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MUSINGS ON Q(1/4): ARITHMETIC SPIN STRUCTURES ON
ELLIPTIC CURVES

KIRTI JOSHI

ABSTRACT. We introduce and study arithmetic spin structures on elliptic curves. We
show that there is a unique isogeny class of elliptic curves over ]sz which carries a unique
arithmetic spin structure and provides a geometric object of weight 1/2 in the sense of
Deligne and Grothendieck. This object is thus a candidate for Q(1/4).
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1. Introduction and statement of the principal results

1.1. The problem. In this paper we attempt to provide an intrinsic approach to
the problem of constructing Q(1/4). We show that there is, up to isomorphism, a
unique geometric object which lives over F2, and which is equipped with f-adic and
p-adic realizations of weight 1/2 in the sense of [4]. This object is thus a candidate for
Q(1/4). This object is constructed using what we call arithmetic spin structures on
elliptic curves. Our approach to Q(1/4) may be considered to be a twisted analogue
of the constructions of [8, 3]. We note that the problem of constructing “fractional
motives” and “exotic” Tate motives has also been studied in [1, 9, 5, 11].

We say that an elliptic curve is of spinorial type if its algebra of endomorphisms
(we consider endomorphisms defined over the field of definition of the curve) carries a
non-trivial involution of the first kind (see 4.1). The classification of endomorphism
algebras of elliptic curves shows that an elliptic curve is of spinorial type if and
only if it is supersingular and its endomorphism algebra is a quaternion algebra (see
Proposition 4.1.1). Thus a supersingular elliptic curve with all its endomorphisms
defined over the ground field is of spinorial type; and every supersingular elliptic
curve becomes of spinorial type over some quadratic extension. By the well-known
classification of isogeny classes of elliptic curves over a finite field one sees that for a
given finite field there are at most two isogeny classes of elliptic curves which are of
spinorial type.

Involutions of the first kind on an algebra are classified as orthogonal or symplectic
depending on what they look like over any splitting field of the algebra. A spin
structure (B, o) on an elliptic curve of spinorial type is a choice of an involution o
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of the first kind and orthogonal type (i.e of an orthogonal involution—see 2.5) on the
endomorphism algebra (denoted here by B) of the curve. On a quaternion algebra,
orthogonal involutions of the first kind are classified (up to isomorphism) by their
discriminant. Every spin structure comes equipped with a (even) Clifford algebra (see
2.10). In the present situation, because the quaternion algebra B of endomorphisms
of a supersingular elliptic curve is ramified at infinity (and at p, the characteristic of
ground field), the (even) Clifford algebras C* (B, o) which can arise are imaginary
quadratic extensions of Q (see Theorem 6.2.1).

1.2. The results over F,>. We now describe the results we obtain over F,: (they
are also proved here for Fp2n with n odd). We show (in Proposition 4.3.1) that
the Frobenius endomorphism of F is a proper similitude of this spin structure, and
the group of proper similitudes, denoted here by GO+(B,O‘), is the non-split torus
(obtained by the restriction of scalars of G,, from the Clifford algebra C* (B, ) of the
spin structure—see Proposition 3.1.3). The spin group (rather the general spin group)
associated to (B, ) is again a non-split torus and is a cover of the group of similitudes
(see 3.3). This allows us to speak of constructing square roots of the Frobenius
endomorphism. A necessary and sufficient condition that Frobenius endomorphism
have a square root in the Clifford algebra is that the Clifford algebra of the spin
structure is Q[z]/(z%+p) (Theorem 5.3.1). This means that the involution underlying
the spin structure has discriminant —p; moreover as the Frobenius endomorphism is
a central element operating by +p, one sees that there are spin structures for which
Frobenius does not have a square root.

We show (see Theorem 6.2.1 and Corollary 6.2.3) that for an elliptic curve E/F,2 of
spinorial type, whose Frobenius endomorphism acts by multiplication by —p, carries
a unique spin structure of discriminant —p (uniqueness is up to isomorphism). For
this spin structure the Frobenius endomorphism admits square roots (£+/—p) in the
Clifford algebra. This gives rise to a spinorial representation of the Weil group

p%’iﬂ : W(F,2/F,2) — GSpin(B, o)
(here B = End(E)) which lifts the canonical similitude representation
PEc: W(sz/sz) — GO™(B,0).

This spinorial representation is of weight 1/2 in the sense that the absolute value of
the eigenvalues of Frobenius is
VB =)V = ()P,

Spin structures for which the similitude representation admits a spinorial lifting are
said to be arithmetic spin structures. Over F 2, arithmetic spin structures of discrim-
inant —p can exists on elliptic curve of spinorial type if and only if the Frobenius
endomorphism operates by —p; and a fortiori, there are no orthogonal involutions on
the algebra B = End(E) with positive discriminant (where E' is of spinorial type).
So not all spin structures can exist or when they exist are arithmetic. The data
(E, (B, 0)) consisting of elliptic curve E/F,2 together with an arithmetic spin struc-
ture (B,o) on E is a geometric object whose weight is half: this our candidate for
Q(1/4). There is exactly one isogeny class of elliptic curves over F,> which provides
such a structure and the spin structure is unique up to isomorphism. In 7.2 and
7.3 we construct the (-adic and the crystalline realizations of Q(1/4). We note that
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the Clifford algebra of spin structures (arithmetic or not) are imaginary quadratic
extensions of Q (and so are not isomorphic to Q x Q).

