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EXACT LEFSCHETZ FIBRATIONS
ASSOCIATED WITH DIMER MODELS

MASAHIRO FUTAKI AND Kazusul UEDA

ABsTrRACT. We associate an exact Lefschetz fibration with a pair of a consistent dimer
model and an internal perfect matching on it, whose Fukaya category is derived equiv-
alent to the category of representations of the directed quiver with relations associated
with the pair. As a corollary, we obtain a version of homological mirror symmetry for
two-dimensional toric Fano stacks.

1. Introduction

A dimer model is a bicolored graph on a 2-torus 7' = R?/Z? encoding the infor-
mation of a quiver with relations. It is originally introduced by string theorists (see
e.g. a review by Kennaway [16] and references therein) and studied by mathematicians
from various points of view. If a dimer model G is consistent, then the quiver T with
relations associated with G has the following properties:

e The derived category D® mody CT' of finitely-generated nilpotent representa-
tions of I' is Calabi-Yau in the sense that the Serre functor is a shift functor
([24, Theorem 6.3], see also [3, 5]).

e The moduli space My of stable representations of I' with dimension vector
(1,...,1) and a generic stability parameter 6 is a smooth toric Calabi-Yau
3-fold [11, Theorem 6.4].

e There is an equivalence

Db coh My = D? mod CT°

of triangulated categories between the derived category of coherent sheaves on
My and the derived category of finitely generated CI'-modules ([10, Theorem
14.1], see also [2, 33]). This restricts to an equivalence

D? cohg My = D” mod, CT

where D’ cohg My is the derived category of coherent sheaves on My sup-
ported at the inverse image of the origin by the natural morphism M, —
SpecT' (O, )-

e A toric divisor on My corresponds to a perfect matching D on G [11, Lemma
6.1]. A perfect matching D is said to be internal if it corresponds to a compact
toric divisor of My for some stability parameter #. One can associate a
directed subquiver ' of T with an internal perfect matching on G.
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e For any two-dimensional toric Fano stack X, there is a pair (G, D) of a con-
sistent dimer model G and a perfect matching D on G such that there is an
equivalence

(1) D’ coh X = D*mod CI'™
of triangulated categories [9, Thoerem 1.1].

We prove the following in this paper:

Theorem 1.1. For a pair (G, D) of a consistent dimer model G and a perfect match-
ing D on G, there is an exact Lefschetz fibration p : S — C such that

D Futp = D’ mod CI ™.
By combining Theorem 1.1 with (1), one obtains an equivalence
D’ Futp = Dbcoh X

of triangulated categories, which is a version of homological mirror symmetry for
two-dimensional toric Fano stacks. Homological mirror symmetry is proposed by
Kontsevich, originally for Calabi-Yau manifolds [18] and later generalized to Fano
manifolds [19]. The definition of the Fukaya category of a Lefschetz fibration is due
to Seidel [28, 30]. Homological mirror symmetry for toric stacks is started in [27] and
studied by many people. The relation between dimer models and homological mirror
symmetry is discovered in [6] and followed up in [32, 31].

Theorem 1.1 implies homological mirror symmetry for toric Calabi-Yau 3-folds just
as in [26, Theorem 1.1]:

Corollary 1.2. For a smooth toric Calabi-Yau 3-fold K with a compact toric divisor,
there is an exact symplectic manifold H and o full embedding of triangulated categories

D’ cohg K < D* Fut H.

The organization of this paper is as follows: In Section 2, we recall basic definitions
on dimer models and A, -categories, and introduce the A -category associated with a
dimer model. In Section 3, we study the subcategory of A associated with an internal
perfect matching, and discuss its relation with the derived category of modules over
the path algebra. In Section 4, we construct an exact Lefschetz fibration from a dimer
model and prove Theorem 1.1 and Corollary 1.2.

