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WEIGHTED POINCARÉ INEQUALITIES ON CONVEX DOMAINS

Seng-Kee Chua and Richard L. Wheeden

Abstract. Let Ω be a bounded open convex set in Rn. Suppose that α ≥ 0, β ∈ R,

1 ≤ p ≤ q < ∞, and
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n
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Let ρ(x) = dist(x, Ωc) = min{|x − y| : y ∈ Ωc} denote the Euclidean distance to the
complement of Ω. Define ρα(Ω) =

R
Ω ρ(x)αdx, and denote
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1
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We derive the following weighted Poincaré inequality for locally Lipschitz continuous

functions f on Ω:
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,

where η is the eccentricity of Ω and C is a constant depending only on p, q, α, β and the

dimension n. The main point of the estimate is the way the constant depends on η for a
general convex domain. We also consider the case 1 ≤ q < p < ∞, where the inequality

is valid under the stronger hypothesis 1 − (1 + β)/p + (1 + α)/q > 0. When q ≥ p, the

case of convex domains which are symmetric with respect to a point was settled in [CD],
and our estimate for q ≥ p extends that result to nonsymmetric domains. Moreover, the

exponent of η is sharp and the conditions are necessary.

1. Introduction

Let Ω be a bounded convex domain (i.e., a bounded open convex set) in Rn. If
1 ≤ p, q < ∞ and 1/q ≥ 1/p− 1/n, it is well-known that the Poincaré inequality

‖f − fΩ‖Lq(Ω)
≤ C(p, q, n, Ω)‖∇f‖

Lp(Ω)
, with fΩ =

1
|Ω|

∫
Ω

f, (P )

holds for all Lipschitz continuous functions f on Ω. When 1 ≤ q ≤ p, it was only
realized recently in Acosta and Durán [AD] and in Chua and Wheeden [CW3] that the
constant C(p, q, n, Ω) can be expressed as C(p, q)|Ω|1/q−1/pdiam(Ω). In particular, it
is independent of both the eccentricity η of Ω and the dimension n; see also [DL].
The precise definition of η and some related discussion are given below.

In fact, when 1 ≤ q ≤ p, Chua and Wheeden [CW3, Theorems 1.1 and 1.2] showed
that for any α ≥ 0 and f ∈ Lip(Ω),

(1.1) ‖f − fΩ,ρα‖
Lq
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≤ C(p, q)
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using the fact that ρ is a concave function on Ω; see [CW3, Remark 1.5(4)]. Moreover,
since bounded convex sets are John domains, it follows from a generalization of the
result in [C93, Th 1.5] or the proof of Theorem 1.3 in [HS] that if 1

p ≥
1
q ≥

1
p −

1
n ,

1− n+β
p + n+α

q ≥ 0 and α ≥ 0, then

(1.2) ‖f − fΩ,ρα‖
Lq

ρα (Ω)
≤ C(p, q, α, β, n, η)|Ω|

1
q−

1
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Lp

ρβ (Ω)
.

If Ω is also symmetric with respect to a point, it has been shown recently in [CD]
that the constant C(p, q, α, β, n, η) in (1.2) is at most C(p, q, α, β, n)η

β
p−

α
q , with the

same restrictions on the parameters. A main goal of the present paper is to extend this
fact to all bounded convex domains. The principal difficulty in doing so is finding a
natural metric to work with. Moreover, nonsymmetric convex domains have no center
in the usual sense. However, the key ideas we will use are simple. We will identify the
collection of all translates and (suitable) dilates of Ω with the collection of balls in a
naturally associated space of homogeneous type, and then apply Poincaré estimates
from [CWa], [CWb]. Thus, instead of covering Ω by Euclidean Whitney balls or
cubes, we will cover it by δ-Whitney Φ-balls (see Definition 2.1) and note that Ω
is then a Boman domain (hence a John domain) with parameter independent of the
eccentricity. If one instead covers Ω by Euclidean balls or cubes, then even though it is
still a Boman domain, the corresponding parameter will unfortunately depend on the
eccentricity. Another goal of the paper is to derive estimates in case 1 ≤ q < p < ∞.
We also consider functions f which are only locally Lipschitz continuous, while [CD]
requires global Lipschitz continuity.

Before we state our main result, let us define the notion of eccentricity that we
will use. We begin by listing a fact [W, Theorem 7.1.5] which is a consequence of
Helly’s theorem: For every bounded convex set Ω in Rn, there is a point xo ∈ Ω and
a constant ν with 1 ≤ ν ≤ n such that

(1.3) k(xo − x) + xo ∈ Ω for all x ∈ Ω and all k ∈ [0, 1/ν].

With Ω fixed and xo chosen in this way, we will refer to xo as the center of Ω. Let
Ω− xo denote the image of Ω under the translation x → x− xo of Rn which maps xo

to the origin:

(1.4) Ω− xo = {x− xo : x ∈ Ω}.