In [11] one finds a formula for the values of the Hasse-Weil zeta function of a smooth,
projective variety over Fj2 at s = 1/2. It has been expected that this formula must
have an arithmetic explanation in terms of a motive Z(1/2). As a consequence of
our theory we prove a simple relation (see Theorem 7.6.1) between the L-function
of the elliptic curve with an arithmetic spin structure and the associated spinorial
representation. This is similar (in spirit) to the formula proved in [11].

The theory developed here should be viewed as a Q-theory rather than a Z-theory
because we have worked throughout with the quaternion algebra (so up to isogeny).
But for a Z-theory one should work with orders in the quaternion algebra, as endo-
morphism rings arise more naturally as orders). We hope to return to this in later
paper. The theory developed here can be also applied to rank two supersingular
Drinfeld modules, but we will defer this to a subsequent paper as well.

1.3. Acknowledgements. This paper grew out of a talk given by N. Ramachandran

n [11]. We thank him for conversations and correspondence about [11]. Thanks are
also due to Preeti Raman for conversations on Clifford groups and for help with
identifying GSpin(B, o) in the case we need here. Thanks are also due to Dinesh
Thakur for encouragement and for a careful reading of the manuscript. We would like
to thank Christopher Deninger for comments and suggestions which have improved
this manuscript. Some part of this work was carried out while the author was visiting
the Tata Institute and the Université Montpellier II and we thank both for their
hospitality.

2. Recollections from the theory of Clifford algebras

2.1. Preparatory remarks. The fundamental reference for what we need here is
[7]. Readers unfamiliar with the theory of Clifford algebras may first want to read
[2] but should bear in mind that unlike [2] we will work with a twisted situation.
All facts we need about Clifford algebras constructed from quaternion algebras with
orthogonal involutions are found in [7]. The reader is advised to keep that work handy
while reading the present paper. Since the machinery of twisted quadratic spaces
may not be familiar to the readers we have, for the reader’s convenience, inserted a
“recurring example” which explains the machinery in the context we need to use for
the main results of this paper.

Throughout the paper F' will denote a field of characteristic not equal to two (zero
is allowed). The results can probably be carried out in case the characteristic is two
but the details are more complicated so we will leave them aside for the moment.

2.2. Inner automorphisms. In what follows, we will work with finite dimensional
algebras over a field F. Let A be a finite dimensional algebra over a field F'. For an
invertible u € A, we write int(u) : A — A for the inner automorphism of A defined
by u, given explicitly by int(u)(a) =uoaou~! for any a € A.

2.3. Involutions. Let F be a field of characteristic not equal to two. Let A/F be
a finite dimensional algebra over F. An involution of the first kind on A is a map
o0 : A — A such that Vx,y € A,
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+y)=o(x ;i—a(y),

2.4. Classification of involutions.

2.4.1. The split case. Let V be a finite dimensional vector space over a field extension
K/F and let b : V x V — K be a non-degenerate bilinear form with values in K.
Then for any f € Endk (V) we define o, (f) € Endk (V) by the following property: for
all v,w € V we have

b(v, f(w)) = bow(f)(v), w).

Then f — op(f) is a K-linear anti-automorphism of Endk(V), called the adjoint
automorphism of Endk (V) with respect to the non-degenerate bilinear form b. The
mapping b — o3 is a bijection between the equivalence classes of non-degenerate
bilinear forms on V up to scalar multiples and the set of K-linear anti-automorphisms
of Endk (V). Under this equivalence o, provides an involution (i.e. a K-linear anti-
automorphism of order two) if and only if b is symmetric or skew-symmetric. For a
proof see [7, Page 1].

2.4.2. The general case. We now describe involutions ¢ on arbitrary central simple
algebras. Let (A, o) be a pair where A/F is a central simple algebra and 0 : A — A
is an involution. Let K/F be a splitting field of A/F. Then o : AQp K — AQp K
is an involution of Ax and by the previous paragraph, we see that ok arises from a
non-singular bilinear form which is either symmetric or skew-symmetric.

2.5. Orthogonal and symplectic involutions. Let (A, o) be a pair as above. We
say that o is symplectic (resp. orthogonal) involution if for any splitting field K/F
(and any isomorphism Ax — Endk(V), the involution ok of Ax arises from a non-
degenerate skew-symmetric (resp. symmetric) bilinear form on V.

2.6. Twisted quadratic spaces. Let F' be a field (of characteristic not equal to
two). A twisted quadratic space over F' is a pair (A, o) where A/F is a central simple
algebra over F' and 0 : A — A is an involution of first kind and of orthogonal type.
Morphisms of twisted quadratic spaces are defined in the obvious way.