2. An A -category from a dimer model

We first recall basic definitions on dimer models:

e A dimer model is a bicolored graph G = (B, W, E) on an oriented 2-torus
T = R? /7?2 which divides T into polygons. Here B is the set of black nodes,
W is the set of white nodes, and FE is the set of edges. No edge is allowed to
connect nodes with the same color.

e A quiver consists of a finite set V' called the set of vertices, another finite set
A called the set of arrows, and two maps s,t : A — V called the source and
the target map. The quiver Q = (V, A, s,t) associated with G is defined as
the dual graph of GG, equipped with the orientation so that the white node is
always on the right of an arrow; the set V' of vertices is the set of faces of G,
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and the set A of arrows can naturally be identified with the set E of edges of
G.

e For a cyclic path p = (ay, - ..,a1) and an arrow b on a quiver @, the derivative
of p by b is defined by

n

op >

% = 6ai7b(ai_1,ai_2, ey A1, Ay Ap—1 5 - - .,G,H_l),
i=1

where

1 a=0b,
5a,b - .
0 otherwise.
A potential ® is a linear combination of cyclic paths on the quiver. The
derivative of ® is defined by linearity, and the two-sided ideal Z = (0®)
generated by the derivatives 0®/0a for all arrows a gives relations of the

quiver.
e The potential ® of the quiver () associated with a dimer model is defined by

o = Z c(w) — Zc(b),
weW beB
where ¢(n) for n € BUW is the minimal cyclic path around n.

o A perfect matching is a subset D C E such that for any n € B U W, there is
a unique edge e € D adjacent to n. A dimer model is non-degenerate if for
any edge e € E, there is a perfect matching D such that e € D.

e Two paths p and ¢ are said to be weakly equivalent if pr is equivalent to gr
for some other path r. A non-degenerate dimer model is said to be consistent
if weakly equivalent paths are equivalent.

Next we recall the difinition of an A, -category. For a Z-graded vector space
N=8O,c N7 and an integer i, the i-th shift of NV to the left will be denoted by NTi];
(N[i])) = N**i. An A, -category A consists of

e the set Ob(A) of objects,

e for c1, co € Ob(A), a Z-graded vector space hom 4 (e, ¢2) called the space of
morphisms, and

e operations

my :hom g(ci—1,¢) ® -+ - @ hom4(co, ¢1) — hom 4(co, 1)

of degree 2 — [ for | = 1,2,... and ¢; € Ob(A), i = 0,...,I, satisfying the
Ao -relations

-1 1

Z Z (_l)deg a1+---+deg aiiiml+ifj+1 (al Q- ®ajy1 ® mj—i(aj R ® ai+1)

i=0 j=i+1

(2) ®ai®---®a1)=0,
for any positive integer [, any sequence c, ..., ¢ of objects of A, and any
sequence of morphisms a; € hom 4(¢c;—1,¢;) for i =1,...,1.

A cyclic Aso-category of dimension d € Z is a pair (A, (e, e)) of an A, -category and
a non-degenerate pairing

(e, @) : hom(co, 1) ® hom(ey, o) — Cld]
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which is both symmetric
() + (~1)oE DD () — 0
and cyclic
(M (ny -, 21), 7o) = (—1)(deBEn—)(deganrtotdegmo—n) (g (g gy gy

As shown in [20, Section 8.1], one can associate a cyclic A -category of dimension
three with any quiver with potential. By applying their construction to the quiver
with potential associated with a dimer model, one obtains the following cyclic A..-
category:

Definition 2.1. Let G = (B, W, E) be a dimer model and ' = (V, A, s,t,7) be the
quiver with relations associated with G. Then the A, -category A associated with G
is defined as follows:

e The set of objects is the set V' of vertices of T

e For two objects v and w in A, the space of morphisms is given by
C-id, i =0and v =w,
spanf{a | a:w — v} i=1,

hom’ (v, w) = { span{a” |a:v = w} i=2,
(C-id:)/ i=3andv:w,
0 otherwise.

e Non-zero As.-operations are
my(z,id,) = mz'(idy, z) = =
for any x € hom 4 (v, w),
my'(a,a") = id

and
m#(a”,a) = id),

for any arrow a from v to w,

mit(ay, ..., a) = ao.
for any cycle (ag,...,ax) of the quiver going around a white node, and
mi(ar,...,ax) = —ao.
for any cycle (ao,...,ax) of the quiver going around a black node.

e The pairing
(e,8) : hom 4 (w,v) ® hom 4 (v, w) — C[3]
is defined by
(a¥,a) = (idy,idy) =1
and zero otherwise.
If a dimer model G is consistent, then the derived category D° A of the A, -category

A associated with G is equivalent to the derived category D®modg CT' of nilpotent
representations of I':
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Proposition 2.2. For a dimer model G, let A be the cyclic Ay -category associated
with G and T be the quiver with relations associated with G. If G is consistent, then
there is an equivalence

(3) D' A = D mod, CI'
of triangulated categories.