Let ρo denote the Euclidean distance from xo to ∂Ω (equivalently, the distance from
0 to ∂(Ω− xo)):

(1.5) ρo = ρ(xo) = min{|x− xo| : x ∈ ∂Ω} = min{|x| : x ∈ ∂(Ω− xo)}.

Then by (4.3) in the Appendix,

(1.6) max
x∈Ω

min
y∈∂Ω

|x− y| ≤ (1 + ν)ρ0.

We define the eccentricity η of Ω by
(1.7)

η = max{|x− xo| : x ∈ ∂Ω}/ min{|x− xo| : x ∈ ∂Ω} =
1
ρo

max{|x− xo| : x ∈ ∂Ω}.
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While this definition of eccentricity depends on xo and is different from the classical
one, the two are equivalent in size, with constants of equivalence that are independent
of Ω (see (4.1) and (4.2) in the Appendix).

The following is our main result.

Theorem 1.1. Let Ω ⊂ Rn be a bounded convex domain with eccentricity η. Let
1 ≤ p, q < ∞ satisfy 1/q ≥ 1/p − 1/n, and suppose α ≥ 0 and β ∈ R. Denote
ρ(x) = min{|x−y| : y ∈ Ωc} and define ρa(Ω), fΩ,ρa and ‖ ·‖

Lp
ρa (Ω)

as in the Abstract

for a = α or β.
(i) If p ≤ q and 1 − n+β

p + n+α
q ≥ 0, then there is a constant C depending only

on p, q, α, β and n such that for all locally Lipschitz continuous functions f
on Ω,

(1.8) ‖f − fΩ,ρα‖
Lq

ρα (Ω)
≤ Cη

β
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q |Ω|

1
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1
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Lp
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(ii) If q < p, then (1.8) is true if 1− (1 + β)/p + (1 + α)/q > 0.

In Theorem 1.1, the exponent of η in (1.8) is optimal, as already shown in the
symmetric case in [CD]. Also, the conditions 1 − (n + β)/p + (n + α)/q ≥ 0 or
1− (1 + β)/p + (1 + α)/q > 0 are necessary; see Remark 3.3(iii). Next, for a function
f which is only locally Lipschitz continuous, the average fΩ,ρα in (1.8) may not be
finite. However, as shown at the end of the proof of Theorem 1.1, if f ∈ Liploc(Ω)
and the right-hand side of (1.8) is finite, then fΩ,ρα must be finite. We also note
that one can use averages other than fΩ,ρα in (1.8); for example, one can use fD,ρα =∫
D f(x)ρ(x)αdx/ρα(D) for any convex domain D ⊂ Ω. However, the constant C

will then also depend on the ratio ρα(Ω)/ρα(D); see the argument in [CWa, Remark
1.3(1)] and also Remark 3.3(i) below. Finally, we note that the case q < p of Theorem
1.1 is not generally a consequence of the case q ≥ p by Hölder’s inequality.

2. Preliminaries

In what follows, C denotes various positive constants which may differ even in the
same string of estimates. We use C(α, β, · · · ) to denote a constant which depends
only on α, β, · · · .

Given a bounded open convex set Ω and its center xo, the class of “balls” naturally
associated with Ω and xo has a very simple geometric structure: it is the collection
of all translates and dilates (relative to xo) of Ω. To be more precise, we begin by
defining a quasimetric on Rn which will generate these balls. Let Ω − xo and ρo be
as in (1.4) and (1.5), and set

Ω− xo

ρo
=
{

x− xo

ρo
: x ∈ Ω

}
.

Let Φ = Φxo,Ω be the gauge or Minkowski function of Ω−xo

ρo
with respect to the origin:

(2.1)

Φ(x) = Φxo,Ω(x) = inf
{
t > 0 : xo +

ρox

t
∈ Ω

}
= inf

{
t > 0 :

x

t
∈ Ω− xo

ρo

}
, x ∈ Rn.

Alternately, Φ satisfies the formula Φ(x) = ρo|x|/t(x), x 6= 0, where t(x) = sup{t >
0 : tx/|x| ∈ Ω− xo} is the polar description of ∂(Ω− xo).
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The main properties of Φ are

(2.2) Φ(x) = 0 if and only if x = 0,

(2.3) Φ(ax) = aΦ(x), x ∈ Rn, a ≥ 0, and

(2.4) Φ(x + y) ≤ Φ(x) + Φ(y), x, y ∈ Rn.

These properties follow from the definition of Φ; (2.3) and (2.4) are standard (see [L,
Theorem 3.2]), and (2.2) follows from the fact Ω is bounded. Furthermore, since Ω is
open, it is evident that (see also [L, Theorem 3.3] and [W, Theorem 5.6.7])

(2.5) {x ∈ Rn : Φ(x) < 1} =
Ω− xo

ρo
and {x ∈ Rn : Φ(x) = 1} = ∂

(
Ω− xo

ρo

)
,

or equivalently {x ∈ Rn : Φ(x) < ρo} = Ω−xo and {x ∈ Rn : Φ(x) = ρo} = ∂(Ω−xo).
It follows from (2.1), (1.5) and (1.7) that

(2.6) max{Φ(x) : |x| = 1} = 1 and min{Φ(x) : |x| = 1} = 1/η.