2.7. Twisted quadratic spaces and quadratic spaces. If (4,0) is a twisted
quadratic space over F' and if A is split with A = Endg(V), then o = o} for a
symmetric bilinear form b : V x V' — F and the pair (A,0) is isomorphic to the
pair (Endr(V),op) and this is equivalent to the data (V, q,) where g, : V — F is the
quadratic form associated to the symmetric bilinear form b. Thus in the split case the
data of a twisted quadratic space is simply the data of a quadratic space. We note
that the term “twisted quadratic space” was not introduced in [7] but clearly seems
appropriate.
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2.8. Recurring Example. This example will recur throughout and is the case we
want to consider for the main results of this paper. So we provide this along for the
convenience of the reader.

Let B/F be a quaternion algebra. Then B has a basis 1,4, j, k with 2, j2 € F*,

ab

ij =k = —ji. If i2 = a,j2 = b we will write this algebra as B = ( + ) The map
~v : B — B given by sending

Y(xo +ix1 + jro + kas) = xg — iw1 — jro — kas

is the unique symplectic involution on B (see [7, Proposition 2.21, page 26]).
Every orthogonal involution ¢ on B is of the form

o =int(u) oy

where v(u) = —u and w € B* is uniquely determined up to a scalar in F* by o (see
[7, Proposition 2.21, page 26]).

By [7, Corollary 2.8 (page 18) and Proposition 2.21 (page 26)] every quaternion
algebra B/F carries both symplectic and orthogonal involutions. The reduced norm
of u € B is given Nrd(u) = uy(u), the reduced trace of u € B is given by Trd(u) =
u + y(u). Observe that u has reduced trace zero if and only if y(u) = —u (i.e., u is a
“pure quaternion”).

2.9. Discriminants.

2.9.1. The split case. We first describe the discriminant of a quadratic space. Let
(V,q) be a non-degenerate quadratic space over F. Let b be the associated bilinear
form. For a basis eq,...,e, of V, the matrix det(b(e;,e;)) # 0 and its class in
F*/F*? is independent of the choice of the basis ey, ..., e, of V. We denote this class
in F*/F*? by disc(b). The discriminant of (V, q) is the class

n(n—1)

disc(V, q) = disc(q) = (—1)" = det(b) € F*/F*2.

2.9.2. The general case. For an even degree central simple algebra A and any or-
thogonal involution o, we define the determinant

det(c) = Nrda(a) € F*/F*?,
for any element a € A* such that o(a) = —a. This class is again independent of the
choice of such an a. The discriminant of ¢ is given by
eg(A)
disc(o) = (—1)d N det(c) € F*/F*2.
If o = int(u) oy then
disc(0) = —Nrda(u) € F*/F*2.

For a proof see [7, Page 81, Proposition 7.3(2)]. We note that the sign given in that
reference is not correct (ours is correct) as can be easily seen from the proof given on
[7, Pages 81-82, Proposition 7.3].

Moreover if A is a quaternion division algebra then A does not carry any orthogonal
involutions with trivial discriminant (see [7, page 82, Example 7.4]).
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2.10. Clifford Algebra associated to a twisted quadratic space (A4,0). Let
(A, o) be a twisted quadratic space. Then there exits a (even) Clifford algebra denoted
by C* (A, o) which is functorial in the pair and if A = End(V) for a vector space V/F,
then CT(A, o) agrees with the even clifford algebra constructed in the usual manner.
See [7, page 91].

2.11. The center of the Clifford algebra. Let us assume from now on that (4, o)
is a twisted quadratic space over F with deg(A) = 2m, m > 1. The main case of
interest to us will be the case m = 1, though we will not assume this preferring to
work out the general theory instead and specializing when we need to do so.

The center Z(A, o) of CT(A, o) is an étale (=separable) quadratic F-algebra. If
Z is a field, then C*(A,0) is a central simple algebra of degree 2™~1 over Z; if
Z = F x F, then CT(A,0) is a direct product of two copies of central simple F-
algebras of degree 21, Moreover the center Z of C* (A, o) is given by the following
recipe (see [7, Theorem 8.10, page 94]).

Theorem 2.11.1. Let (A,0) be a twisted quadratic space over F. Let CT(A, o) be
the associated even Clifford algebra. Let Z = Z(A,0) C CT(A, o) be its center. If
the characteristic of F is not two, then Z = F[X]/(X? — 6,) where 6, € F* is a
representative of the discriminant of o, disc(o) € F*/F*2.

Corollary 2.11.2. Let B/F be a quaternion algebra and o be an orthogonal involu-
tion on B. Then the even Clifford algebra C*(B, o) is commutative and we have

CY(B,o)=Z = F[X]/(X*-4,),
where 8, = disc(c) mod F*2.

2.12. Similitudes and the group of similitudes. Let (A,0) be a twisted qua-
dratic space over F as before. We study several groups which arise in the present
context.

A similitude of (A,0) is an element g € A such that o(g)g € F*. Then u(g) =
o(g)g is called the multiplier of the similitude g of (A, ). Similitudes of (A, o) form
a subgroup of A* which we denote by GO(A4,0). We have a homomorphism p :
GO(A, o) — F* given by g — u(g) = o(g)g. We define PGO(A,0) = GO(A,0)/F*
and we have the exact sequence

1— F*— GO(A,0) - PGO(4,0) — 1.