Sketch of proof. Let C be the full subcategory of the differential graded enhancement
of D*mod CT" consisting of simple modules. Since D® modg CI is the smallest trian-
gulated subcategory of D? mod CI' containing simple modules, one has an equivalence

D*C = D’ mod, CT*

by Bondal and Kapranov [1, §4, Theorem 1]. Hence the equivalence (3) follows from
the quasi-equivalence

C=A
of As.-categories, which can be shown directly using homological perturbation theory
[12, 8, 23, 21], or deduced from the case of a directed subcategory discussed in Section
3 by noting that A is the trivial extension of its directed subcategory [4].

An alternative approach, suggested to the authors by Bernhard Keller, is to use
Koszul duality for A.-categories developed by Lefevre-Hasegawa [22] and summarized
in [13]: As A is augmented over the product of copies of C indexed by the vertices of
@, the bar construction

o0
C=BA=pA*"
n=0
equipped with the co-differential § : C' — C defined by
-1 1
5((” QR ® al) — Z Z (_1)dega1+---+degai—ial ® - ®ajp1
i=0 j=it1
om;_i(a; ® - ®ai11) ®a; @+ R ay,
is a co-augmented differential graded coalgebra, and each A,,-module M over A
yields a differential graded comodule

BM =@ Mo A%
n=0

over C'. The functor M + BM induces an equivalence
DbA — Do C

from the bounded derived category of A to the full triangulated subcategory Do C' of
the coderived category DC' of C' generated by differential graded comodules coming
from the co-augmentation.

Now let G be the completion of the differential graded algebra associated with
the quiver (Q,®) with potential by Ginzburg [7, Section 1.4]. Then G is the C
dual of C' as observed in [15, Section 5.3], and C-duality transforms each differential
graded C-comodule into a differential graded G-module. This induces a contravariant
equivalence

Homg(e,C) : Dy C — Do(G)
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from DoC to the full triangulated subcategory Do(G) of the derived category D(G) of
G containing simple modules. If the dimer model is consistent, then CI" is a Calabi-
Yau 3 algebra and one has a quasi-isomorphism CI' =+ G by [7, Theorem 5.3.1], so
that Do(G) is equivalent to D’ mody CT. One can obtain a covariant equivalence

instead of a contravariant one by composing with the duality functor RHom (e, G) :

3. The directed subcategory

Let G = (B,W, E) be a dimer model and @ = (V, A, s,t) be the quiver associated
with G. A perfect matching D defines a subquiver

®@p = (V,Ap,sp,tp)
of ) with the same set of vertices as ) and the set
Ap=A\D

of arrows consisting of those not in D C E = A. The path algebra CQp is naturally
a subalgebra of C@Q), and the intersection Ip = CQp NZ of the ideal Z of relations on
@ with CQp gives an ideal of relations on @p. We write the resulting quiver with
relations as I'p = (Qp,Zp).

Let My be the moduli space of stable representations of I" with respect to a stability
parameter 6 in the sense of King [17]. If G is non-degenerate, then My is a smooth
toric variety for a generic #, and for any toric divisor in My, there is a perfect matching
D such that the divisor is defined as the zero locus of the arrows dual to edges in D
[11]. In addition, for any perfect matching D, there is a generic stability parameter
such that D corresponds to a toric divisor in My in this way.

A perfect matching D is said to be internal if the toric divisor in My corresponding
to D for some 6 is compact. It is easy to see that a perfect matching D is internal if
and only if Qp does not have an oriented cycle.