Hence, by (2.3),

(2.7)
|x|
η
≤ Φ(x) ≤ |x|, x ∈ Rn.

By (2.5), (1.5) and (1.7), we also have

(2.8) 1 = min{|x| : Φ(x) = 1} and η = max{|x| : Φ(x) = 1}.
Properties (2.2), (2.3) and (2.4) imply that the function d(x, y) = Φ(x − y) is a

quasimetric on Rn with quasimetric constant 1; that is, d(x, y) = 0 if and only if
x = y and d(x, y) ≤ d(x, z) + d(z, y) for x, y, z ∈ Rn. However, d(x, y) may not equal
d(y, x) unless Φ is symmetric, although, as noted at the beginning of the Appendix,
d(x, y) and d(y, x) are equivalent in general by (2.9) below. If Φ is also symmetric,
i.e., if Φ(−x) = Φ(x) for all x, then the quasimetric d is a metric, Φ is a norm on
Rn, and every Φ-ball is symmetric with respect to its center. In general, Φ is not
symmetric, but by using (1.3) we have (see the Appendix)

(2.9) Φ(−x) ≤ νΦ(x), x ∈ Rn.

We will denote

(2.10) B(x, r) = {y ∈ Rn : Φ(y − x) < r}, x ∈ Rn, 0 < r < ∞,

and refer to B(x, r) as the Φ-ball with center x and radius r. If B is a Φ-ball, we often
use r(B) and xB to denote its radius and center. We reserve the notation cB(x, r)
for the ball B(x, cr) with radius c times that of B(x, r) and the same center.

Note that by (2.10) and (2.5),
(2.11)

B(0, 1) = {x ∈ Rn : Φ(x) < 1} =
Ω− xo

ρo
and {x ∈ Rn : Φ(x) = 1} = ∂(B(0, 1)).

It is now clear that B(x, r) = x + B(0, r) = x + rB(0, 1). In particular, every Φ-ball
is convex,

(2.12) B(xo, ρo) = Ω and

(2.13) |B(x, r)| = ω1r
n where ω1 = |B(0, 1)| = |Ω|/ρn

o .
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It will be useful to compare η to the Euclidean diameter of the unit Φ-ball B(0, 1).
Let

(2.14) η1 = sup{|x1 − y1| : x1, y1 ∈ B(0, 1)},

be the Euclidean diameter of B(0, 1). Then for any Φ-ball B = B(z, r), since B =
z + rB(0, 1),

(2.15) diam(B) = sup{|x− y| : x, y ∈ B} = η1r(B);

here diam(B) is the Euclidean diameter of B. Then, as we will show in the appendix,

(2.16) η ≤ η1 ≤ 2η.

Any nonnegative function φ on Rn which satisfies (2.2), (2.3) and (2.4) is called a
convex Minkowski function. Its convexity follows easily from (2.3) and (2.4). Con-
versely, for every convex Minkowski function φ and every xo ∈ Rn, there is a bounded
convex domain Ω such that

(2.17) φ(x) = inf
{

t > 0 : xo +
x

t
∈ Ω

}
, x ∈ Rn.

In fact, (2.17) follows easily if we choose Ω to be the bounded convex domain {x :
φ(x−xo) < 1}. Hence, for any fixed point xo ∈ Rn, the collection of convex Minkowski
functions is the same as the collection of functions for which there is a bounded convex
domain Ω containing xo and satisfying (2.17). Similarly, for any fixed xo ∈ Rn, the
collection of bounded convex domains containing xo is the same as the collection of
sets {x : φ(x− xo) < 1} as φ varies over the class of convex Minkowski functions. We
note in passing that the function φ(x) = Φxo,Ω(x)/ρo = Φxo,Ω(x/ρo) satisfies (2.17).

Any convex Minkowski function φ can be used to define quasinorm balls which we
will call φ-balls, namely

Bφ(x, r) = {z ∈ Rn : φ(z − x) < r}.

For a bounded domain D and a convex Minkowski function φ (possibly unrelated to
D), let

(2.18) dφ(x) = dφ,D(x) = min{φ(y − x) : y ∈ Dc}, x ∈ D.

Definition 2.1. Let D be a bounded domain in Rn, φ be a convex Minkowski function
on Rn and 0 < δ < 1/2.

(i) We say a φ-ball Bφ(x, r) is a δ-φ-ball (in D) if x ∈ D and r ≤ δdφ(x). When
equality holds, i.e., when r = δdφ(x), we say the ball is a δ-Whitney φ-ball.