Similitudes g € GO(A, o) with p(g) = 1 are called isometries and we have a
subgroup O(A, o) = ker(u) C GO(A, o) of isometries of (A4,0). We have an exact
sequence of algebraic groups

1—0(A4,0) - GO(A,0) - G, — 1.

2.13. Recurring Example. Let (B,0) be a twisted quadratic space over F' with
B a quaternion division algebra (see 2.8). Let ¢ = int(u) o v where u € B* is a
pure quaternion (so y(u) = —u) and « the canonical symplectic involution. Then
GO(A,0) = F(u)*UF(u)*v where v is an invertible quaternion which anti-commutes
with u (i.e. wv = —vu).
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2.14. Proper similitudes. Let deg(A4) =n = 2m. For every g € GO(A, o) we have
Nrda(g) = £u(g)™, where Nrd(g) is the reduced norm of g. We say that g is a proper
similitude of (A, o) if Nrda(g) = u(g)™. The set of proper similitudes of (4,0) is a
subgroup of GO(A4, o) denoted by GO™ (A, 7). We let PGO™(4,0) = GOT(A,0)/F*
and OF(A,0) = GOT(A,0)NO(A, o) be the subgroup of proper isometries of (4, o).

2.15. Recurring Example. Let (B, o) be a twisted quadratic space, with B/F a
quaternion division algebra (see 2.8, 2.13). Suppose that o = int(u) o, let Np(y/p :
F(u)* — F* be the norm map. Then we have

GO*(B,0) = F(u)*,
and O"(B,0) = O(B,0) = {2z € F(u)|Np,r(z) = 1} if B is not split.

2.16. The Clifford Group. In the twisted quadratic case, there is a Special Clifford
group but not the Clifford group and we recall this now.

Let (A, o) be a twisted quadratic space over a field F'. We have associated to (4, o)
a subgroup ' (4,0) C CT(A,0)* of the group of units of the even Clifford algebra
associated to the pair (A,o). If (A, o) is split then T'V(A, o) can be identified with
the special clifford group of [2].

We caution the reader that we use the notation I'" (A, o) instead of T'(4,¢) used
in [7] because in the split case we get the special clifford group using the above
construction (and not the Clifford group which we note, is denoted by I'(V, ¢), in [2]
while the special Clifford group is denoted by I'T(V, ¢)). It seems to the author that it
is better to follow established conventions of the theory in split case for psychological
reasons.

We have an exact sequence of groups

(2.16.1) 1—F*—>T%(4,0) = 0" (A,0)—1
2.17. Recurring Example. Let (B, o) be a twisted quadratic space, with B/F a

quaternion division algebra (see 2.8, 2.13, 2.15), and suppose that o = int(u) o~y. Let
F(u)* be the subgroup

(2.17.1) Fu)' ={z € F(u) : 27(z) = 1}
Then we have and isomorphism of F-algebras
C*(B,o) = F(u),
and the group OT (B, o) is given by
(2.17.2) O%(A,0) = F(u)',
while the special Clifford group I'* (B, o) can be identified with
I't(B,o) =C*(B,o)" = F(u)*.
We have an exact sequence of groups

(2.17.3) 1— F*—T%(B,o) - 0" (B,o) — 1.
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3. The groups GSpin and Spin

3.1. The group of proper similitudes. From now on we will exclusively work
with quaternion algebras over a field F. In other words A has deg(4) = 2. Let
(A, o) be a twisted quadratic space over a field F' with A a quaternion algebra. We
will assume that F' is not of characteristic two for simplicity. Then we have a group
GO (A,0). In the following subsections we will construct a group, which we will
denote by GSpin(A, o) which bears a relation to GO (A, o) similar to the relation
the usual Spin group bears to the special orthogonal group.

Let G,,,/F be the multiplicative group over F. If K/F is a finite extension we will
write Ry /pGp, for torus obtained by the restriction of scalars. Let Ng/p : K — F
be the norm map. We have an induced map Nk, r : Rg/rGp — Gy, and let

(3.1.1) G}WK/F =Ker(Ng/r : R/ pGp — Gi)
be its kernel. This is a group scheme whose group of F-rational points,
G ip(F) = {x € K*|Ngp(x) =1},
is the subgroup of K* consisting of norm one elements in K. Similarly define the
group scheme

(312) ,U,}(/F = Ker(NK/F : RK/F‘LLQ — ,UQ)'

Proposition 3.1.3. Let (A, o) be a twisted quadratic space over a field F' and assume
that A is a quaternion algebra. Let K = CT(A, o). Then the group scheme of proper
similitudes and the group scheme of proper isometries are given by

GO+(A,O') = RK/FGm
0%(A,0) = Guyr

For a proof see [7, Example 12.2.5, page 164].