For a total order > on the set V of vertices of @, the directed subquiver Q7 is
defined as the subquiver of ) whose set of vertices is the same as () and whose set, of
arrows A~ is given by

A7 ={a€ A] s(a) <t(a)}.

The subquiver @ equipped with the relations Z7 = CQ~ N Z will be denoted by
7. A perfect matching D is said to come from a total order > if T'p =T,

Lemma 3.1. A perfect matching D of a dimer model G is internal if and only if it
comes from a total order < on the set of faces of G.

Proof. Tt is clear that a perfect matching coming from a total order on the set of
faces is internal. To show the converse, assume that a perfect matching D is internal.
The non-existence of oriented cycles ensures that this quiver defines a partial order
on the set of vertices of the quiver. Choose any total order < compatible with this
partial order. Then the condition that D is a perfect matching implies that the arrows
contained in D is precisely the arrows a such that s(a) > t(a); the path p(a) from
t(a) to s(a) which goes around either node adjacent to the edge dual to a is contained
in the subquiver and induces the order s(a) > t(a). O
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For an A -category A and a sequence Y = (Y7,...,Y},) of objects, the associated
directed subcategory A7 = A(Y) is the A-subcategory consisting of Y such that
the spaces of morphisms are given by

C -idy;, i=7,
hom - (Y;,Y}) = { homa(Y;,Y;) i < j,
0 otherwise,

with the A..-operations inherited from A. If A comes from a dimer model G as in
Section 2 and < is a total order on the set of vertices of the quiver associated with
G, then we set Y = (Y3,...,Y},) to be the set of objects of A, arranged in the order
inverse to the one induced by <.

Proposition 3.2. Let G be a consistent dimer model and > be a total order on the
set of faces of G giving an internal perfect matching. Then one has an equivalence

DA™ = D" mod CT'™
of triangulated categories.

Proposition 3.2 comes from a quasi-equivalence A~ = C~ with the the full subcat-
egory C~ of the differential graded enhancement of D® mod CI'™ consisting of simple
modules. This is an easy exercise in homological perturbation theory, and can also
be deduced from [14, Proposition 2] as discussed in [4].

4. An exact Lefschetz fibration from a dimer model

We prove the following in this section, which together with Proposition 3.2 imme-
diately implies Theorem 1.1:

Theorem 4.1. Let G be a consistent dimer model and D be an internal perfect
matching on G. Then there is an exact Lefschetz fibration p : X — C whose Fukaya
category is equivalent to the directed A -category A~ associated with (G, D).

An exact Lefschetz fibration is a J-holomorphic function p : § — C on an exact
almost Kahler manifold (S,w, J) such that all the critical points are non-degenerate.
We also assume that J is integrable near the critical points, and the horizontal lift 7, :
[0,1] — X of a smooth path v : [0,1] — C starting at € p~'(v(0)) is always defined.
A distinguished basis of vanishing cycles is a collection (Ci,...,Cy,) of Lagrangian
spheres in the regular fiber of p which collapse to critical points by parallel transport
along a distinguished set of vanishing paths, cf. [30, Section 16]. By the Fukaya
category of p, we mean the directed subcategory of the Fukaya category of the regular
fiber of p consisting of a distinguished basis of vanishing cycles. Recall from [30,
Lemma 16.9] that any collection of framed exact Lagrangian spheres in an exact
symplectic manifold can be realized as a distinguished basis of vanishing cycles of an
exact Lefschetz fibration.

Lemma 4.2. There is a 2-manifold M and a collection (Cy)yev of embedded circles
on M such that intersections of C, and C\ are transverse and in natural bijection
with arrows between v and v'.
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FIGURE 1. The surface and immersed circles associated with a dimer model

Proof. Recall that a ribbon graph is a graph together with the choice of a cyclic order
on the set of edges connected to each node. A graph underlying a dimer model
naturally has a ribbon structure by first giving the cyclic order on the set of edges
around each node coming from the orientation of T, and then reversing those around
the black nodes. A ribbon graph determines a 2-manifold M by assigning a disk to
each node and gluing them together as designated by the ribbon structure.