(ii) We say a measure σ is φ-doubling on D if there exists Dσ > 0 such that

(2.19) σ(Bφ(x, 2kr)) ≤ Dk
σ σ(Bφ(x, r)), k ∈ N,

for all x ∈ D and r ≤ diam(D). If (2.19) holds for all φ-balls Bφ(x, r) in Rn,
we say σ is φ-doubling. If (2.19) holds only when Bφ(x, r) is a δ-φ-ball, we
say σ is δ-φ-doubling. Some discussion regarding δ-φ-doubling can be found
in [CWa] and [CWb] when φ is symmetric.

We now consider domains which satisfy the Boman chain condition for φ-balls. As
usual, we denote cB = Bφ(x, cr) if B = Bφ(x, r) and c > 0.
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Definition 2.2. Let 0 < δ < 1/2, M1,M2 > 1, and φ be a convex Minkowski function
on Rn. For a bounded domain D ∈ Rn, we write D ∈ F(δ,M1,M2) = Fφ(δ,M1,M2)
if D has a Boman cover W consisting of δ-Whitney φ-balls, that is, if there exists a
countable collection W = {B} of δ-Whitney φ-balls such that

(i) XD ≤
∑

B∈W X
B
≤ M1XD

(ii) for any B ∈ W , there is a finite sequence {B = B0, B1, . . . , BK} of balls
in W , where K may depend on B but BK = B∗ is independent of B, such
that B ⊂ M2Bj for j = 1, . . . ,K, and for each i < K, there exists a φ-ball
B′

i ⊂ Bi+1 ∩Bi with Bi ∪Bi+1 ⊂ M1B
′
i.

If D ∈ Fφ(δ,M1,M2) for some M1,M2 and δ, 0 < δ < 1/2, we say D is a φ-Boman
domain and call B∗ the central φ-ball of D. See also [C09, CWa]. Note that the
notions of δ-φ-doubling and φ-doubling are the same on Boman domains; in the case
of a symmetric quasimetric, see [CWa, Proposition 2.2(2)].

Before we proceed to show that a Φ-ball is a Φ-Boman domain, Φ = Φxo,Ω, let us
list some simple facts. As usual, we denote Φ-balls BΦ(x, r) simply by B(x, r).

Lemma 2.3. Let Ω be a bounded open convex set with center xo = 0 and Φ = Φ0,Ω

be as in (2.1), so that Ω = B(0, ρo) with ρo = dist(0, ∂Ω) = r(Ω). Let z′ be a unit
vector, and denote Φ(z′) = ξ and Φ(−z′) = ξ̄.

(i) If 0 < t < ρo/ξ, then tz′ ∈ Ω and dΦ(tz′) = ρo − tξ. Equivalently, if z ∈ Ω,
then dΦ(z) = ρo − Φ(z).

(ii) If 0 < t1 < t0, then B(t1z′, r1ξ̄) ⊂ B(t0z′, r0ξ̄) if and only if t0− t1 + r1 ≤ r0.
(iii) If 0 < δ < 1/2, 0 < t < t0 < ρo/ξ and B(t1z′, r) is a δ-Whitney Φ-ball in Ω

which is not a subset of B(t0z′, r0), then r ≥ C(δ, ν)r0.
(iv) If x, y ∈ Ω, 0 < δ < 1/2 and B(x, δdΦ(x)) intersects B(y, δdΦ(y)), then

dΦ(y) ≤ (2 + ν)dΦ(x) and B(y, δdΦ(y)) ⊂ [(1 + ν)(2 + ν) + 1]B(x, δdΦ(x)).
If B1, B2 are any two Φ-balls whose closures intersect and r(B1) ≤ αr(B2),
then B1 ⊂ [α(1 + ν) + 1]B2.

As we have been unable to locate a reference for these facts, we prove them in the
Appendix.

Proposition 2.4. Let Ω be a bounded convex domain in Rn, and let Φ = Φxo,Ω be
defined by (2.1) and dΦ by (2.18). (Hence Ω is the Φ-ball B(xo, ρo) and ρo = dΦ(xo).)
If 0 < δ < 1/2, then Ω ∈ F(δ,M1,M2) = FΦ(δ,M1,M2) where M1,M2 depend only on
n and δ, and the central ball is B(xo, δρo). Moreover, for any x0 ∈ Ω, x0 6= xo, there
exists a chain of δ-Whitney Φ-balls {Q0 = B(x0, δdΦ(x0)), Q1, · · · , QN = B(xo, δρo)}
(N may depend on x0), with bounded intercepts depending only on n, such that for
each i, Q0 ⊂ M2Qi and there exists a Φ-ball Q̃i ⊂ Qi−1∩Qi with Qi−1∪Qi ⊂ M1Q̃i.

This can be proved by methods like those in [CD], with the help of Lemma 2.3;
see the Appendix.

We also need the next two variants of known results.