3.2. Spin groups in the split case. Let us recall a few standard facts from the
theory of spin groups. Let us assume that (V,¢) be a quadratic space over F' with
g an isotropic form and assume that dim(V) = 2. In this case we have groups
SO(q) = SO(2) = G,,. The Clifford algebra construction yields a spin group as well.
This situation is degenerate from the classical point of view (because SO(2) = G,,).
We have Spin(2) = G,, and we also have an exact sequence of algebraic groups.

(3.2.1) 1 — p2 — Spin(2) —» SO(2) — 1
This is none other than the Kummer sequence:
(3.2.2) 1—pu — G, — G — 1.

We have in particular an exact sequence (a part of the Galois cohomology sequence
for the Kummer sequence):

(3.2.3) 1— u(F) — F* — F* — F*/F*2

The connecting homomorphism F* — F*/F*? is the Spinor norm homomorphism
SO(2)(F) — F*/F*2.
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3.3. The group GSpin. We now want to describe a similar story for GO1 (B, o)
when B is a quaternion algebra over F. For notational simplicity, let K = CT(B, o) be
the Clifford algebra associated to the twisted quadratic space (B, o). Then dimp(K)
= 2. We have a canonical exact sequence of algebraic groups (obtained by restriction
of scalars):

Let (B,0) be a twisted quadratic space with B a quaternion algebra. We define
GSpin(B, o) as follows

(3.3.2) GSpin(B,0) = Ri/pGp.
And we define the spin group Spin(B, o) by

(3.3.3) Spin(B,a) = Gy, /-
Thus we have the commutative diagram:

Ry rGy,

(3.3.4) 1 —— Rk /rpe

1 —— Rg/pp2 — GSpin(B,0) — GO*(B,0) —= 1

Ryg/rGp —1

And we have a commutative diagram of groups

(3.3.5) 1 1 e/ r Spin(B,0) — OT(B,0) — 1

|

1 — Rg/rp2 — GSpin(B,0) — GOT(B,0) —= 1
Thus we have proved that

Proposition 3.3.6. Let F be a field and (B, o) be a twisted quadratic space over F
with B a quaternion algebra over F. Let K = Ct(B, o) be the (even) Clifford algebra
of (B,a). Then there is a canonical isogeny GSpin(B, o) — GO™ (B, o) with kernel
Ry /ppe. We have a commutative diagram of algebraic groups:

(3.3.7) 1 e/ p Spin(B, 0) — OT(B,0) — 1

|

1 —— Rk rpp2 — GSpin(B,0) — GO"(B,0) —> 1

4. Spin structures on an elliptic curve

4.1. Elliptic curves of spinorial type. Let k be a field and let k be its algebraic
closure. Let E/k be an elliptic curve. We will write End(E) = Homy(E, E) for the
Q-algebra endomorphisms of E defined over k. We will say that E is of spinorial type
if the Q-algebra Endk(E) admits a non-trivial involution of the first kind.

Proposition 4.1.1. Let E/k be an elliptic curve over a field k. Consider the following
assertions:
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(1) E is of spinorial type.

(2) Endk(E) = Endi(E) is a quaternion algebra.
(3) E is supersingular.

(4) The characteristic of k is p > 0.

Then we have (1) & (2) = (3) = (4).

Proof. Clearly the assertions (2) = (3) = (4) are well-known. So we need to prove
the equivalence (1) < (2).

Let B = Endy(E). We prove (1) = (2). By the classification of the endomorphism
algebras of E there are three possibilities: B is either (a) the field of rational numbers
(b) an imaginary quadratic field or (c) a quaternion algebra. If B = Q, then B does
not admit any non-trivial involutions. Similarly if B is an imaginary quadratic field
then B does not admit any non-trivial involutions of the first kind (i.e., involutions
trivial on its center). Hence B cannot be the field of rational numbers or an imaginary
quadratic field. So the hypothesis (1) implies that B is a quaternion algebra.

Now to prove (2) = (1) we use [7, Corollary 2.8 (page 18) and Proposition 2.21
(page 26)] which says that any quaternion algebra B/Q admits non-trivial involutions
of the first kind. So F is of spinorial type. This completes the proof. O

4.2. Elliptic curves of spinorial type over finite fields. From now on we will
study elliptic curves of spinorial type over a finite field F, with ¢ = p" elements.
Before proceeding further we recall the classification up to isogeny of elliptic curves
over a finite field Fy (see [6] or [12, Theorem 4.1]).

Theorem 4.2.1. Let F,; be a field with ¢ = p® elements. The set of isogeny classes
of elliptic curves over Fy are in bijection with a certain set of integers, denoted Iy,
contained in the interval [—2,/q,2,/q]. An integer § € [-2,/q,2./q] is in I, if and
only if:

(1) (B,p) =1; or
(2) p|B and we are in any of the following subcases:
(a) a is even and 3 = £2,/q;
(b) a is even and p Z1 mod 3 and 3 = £,/q;
(¢) ais odd and p=2,3 and 8 = +p s

(d) a is odd and 8 = 0;

(e) a is even and p Z1 mod 4 and 8 = 0.
In case (1) the associated isogeny class consists of ordinary elliptic curves. Otherwise
the associated isogeny class consists of supersingular elliptic curves. In all cases,
except in the case 2(a), the endomorphism algebra Endr (E) of any elliptic curve E
in the isogeny class associated to B is an imaginary quadratic field. If we are in the

exceptional case 2(a) then the endomorphism algebra is the unique quaternion algebra
over Q which is ramified at p and oco.