This construction can be described pictorially as follows: One first associates a disk
with each node of the dimer model, and reverse the orientation of the disks asosciated
with black nodes. Then the surface is obtained by connecting adjacent disks with a
“twisted strip”, so that the dimer model one has started with is naturally embedded
on the surface (and in fact a deformation retraction of it). Figure 1 shows a part of
a dimer model and the resulting surface near an edge.

For each vertex v of T' (i.e. for each face of ), one can associate an immersed circle
Cy in M as shown in light gray in Figure 1, so that arrows of I' naturally correspond
to intersection points between them. They do not have self-intersections since the
quiver I' does not have a loop, i.e. an arrow a such that s(a) = ¢(a); if such an arrow
exists, no perfect matching comes from a total order on the set of vertices of T', so
that there can be no internal perfect matching by Lemma 3.1. O

We let M and C, denote the 2-manifold and the embedded circles constructed in
the proof of Lemma 4.2 henceforth.

Lemma 4.3. The 2-manifold M admits an exact symplectic form w such that C, are
exact Lagrangian submanifolds.

Proof. Choose an exact complete Kéahler structure on M and let 6 be a one-form on
M such that w = df is the Kahler form. Recall that (', is said to be exact if va #=0.
If we perturb C, to CJ, then Stokes’ theorem states that

/9—/9=/w,
. ’ D

where D is the region surrounded by C, and C}; 9D = C, — C}.. Note that both sides
of C, contains a point at infinity, i.e., a point in M\ M where M is a compactification
of M. Tt follows that for any R € R, one can choose C} such that [,w = R. By
choosing R = [, 0, one obtains [, § =0 as desired. O

Let
p:S—C
be an exact Lefschetz fibration such that p='(0) = M and (C,).cv forms a distin-
guished basis of vanishing cycles. To equip the Fukaya category with a Z-grading,
we need gradings of M and C,: A grading of a symplectic manifold (M,w) is the



EXACT LEFSCHETZ FIBRATIONS ASSOCIATED WITH DIMER MODELS 1037

choice of a fiberwise universal cover ZZL_;] a of the Lagrangian Grassmannian bundle
Lagy, — M. A Lagrangian submanifold L C M naturally gives a section

ST, L — EagM |L
W W
T T.L,

and a grading of L is a choice of a lift of sz, to
gL : L — ZZI—'/gM |L-

When M is equipped with a compatible almost complex structure so that (M, w, J) is
an almost K&hler manifold, the choice of a grading of M is equivalent to the choice of a
nowhere-vanishing continuous section n of the square (A*PT*M)®2 of the canonical
bundle. Such a section exists if and only if 2¢;(TM,J) = 0 € H?(M,Z), and the
homotopy classes of sections are classified by H'(M,Z). A section 5 induces a map

det?7 : Lag, — C* /R0 =2 81
w w
Span{ela"'aen} = [77((61 A '”/\en)®2)]'

The composition of s;, and deti will be denoted by ¢, and a grading of L is equivalent

to a lift ¢ : L — R of ¢r : L — S to the universal cover R — S*.

Given a pair (L1, L») of graded Lagrangian submanifolds, one can define the Maslov
index p(x; L1, Lo) for each intersection point & € Ly N Ly. If dime M = 1, then it is
given by the round-up

//’(x; Lla L2) = |_$L2 (x) - $L1 (x)J
of the difference of the phase function at z.

Lemma 4.4. There is a grading of (M,w) and C, such that the Maslov index of
e € CyNCy forv>w is given by

1 e¢D,

'Cvacw =
ple; ) {2 ecD.