Theorem 2.5. Let φ be a convex Minkowski function in Rn and Ω ∈ Fφ(δ,M1,M2)
for some δ,M1,M2, 0 < δ < 1/2, with Boman cover W and central φ-ball B∗. Let
f be a Borel measurable function on Ω and w be a δ-Φ-doubling Borel measure. For
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each φ-ball B ∈ W , let a(f,B) be an arbitrary constant associated with B. Then if
1 ≤ q < ∞,

(2.20) ‖f − a(f,B∗)‖q

Lq
w(Ω)

≤ C(q, Dw,M1,M2)
∑

B∈W

‖f − a(f,B)‖q

Lq
w(B)

.

Theorem 2.5 was first obtained in [C93, Theorem 1.5] for the usual Euclidean
metric and a doubling weight w. That proof can be easily extended to the present
case using the modified maximal function

M δ
wf(x) = sup

{
1

w(B)

∫
B

|f |dw : B is a δ-φ-ball containing x

}
.

More details can be found in [CWa], and a further extension is given in [CW6].

Proposition 2.6. Let Ω be a bounded convex domain in Rn and Φ = Φxo,Ω. If µ is
Φ-doubling on Ω, then there exist A1, A2 > 0 depending only on Dµ such that for all
x ∈ Ω and 0 < r < ρo,

A1 ≤
µ(B(x, 2r))
µ(B(x, r))

≤ A2.

The proof is a simple adaptation of the argument of [Wh, p.269]; see also [C09,
Proposition 2.8] and [CWa, Proposition 2.3].

We now derive a weak-type self-improving property of weighted Poincaré inequal-
ities on convex domains.

Proposition 2.7. Suppose Ω is a bounded convex domain in Rn and Φ = Φxo,Ω. Let
µ, σ be Φ-doubling Borel measures on Ω, 0 < δ < 1/2, and a(B) be a nonnegative set
function defined for all δ-Φ-balls B. If f is a Borel function on Ω such that for all
δ-Φ-balls B,

(2.21)
1

σ(B)
||f − fB,σ||

L1
σ(B)

≤ a(B),

and if there exist constants q, θ, CΩ with 1 ≤ q < ∞, 0 < θ < 1 and CΩ > 0 such that

(2.22)
∑
B∈I

[a(B)qµ(B)]θ ≤ Cθ
Ω

for every collection I of disjoint δ-Φ-balls B, then

(2.23) sup
t>0

t µ{x ∈ Ω : |f(x)− fΩ,µ| > t}
1
q ≤ CC

1
q

Ω ,

where C = C(Dσ, Dµ, δ, n, θ, q) and CΩ is the constant in (2.22).

Proof. The result will be a corollary of [CWa, Theorem 1.2] concerning abstract
measure spaces. We denote Φ-balls simply by B(x, r). As usual, Ω = B(xo, ρo), and
we may assume without loss of generality that xo = 0. For any x 6= 0, from Proposition
2.4, there exists a finite sequence of δ-Whitney Φ-balls {Qx

0 , Qx
1 , · · · , Qx

N}, N = N(x),
with bounded intercepts (depending only on n) and centers along the line segment
x0, such that Qx

0 = B(0, δρo), Qx
N = B(x, δdΦ(x)), and

σ(Qx
j ∪Qx

j+1) ≤ Cσ(Qx
j ∩Qx

j+1), j = 0, . . . , N − 1,

since σ is Φ-doubling. Choose the least k = k(x) ∈ N such that ∪N
j=0Q

x
j ⊂ 2kQx

N . For
i = 0, 1, . . . , define Bx

i = 2k−iQx
N , and for j > N , define Qx

j = Bx
j−N+k. Note that
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Qx
j has center x if j ≥ N , and that Qx

j is a δ-Whitney ball if j ≤ N . If x = 0 and
i = 1, 2, . . . , define Qx

i , Bx
i by Qx

i = Bx
i = 2−iB(0, δρo). For x ∈ Ω and i ≥ 0, let

C(Bx
i ) = {Qx

j : Qx
j ⊂ Bx

i , Qx
j 6⊂

1
2
Bx

i }.

It follows that if Qx
j ∈ C(Bx

i ), then r(Qx
j ) ≤ r(Bx

i ) ≤ C(δ, ν)r(Qx
j ); in fact, for those

Qx
j which are δ-Whitney balls, this is true by Lemma 2.3(iii), and for the rest, it

follows from their definition. Hence Bx
i ⊂ C(δ, ν)Qx

j if Qx
j ∈ C(Bx

i ). Also, there is a
constant C(δ, n) so that for any fixed x and i, the number of Qx

j in C(Bx
i ) is bounded

by C(δ, n); this follows from a volume argument since those Qx
j with j ≤ N have

bounded intercepts depending only on n and δ.
Next, if {Bα} ⊂ {Bx

i : x ∈ Ω, i ≥ 0} is a family of pairwise disjoint balls, then
since the number of Q in each C(Bα) is bounded by L = C(δ, n), we have

∑
α

 ∑
Q∈C(Bα)

a(Q)

q

µ(Bα)