Proposition 4.2.2. Let E/F, be a supersingular elliptic curve. Then E xp, Fg2 is
of spinorial type.

Proof. If E is a supersingular elliptic curve defined over F, then E' = E xp,  Fg is
a supersingular elliptic curve over F,> with all its endomorphisms defined over ..
Hence E’ is of spinorial type by the previous proposition. O
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We end the subsection with the following consequence of Proposition 4.2.1 and
Proposition 4.1.1.

Proposition 4.2.3. Let E/F, be an elliptic curve of spinorial type. Then
(1) E is supersingular,
(2) The two eigenvalues of the Frobenius endomorphism of E are equal;
(3) Frobenius endomorphism Tg : E — E is in the center of B = Endr,(E).

Proof. This is immediate from Deuring’s classification of supersingular elliptic curves
(see Theorem 4.2.1). O

4.3. Spin structures on an elliptic curve. Let E/F, be an elliptic curve over a
finite field F,. Assume that E is an elliptic curve of spinorial type. Let B = End(E)
be the endomorphism algebra of E. A spin structure on E is a choice of an involution
o : B — B of first kind and orthogonal type. Equivalently, a spin structure on
an elliptic curve is a choice of twisted quadratic space structure (B, o) on B where
B =End(E) and o : B — B is an involution of the first kind and orthogonal type.

Proposition 4.3.1. Let E/F, be an elliptic curve and suppose E is an elliptic curve
with a spin structure (B, o). Then the Frobenius endomorphism 1y : E — E induces
a similitude of (B, o).

Proof. Let E be an elliptic curve with a spin structure (B, o). Then the Frobenius
endomorphism 7z : F — FE is in the center of B. The center of B is Q. We have to
prove that o(7)7 € Q. But 7 is in the center of B, so o(7) = 7 and so o(7)7 =72 € Q
as 7 € Q. So 7 is a similitude of (B,o). To prove that 7 is a proper similitude we
have to prove that the multiplier p(7) = o(7)7 of the similitude 7 satisfies,

pu(r) =o(r)r = Nrd(7) = q.

The last equality follows from the fact that 7 operates by /g (or by the following
proposition, see [10, Page 82]). This proves the assertion. O

Proposition 4.3.2. Let E/F, be an elliptic curve of spinorial type. Let 7 € End(E)
be the Frobenius endomorphism of E. Then we have

(1) The reduced trace of T is £2,/q,
(2) the reduced norm of T is q.

In particular, the reduced norm is a square.

Proposition 4.3.3. Let (B,0)/Q be a twisted quadratic space with B a quaternion
algebra over Q which is ramified at co. Let K = CT (B, o) be the associated even
Clifford algebra. Then K/Q is an imaginary quadratic extension of Q.

Proof. The algebra B is given by its symbol B = (‘f@b). Since B is ramified at oo,

we see that the Hilbert symbol (a,b)o, = —1 and this means that ¢ < 0 and b < 0.
Now let o be an orthogonal involution on B and let v be the canonical symplectic

involution of B. Then o is of the form o = int(u) o~y for some u € B with v(u) = —u.
Thus u is a pure quaternion and disc(oc) = —Nrd(u). But a simple calculation shows
that

Nrd(u) = —au? — bu3 + abu3,
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where u = iu; + jus + kus and i> = a,j2 =b,ij = —ji = k. Since a < 0 and b < 0,
we see that the quadratic form (—a, —b, ab) is positive definite. Hence Nrd(u) > 0
and in particular disc(o) = —Nrd(u) < 0. By Theorem 2.11.2 we know that in this
case K = CT(B,0) = Q[z]/(2? — disc(0)) and as disc(o) < 0, K is an imaginary
quadratic extension of Q. This completes the proof. O

5. Spinorial representation of the Weil group

5.1. Weil groups. Let E/F, be an elliptic curve. Let W(F,/F,) C Gal(F,/F,)
be the Weil group of F,. It is standard that Z ~ W(F,/F,) and we choose the
isomorphism given by 1 + Frobgeom, where Frobgeom € Gal(F,/F,) is the geometric
Frobenius of F,. Proposition 4.3.1 provides a canonical representation of the Weil
group arising from (E, (B, 0)):

Proposition 5.1.1. Let E be an elliptic curve with a spin structure (B,o). Then
there is a canonical similitude representation
(5.1.2) peo: W(F,/F,) — GOT(B,0),
which is given by
P50 (Frobgeon) = (1,7) € GO*(B,0)(K) = Rg/gGm(K) = K* x K*.
5.2. Spinorial liftings. Let p : W(F,/F,) — GO'(B, o) be a homomorphism of

groups. We say that p admits a spinorial lifting if there exists a representation o
W(F,/F;) — GSpin(B, o) which makes the following diagram commutative:

