated with eG. Fix a vertex ~v0 of the quiverasso
iated with eG and 
hoose a grading of a tubular neighborhood of C~v0 � fM sothat C~v0 admits a grading. Fix a grading of C~v0 and 
hoose a grading of C~v for other~v su

essively as follows; if a vertex ~v is adja
ent by an arrow a to another vertex ~v0where the gradings of a tubular neighborhood of C~v0 and of C~v0 are already de�ned,we 
hoose a grading of a tubular neighborhood of C~v and of C~v so that the Maslovindex �(a;C~v0 ; C~v) is one if ~v0 > ~v, and minus one if ~v0 < ~v. Sin
e these gradingson the tubular neighborhoods of vanishing 
y
les glue together 
oherently around anode of eG, this de�nes gradings of fM and C~v , whi
h des
ends to gradings of M andCv . �
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b w

Figure 2. The passage from G0 (left) to G (right), where one van-ishing 
y
le is divided into twoA relative grading � of an exa
t Lefs
hetz �bration p : S ! C is a nowhere-vanishingse
tion of the holomorphi
 line bundle �top(T �S)
2 
 p�(T �C )
(�2) ; whi
h indu
esa grading on a regular �ber of p. One 
an equip p with a relative grading su
h thatthe indu
ed grading on M 
oin
ides with the one in Lemma 4.4 [30, Se
tion (16f)℄.The following lemma 
on
ludes the proof of Theorem 4.1:Lemma 4.5. Let (e0; e1; : : : ; ek) be the sequen
e of edges of G around a node respe
t-ing the 
y
li
 order su
h that e0 2 D. Then one has an A1-operation(4) mk(ek; : : : ; e1) = �e0in the Fukaya 
ategory Fuk p of Lefs
hetz �bration, where the sign is positive if thenode is white, and negative if it is bla
k.Proof. Sin
e M is a 2-manifold, the A1-operations in the Fukaya 
ategory are givenby 
ounting polygons bounded by Lagrangian submanifolds. It is 
lear from Figure 1that ea
h node of the dimer model gives su
h a polygon, and the non-existen
e of otherpolygons follows from the fa
t that the dimer model is a deformation retra
tion of thesurfa
e. This shows that A1-operations are given as in (4) and only the sign is theissue here. We write the vanishing 
y
les surrounding a polygon as Cvi , i = 0; : : : ; kso that e0 2 Cv0 \Cvk and ei 2 Cvi�1 \Cvi for i = 1; : : : ; k: The grading of Cvi de�nesan orientation of Cvi , and let �i, i = 1; : : : ; k be the unit tangent ve
tor of Cvi atei 2 Cvi�1 \Cvi along the orientation. We also 
hoose a point on ea
h vanishing 
y
leCv , whi
h 
omes from the 
hoi
e of the non-trivial spin stru
ture. Then it followsfrom the Seidel's sign rule [29, Se
tion (9e)℄ that the sign in (4) is given by (�1)y,where y is the sum of the number of i 2 [1; k℄ su
h that �i points away from thepolygon and the the number of points on the boundary of the polygon 
oming fromthe spin stru
tures.Now we use the following fa
t from [10℄: Let G0 be the simplest dimer model
onsisting of one bla
k node, one white node and three edges, whi
h 
orresponds tothe M
Kay quiver for the trivial group. Then any 
onsistent dimer model 
an beobtained from G0 by su

essively adding a divalent node or an edge.Assume that a dimer model G is obtained from another dimer model G0 by addingan edge between a bla
k node b and a white node w as shown in Figure 2. It follows



EXACT LEFSCHETZ FIBRATIONS ASSOCIATED WITH DIMER MODELS 1039from the de�nition of the grading of M and Cv that �i either points away from thepolygon or toward the polygon simultaneously for all i, and the fa
t that b and w areadja
ent in G implies that if �i at b points away from the disk 
orresponding to b,then �i at w points toward the disk 
orresponding to w, and if �i at b points towardthe disk 
orresponding to b, then �i at w points away from the disk 
orresponding tow. Then either of the disk at b or w re
eives an extra sign for G 
ompared to thatfor G0, whi
h 
an be o�-set by the introdu
tion of a new base point on the vanishing
y
le, whi
h is ne
essary sin
e one of the vanishing 
y
les for G0 is divided into twoby adding an edge to G0. This shows that the dimer model G satis�es the assertionof the lemma if the dimer model G0 does. Sin
e the addition of a divalent node doesnot 
hange M and Cv at all, the lemma is proved. �The double suspension p�� : S � C 2 ! C of p : S ! C is de�ned byp��(x; u; v) = p(x) + uv;and a vanishing 
y
le C � p(0) naturally gives a vanishing 
y
le L � (p��)�1(0)
alled the double suspension of C. The following theorem is due to Seidel:Theorem 4.6 (Seidel [26, Corollary 5.5℄). The full sub
ategory of Fuk((p��)�1(0))
onsisting of double suspensions Lv of Cv for v 2 V is equivalent to the trivial exten-sion of Fuk p of degree 3.Sin
e A is the trivial extension of A! of degree 3 (or the 3-dimensional 
y
li

ompletion in the terminology of [25℄), Corollary 1.2 is proved.A
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