θ

≤
∑
α

[Lq/q′
∑

Q∈C(Bα)

a(Q)qµ(Bα)]θ

≤ [C(Dµ, δ, ν)Lq/q′ ]θ
∑
α

∑
Q∈C(Bα)

[a(Q)qµ(Q)]θ,

where to obtain the last inequality we used 0 < θ < 1 and µ(Bα) ≤ C(Dµ, δ, ν)µ(Q)
for Q ∈ C(Bα). Since the balls Q in C(Bα) have uniformly bounded intercepts, there
exists K = K(δ, n) such that each C(Bα) can be decomposed into the union of at
most K families of pairwise disjoint balls. Since the Bα are also pairwise disjoint,
(2.22) implies that

∑
α

 ∑
Q∈C(Bα)

a(Q)

q

µ(Bα)

θ

≤ K[C(Dµ, δ, ν)Lq/q′ ]θCθ
Ω.

Finally, a Vitali type covering argument like that in the proof of Proposition 2.4
shows that any family of Φ-balls {B(x, rx), x ∈ E} has a subfamily F of pairwise
disjoint Φ-balls such that

µ(E) ≤ C(Dµ, ν)
∑
F

µ(B(xi, ri)).

Proposition 2.7 now follows by applying [CWa, Theorem 1.2]. �

3. Proof of the main theorem

First we derive an unweighted Poincaré inequality on convex domains similar to
(1.1) when 1/q ≥ 1/p − 1/n. The point of the estimate is that it improves the
well-known inequality (P) by showing that the norm constant is independent of the
domain’s eccentricity.
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Proposition 3.1. Let Ω be a bounded convex domain in Rn. If 1 ≤ p, q < ∞ and
1 + n

q −
n
p ≥ 0, then for all f ∈ Liploc(Ω),

(3.1) ‖f − fΩ‖Lq(Ω)
≤ C(p, q, n)|Ω|

1
q−

1
p diam(Ω)‖∇f‖

Lp(Ω)
with fΩ =

1
|Ω|

∫
Ω

fdx.

Proof. By Hölder’s inequality, we only need to consider the case q > p. In fact,
the case q ≤ p has already been given in (1.1) with α = 0. Fix Ω and let Φ = Φxo,Ω.
If f ∈ Liploc(Ω) and B is any Φ-ball in Ω, then since B is convex, we know by (1.1)
with α = 0 and q = 1 that

(3.2)
1
|B|

‖f − fB‖
L1(B)

≤ C(p)
diam(B)
|B|1/p

‖∇f‖
Lp(B)

.

Set

a(B) =
diam(B)
|B|1/p

‖∇f‖
Lp(B)

.

Let ω1 = |B(0, 1)| be the volume of the unit Φ-ball, and recall from (2.15) and (2.13)
that diam(B) = η1r(B) and |B| = ω1r(B)n if B is any Φ-ball. Let us now fix
0 < δ < 1/2. If I is a collection of disjoint δ-Φ-balls in Ω, then∑

Bα∈I

a(Bα)p|Bα|
p
q =

∑
Bα∈I

ηp
1ω

p( 1
q−

1
p )

1 r(Bα)(1+
n
q −

n
p )p‖∇f‖p

Lp(Bα)

≤ ηp
1ω

p( 1
q−

1
p )

1 r(Ω)(1+
n
q −

n
p )p

∑
Bα∈I

‖∇f‖p

Lp(Bα)

since 1 + n
q −

n
p ≥ 0. It is now clear that∑

Bα∈I

a(Bα)p|Bα|
p
q ≤

(
|Ω|

1
q−

1
p diam(Ω)‖∇f‖

Lp(Ω)

)p

.

Hence (2.22) holds with θ = p/q and CΩ =
(
|Ω|

1
q−

1
p diam(Ω)‖∇f‖

Lp(Ω)

)q

. It then
follows from Proposition 2.7 that

(3.3) sup
t>0

t |{x ∈ Ω : |f(x)− fΩ| > t}|
1
q ≤ C(p, q, n) |Ω|

1
q−

1
p diam(Ω)‖∇f‖

Lp(Ω)
,

where fΩ =
∫
Ω

fdx/|Ω|. This proves the weak-type version of (3.1). The strong-type
estimate (3.1) itself now follows by a well-known truncation technique. We omit the
details but refer to the proof of [CWa, Theorem 1.10] for the argument. �

Next, we estimate the number of disjoint Whitney balls of a given size.

Lemma 3.2. Let Ω be a bounded open convex domain in Rn, and Φ = Φxo,Ω. If
0 < δ < 1/2, then for each k ∈ N, the number of pairwise disjoint δ-Whitney Φ-balls
with radius between 2−k−1r(Ω) and 2−kr(Ω) is at most C(δ, n)2(n−1)k.