(5.2.1) GSpin(B, o)
|

W (F,/F,) — GO* (B, 0)
5.3. A criterion for existence of Spinorial liftings.
Theorem 5.3.1. Let E/F, be an elliptic curve with a spin structure (B,c). Let
K = C*(B,0) be the associated even Clifford algebra. Let Tz = 7 € End(E) be the
Frobenius endomorphism of E. Then a lift p'" : W (F,/F,) — GSpin(B, o) ezists if
and only if the Clifford algebra K = K(B, o) satisfies K = F(/7).
Proof. The endomorphism 7 € End(E) = B is a central element in B with reduced
norm Nrd(7) = ¢. So by Theorem 4.2.1 7 = £,/g. We have an exact sequence of
groups obtained by taking Galois cohomology of (3.3.1) with Gg = Gal(Q/Q), we get
(for the Galois cohomology computations, which are easy, the unfamiliar reader may
use [7, Lemma 29.6, page 394]):
(5.3.2) 1— pa(K) — K* - K* — K*/K* = H(Gg, Ry jo(12))-

Then 7 € GO' (B, 0) lifts to GSpin(B, o) if and only if its image in K*/K*? is 1.
Equivalently a lifting exists if and only if \/7 € K. When this happens, we have a lift
p*P'" . W(F,/F,) — GSpin(B, o),

given by
PP (Frobgeom) = (VT, —V/T) € GSpin(B,0)(K) = K* x K*.
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This prove the proposition. U

6. Arithmetic spin structures

6.1. Definition of Arithmetic spin structures. Let E/F, be an elliptic curve
with a spin structure (B,o). We say that the spin structure (B, o) is an arith-
metic spin structure if the canonical similitude representation pg, : W(F,/F,) —
GO™ (B, o) admits a spinorial lifting.

6.2. Existence of an arithmetic spin structure. We now show that arithmetic
spin structures exists on an elliptic curve under suitable circumstances.

Theorem 6.2.1. Let E/F, be an elliptic curve of spinorial type with ¢ = p®™. Let
B = End(E) and let 7 € B be the Frobenius endomorphism of E. Then we have the
following:

(1) if n is odd then there exists a unique arithmetic spin structure of discriminant
—p" on E/F, if and only if 7 € End(E) is given by multiplication by —p™.

(2) if n is even, then there exists an arithmetic spin structure of E if and only if
B contains a pure quaternion with reduced norm 1.

Proof. We prove (1). If E carries an arithmetic spin structure o of discriminant
—p™, then by Theorem 5.3.1 we see that 7> € C*(B, o) and Q(\/7) = C*(B,0) =
Q[z]/(z? + p™) thus 7 = —p™. So we have to prove the converse.

To produce an arithmetic spin structure we have to prove the existence of a spin
structure (B, o) on E/F, such that the canonical similitude representation

pEo: W(F/Fy) — GO™(B,0)

lifts to a spin representation. By Theorem 5.3.1, this happens if and only if 7 = £p” €
K*2. By Proposition 4.3.3 we know that the discriminants of involutions which can
occur as spin structures are all negative. So we see that there is no orthogonal
involution on B whose discriminant can be +p™. So it remains to show that there
is an involution o whose discriminant is —p™. To construct an involution of the first
kind and of orthogonal type on B with discriminant —p™ it suffices to construct a
pure quaternion u € B (i.e. a quaternion with reduced trace zero) with reduced norm
Nrd(u) = p™. Indeed given such a u, the discriminant of the involution ¢ = int(u) o~y
is given by (see 2.9)
disc(o) = —Nrd(u) = —p".

Thus we see that the even Clifford algebra C*(B, o) is CT(B,0) = K = Q[z]/(z? +
p™). Further orthogonal involutions on B are classified, up to isomorphism, by their
discriminants (by [7, 7.4, Page 82] any two orthogonal involutions differ by an inner
conjugation by a non-zero quaternion). So the spin structure (B, o) is unique up to
isomorphism and is arithmetic.

So let us construct the required u. We claim now that there exists a quaternion
u € B of trace zero, with reduced norm p™, for any odd value of n. Indeed it is easy

to see that B can be given by symbols (%) for a suitable choice of a¢ and so B

contains a trace zero quaternion v such that v> = —p. The reduced norm of v is
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Nrd(v) = p and hence the quaternion u = p("=1/2y has reduced norm p™. Thus the
involution o = int(u) o has discriminant

disc(o) = —Nrd(u) = —p"
as claimed. Thus the Clifford algebra K = Q[z]/(z? + p™), and so \/—p™ € K and so

we see that if E is such that 7 = —p™, then 7 has a square root in K and so we have
a lifting

(6.2.2) pot W (F,/Fy) — GSpin(B, o)

given by

P (Frob) = (v/7,—/7) € GO (B,0)(K) = K* x K*.

Now we prove (2). If n is even, then 7 = —p” has a square root in K if and
only if v—1 € K. So the existence of an involution with this property is tantamount
to finding a pure quaternion v whose reduced norm is 1. If we can find such a v,
then we can take u = p™/2v and observe that u has reduced norm Nrd(u) = p".