Proof. Since dimg M = 2 in our case, the Lagrangian Grassmannian bundle is the
principal S'-bundle associated with (TM)®2, and a grading is a trivialization (i.e.,
a section) of it. Let G be the pull-back of G on T = R*/Z? to the universal cover
R? of T, and M be the 2-manifold associated with G. Fix a vertex g of the quiver
associated with G and choose a grading of a tubular neighborhood of Cy, C M so
that Cy, admits a grading. Fix a grading of C, and choose a grading of Cy for other
¥ successively as follows; if a vertex ¥ is adjacent by an arrow a to another vertex '
where the gradings of a tubular neighborhood of C and of C are already defined,
we choose a grading of a tubular neighborhood of C and of C so that the Maslov
index p(a;Cy,C5) is one if o' > ©, and minus one if ' < ¥. Since these gradings
on the tubular neighborhoods of vanishing cycles glue together coherently around a
node of G, this defines gradings of M and C%, which descends to gradings of M and
Cy. d
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FIGURE 2. The passage from G’ (left) to G (right), where one van-
ishing cycle is divided into two

A relative grading n of an exact Lefschetz fibration p : S — C is a nowhere-vanishing
section of the holomorphic line bundle A*P(T*S)®? @ p*(T*C)®(=2) | which induces
a grading on a regular fiber of p. One can equip p with a relative grading such that
the induced grading on M coincides with the one in Lemma 4.4 [30, Section (16f)].

The following lemma concludes the proof of Theorem 4.1:

Lemma 4.5. Let (eg,e1,...,ex) be the sequence of edges of G around a node respect-
ing the cyclic order such that eg € D. Then one has an As-operation
(4) mk(eka"'ael):ieo

in the Fukaya category Sutp of Lefschetz fibration, where the sign is positive if the
node is white, and negative if it is black.

Proof. Since M is a 2-manifold, the A -operations in the Fukaya category are given
by counting polygons bounded by Lagrangian submanifolds. It is clear from Figure 1
that each node of the dimer model gives such a polygon, and the non-existence of other
polygons follows from the fact that the dimer model is a deformation retraction of the
surface. This shows that A..-operations are given as in (4) and only the sign is the
issue here. We write the vanishing cycles surrounding a polygon as Cy,, ¢ = 0,...,k
so that eg € C,,NC,, and e; € Cy,_, NC,, fori =1,..., k. The grading of C,, defines
an orientation of C,,, and let &, ¢ = 1,...,k be the unit tangent vector of C,, at
e; € Cy,_, NCYy, along the orientation. We also choose a point on each vanishing cycle
C, which comes from the choice of the non-trivial spin structure. Then it follows
from the Seidel’s sign rule [29, Section (9e)] that the sign in (4) is given by (—1)f,
where 1 is the sum of the number of i € [1,k] such that & points away from the
polygon and the the number of points on the boundary of the polygon coming from
the spin structures.

Now we use the following fact from [10]: Let G be the simplest dimer model
consisting of one black node, one white node and three edges, which corresponds to
the McKay quiver for the trivial group. Then any consistent dimer model can be
obtained from Gy by successively adding a divalent node or an edge.

Assume that a dimer model G is obtained from another dimer model G’ by adding
an edge between a black node b and a white node w as shown in Figure 2. It follows
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from the definition of the grading of M and C, that &; either points away from the
polygon or toward the polygon simultaneously for all ¢, and the fact that b and w are
adjacent in G implies that if & at b points away from the disk corresponding to b,
then & at w points toward the disk corresponding to w, and if &; at b points toward
the disk corresponding to b, then &; at w points away from the disk corresponding to
w. Then either of the disk at b or w receives an extra sign for G compared to that
for G, which can be off-set by the introduction of a new base point on the vanishing
cycle, which is necessary since one of the vanishing cycles for G’ is divided into two
by adding an edge to G'. This shows that the dimer model G satisfies the assertion
of the lemma if the dimer model G’ does. Since the addition of a divalent node does
not change M and C, at all, the lemma is proved. a

The double suspension p°® : S x C2 — C of p: S — C is defined by
po-o-(x7 u7 U) = p(x) + uv’

and a vanishing cycle C' C p(0) naturally gives a vanishing cycle L C (p°°)~1(0)
called the double suspension of C'. The following theorem is due to Seidel:

Theorem 4.6 (Seidel [26, Corollary 5.5]). The full subcategory of Fut((p””)~1(0))
consisting of double suspensions L, of C, for v € V is equivalent to the trivial exten-
sion of Sutp of degree 3.

Since A is the trivial extension of A~ of degree 3 (or the 3-dimensional cyclic
completion in the terminology of [25]), Corollary 1.2 is proved.
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