Proof. We may assume that xo = 0. As usual, let ρo = r(Ω). If B = B(z, δdΦ(z))
is a δ-Whitney Φ-ball with 2−k−1ρo ≤ r(B) ≤ 2−kρo, then for any x ∈ B,

dΦ(x) ≤ dΦ(z) + Φ(z − x) ≤ dΦ(z) + νδdΦ(z) = δdΦ(z)(δ−1 + ν) ≤ 2−kρo(δ−1 + ν).

Since dΦ(x) = ρo−Φ(x) by Lemma 2.3(i), we obtain ρo(1−2−k(δ−1+ν)) ≤ Φ(x) < ρo,
and therefore

B ⊂ B(0, ρo) \B(0, ρo(1− 2−k(δ−1 + ν)), assuming that 2−k(δ−1 + ν) < 1.
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This annular region has volume

ω1ρ
n
o

[
1− {1− 2−k(δ−1 + ν)}n

]
≤ |Ω|n2−k(δ−1 + ν) ≤ C(δ, n)2−k|Ω|.

By volume considerations, it follows that the number of pairwise disjoint δ-Whitney
Φ-balls with radius between 2−k−1ρo and 2−kρo is at most

C(δ, n)2−k|Ω|
ω1(2−k−1ρo)n

= C(δ, n)2k(n−1),

which completes the proof in case 2−k(δ−1 + ν) < 1. The argument for the remaining
values of k is similar provided the role of the annular region is played by all of Ω. �

Proof of Theorem 1.1. Let Ω be a bounded convex domain, Φ = Φxo,Ω, and
recall that ρ(x) = miny∈Ωc |x− y|. Then ρ = 0 on Ωc and ρ is a concave function on
Ω; for the latter, see for example [CW3, Remark 1.5(4)]. If B is a Φ-ball in Ω, we set

ρ̄(B) = sup{ρ(x) : x ∈ B}.

By (2.15) and (1.6), diam(B) = η1r(B) and r(Ω) = ρo ≤ ρ̄(Ω) ≤ (1 + ν)ρo. Also, for
any Φ-ball B ⊂ Ω, we have r(B) ≤ ρ̄(B) since

ρ̄(B) ≥ ρ(xB) ≥ sup
y∈∂B

|y − xB | ≥ sup
y∈∂B

Φ(y − xB) = r(B),

where we used (2.7) to obtain the last inequality.
We claim that there exists 0 < τ < 1 depending only on n (in fact, depending only

on ν) such that if B is a Φ-ball with 2B ⊂ Ω, then for all x ∈ B,

τρ(xB) < ρ(x) < τ−1ρ(xB),

and hence

(3.4) τ2ρ̄(B) ≤ ρ(x) ≤ ρ̄(B) if x ∈ B and 2B ⊂ Ω.

Let us first show that if B is a Φ-ball, x ∈ B and 0 ≤ k ≤ 2/ν, then 2x− xB , k(xB −
x) + xB ∈ 2B. For such B, x and k,

Φ([2x− xB ]− xB) = 2Φ(x− xB) < 2r(B) and

Φ([k(xB − x) + xB ]− xB) = kΦ(xB − x) ≤ kνΦ(x− xB) < kνr(B) < 2r(B),

as desired. In particular, if in addition 2B ⊂ Ω, then both 2x−xB , k(xB−x)+xB ∈ Ω.
Since x is the midpoint of the line segment connecting xB and 2x − xB , it follows
from concavity of ρ that

ρ(x) ≥ 1
2
ρ(xB) +

1
2
ρ(2x− xB) >

1
2
ρ(xB).

Similarly, choosing k = 2/ν and θ = k/(1 + k), we have k(xB − x) + xB ∈ Ω and
xB = θx + (1− θ){k(xB − x) + xB}, and consequently

ρ(xB) ≥ θρ(x) + (1− θ)ρ(k(x− xB) + xB) > θρ(x),

which proves the claim.
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Hence, assuming that 2B ⊂ Ω and applying (3.1) with Ω replaced by B, if 1 ≤
p ≤ q < ∞, 1 + n

q −
n
p ≥ 0 and α, β ∈ R, we have (with fB = |B|−1

∫
B

fdx and
C = C(p, q, α, β, n))

‖f − fB‖Lq
ρα (B)

≤ Cρ̄(B)
α
q −

β
p |B|

1
q−

1
p diam(B)‖∇f‖

Lp

ρβ (B)

= Cη1ω
1
q−

1
p

1 ρ̄(B)
α
q −

β
p r(B)1+

n
q −

n
p ‖∇f‖

Lp

ρβ (B)
.(3.5)

We now fix 0 < δ < 1/2. If W is a Boman cover of Ω as in Proposition 2.4, then every
B ∈ W is a δ-Whitney Φ-ball with 2B ⊂ Ω. Therefore, if B ∈ W , since ρ̄(B) ≥ r(B)
and 1 + n

q −
n
p ≥ 0, it follows from the previous estimate that

‖f − fB‖Lq
ρα (B)