Hence o = int(u) o 7y is an orthogonal involution of the first kind with discriminant
disc(c) = —p™ and 7 = —p™ has a square root in K = Q[x]/(z? + p") = Q(3). O

Corollary 6.2.3. Let E/F,2 of spinorial type. Then E carries an arithmetic spin
structure if and only if the Frobenius endomorphism of E operates by multiplication
by —p. If E has an arithmetic spin structure, then it is unique up to isomorphism.

7. A candidate for Q(1/4)

7.1. Definition of Q(1/4). Let E/F,2 be an elliptic curve with an arithmetic spin
structure. We will define Q(1/4) to be the triple (E, (B, c)) where E is our elliptic
curve and B = End(E) and (B, o) is the arithmetic spin structure on E. We show
now that Q(1/4) is equipped with an ¢-adic (for £ # p) and a crystalline realization
at p.

7.2. The (-adic realization of Q(1/4). The object Q(1/4) comes equipped with

an (-adic realization, denoted Q(1/4),. We define the ¢-adic realization Q(1/4), of

Q(1/4) to be the representation obtained by extension of scalars of the canonical spin
spin

representation py " — GSpin(B, o). This gives us a Weil sheaf (by [4] such a sheaf
is specified by specifying a representation of the Weil group) on the point Spec(F2):

(7.2.1) Py s W(Fp2 /Fp2) = RicyqGm(Qr) = GSpin(B, 0)(Q).

7.3. The crystalline realization of Q(1/4). Let (E,(B,o)) be an elliptic curve
over [F,2n with an arithmetic spin structure (B,0). Let W = W ([F,2n) be the ring
of Witt vectors of Fpen. Let F' : W — W be the Frobenius morphism of W. Let
Ko = W ® Q, be the quotient field of W and let F' : Ky — Ky be the extension
of F to Ko. Let H.. (E/W) be the crystalline cohomology of E; we have an F-

linear map ¢ : H!, (E/W) — HL . (E/W). The data (H,,;(E/W), ) is the data of

Ccris
an F-crystal associated to E/F,2n. Let (M, ¢) denote the extension of the F-crystal
(HL..(E/W), ) to an F-isocrystal over Ky; since E has an arithmetic spin structure,
the F-linear map ¢ : M — M is simply the map ¢ = —p™F. We want to construct a
crystal (MP" ¢sPi") which we would like to call the crystalline realization of Q(1/4).

The endomorphism algebra of (M, ¢) is the unique quaternion algebra B ® Q,, over
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Qp. The orthogonal involution o : B — B extends to an orthogonal involution
op: B®Q, - B®Q,. The data (M, ¢,0,) is an F-isocrystal equipped with a spin
structure (in the obvious sense). The Clifford algebra C* (M, ¢,0,) is a Q, vector
space isomorphic to Q,[x]/(2? + p"). Define M*P"" = CT(M, ¢,0,), and define ¢*P"
to be multiplication by x € Q,[z]/(z? + p™) thought of as an F-linear endomorphism
of M#Pim. This gives us a Dieudonne isocrystal (M*P", ¢*Pi") over Q, which we call
the crystalline realization of Q(1/4) and denote it by Q(1/4),.

7.4. The L-function of pE”)ZL. Let E/F, be an elliptic curve with an arithmetic
spin structure (B, o). Then ¢ = p?™ and the Frobenius endomorphism of E operates

by —p™ = —,/gq; the eigenvalues of Frobenius under the spin representation pSEp? are

+y/—p™ = +,/—,/q. Thus the Hasse-Weil zeta function of pSEpT is given by

spin o 1
(41 20Ee ) = = =) (1 v D)

We will write

(7.4.2) L(p%‘i?7 s) = Z(pg?’ a ).
And this is
i 1
(7.4.3) L(pi™n, ) = 7.
(1 + qE*QS)
We note that (7.4.3) can also be written more suggestively as
o 1
(7.4.4) L(pE",s) = —
s (1 +q§—25)
1
(7.4.5) —

1
TR eTe)

especially the last equality which makes the 1/4-twisting more transparent. Note that
the presence of the two factors in the last equality should be seen as a manifestation
of the fact that the Clifford algebra C*(B, o) is a quadratic extension of Q.

(7.4.6)

7.5. The L-function of H'(FE). Since the Frobenius endomorphism of E operates
by —./q, we can also calculate the L-function E, that is the reciprocal of the charac-
teristic polynomial of Frobenius on H'(E, Q). The characteristic polynomial is given

by

(7.5.1) Z(HY(E),T) = (14 /qT)>.
The L-function of E is defined as

1

2
(1 + q%_3>

(7.5.2) L(E,s)=Z(H (E),q %) ' =



1028 KIRTT JOSHI

7.6. A relation between L(pﬁ?,s) and L(H'(E),s). From (7.4.3) and (7.5.1)
we have the relation:

Theorem 7.6.1. For an elliptic curve E/F, with an arithmetic spin structure (B, o)
and spinorial representation pzﬂp’?‘ : W(F,/F,) — GSpin(B, o), we have

N2
L(E,s) = L (o, 3)

In particular we have

1\ 2
L(E71)=L<p€;f72) .
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