≤ Cη1ω
1
q−

1
p

1 ρ̄(B)1+
n+α

q −n+β
p ‖∇f‖

Lp

ρβ (B)

≤ Cη1ω
1
q−

1
p

1 ρ
1+ n+α

q −n+β
p

o ‖∇f‖
Lp

ρβ (B)
(3.6)

since ρ̄(B) ≤ ρ̄(Ω) ∼ ρo and by hypothesis 1 + n+α
q − n+β

p ≥ 0.
Next, we will show that if α ≥ 0 then ρα is Φ-doubling on Ω (see Definition 2.1(ii))

with doubling constant depending only on n and α. It is enough to show that∫
2B

ραdx ≤ 2n+α

∫
B

ραdx for any Φ-ball B with center in Ω.

First note that ρ(x) ≤ 2ρ
(

xB+x
2

)
if x ∈ Rn. This is obvious if x /∈ Ω since then

ρ(x) = 0, while if x ∈ Ω (recall xB ∈ Ω too),

ρ

(
xB + x

2

)
≥ 1

2
ρ(xB) +

1
2
ρ(x) >

1
2
ρ(x)

by concavity of ρ. Therefore, since α ≥ 0,∫
2B

ρ(x)αdx ≤ 2α

∫
Φ(x−xB)<2r(B)

ρ

(
xB + x

2

)α

dx

= 2α+n

∫
Φ(y−xB)<r(B)

ρ(y)αdy = 2α+n

∫
B

ρ(y)αdy,

as desired.
Recall that Ω ∈ FΦ(δ,M1,M2), with M1,M2 depending only on δ, n. Hence, by

Theorem 2.5, if B∗ is the central ball in Ω, we have for α ≥ 0 and 1 ≤ q < ∞ that

(3.7) ‖f − fB∗‖q

Lq
ρα (Ω)

≤ C(q, α, n)
∑

B∈W

‖f − fB‖q

Lq
ρα (B)

.

In order to estimate the sum in (3.7) in case q ≥ p and 1+ (n+α)/q− (n+β)/p ≥ 0,
we will use (3.6). Since q ≥ p and the balls B ∈ W have bounded overlaps (see
Definition 2.1(i)), we have∑

B∈W

‖∇f‖q

Lp

ρβ (B)
=
∑

B∈W

(∫
B

|∇f |pρβdx

) q
p
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≤

(∑
B∈W

∫
B

|∇f |pρβdx

) q
p

≤ C(n, p, q)‖∇f‖q

Lp

ρβ (Ω)
,

and then

‖f − fB∗‖
Lq

ρα (Ω)
≤ C(p, q, α, β, n)η1ω

1
q−

1
p

1 ρ
1+ α+n

q − β+n
p

o ‖∇f‖
Lp

ρβ (Ω)

(3.8) = C(p, q, α, β, n)η
β
p−

α
q

1 diam(Ω)1+
α
q −

β
p |Ω|

1
q−

1
p ‖∇f‖

Lp

ρβ (Ω)

as |Ω| = ω1ρ
n
o and diam(Ω) = η1ρo.

If 1 ≤ q < p < ∞, we will only consider the case α/q − β/p ≤ 0 as the other
case is easier. As noted at the beginning of the proof, r(B) ≤ ρ̄(B) for any Φ-ball
B ⊂ Ω, and consequently ρ̄(B)α/q−β/p ≤ r(B)α/q−β/p. By (3.7), (3.5) and Hölder’s
inequality with exponents p/q, p/(p− q),
‖f − fB∗‖q

Lq
ρα (Ω)

≤(
C(p, q, α, β, n)η1ω

1
q−

1
p

1

)q (∑
B∈W r(B)(1+

n+α
q −n+β

p ) qp
p−q

) p−q
p ‖∇f‖q

Lp

ρβ (Ω)
.

But

(∑
B∈W

r(B)(1+
n+α

q −n+β
p ) qp

p−q

) p−q
p

≤

∑
k∈N

∑
B∈W

r(B)∼2−kρo

r(B)(1+
n+α

q −n+β
p ) qp

p−q


p−q

p

,

which by Lemma 3.2 and the hypothesis 1 + α
q −

β
p > −p−q

pq is at most(∑
k∈N

C(n)2(n−1)k(2−kρo)(1+
n+α

q −n+β
p ) qp

p−q

) p−q
p

≤ C(n, p, q, β, α)ρ
q(1+ n+α

q −n+β
p )

o .

Hence, we again obtain that

(3.9) ‖f − fB∗‖
Lq

ρα (Ω)
≤ C(p, q, β, α, n)η

β
p−

α
q

1 diam(Ω)1+
α
q −

β
p |Ω|

1
q−

1
p ‖∇f‖

Lp

ρβ (Ω)
.

Finally, assuming that the right sides of (3.8) and (3.9) are finite, i.e., that |∇f | ∈
Lp

ρβ (Ω), and noting that fB∗ is finite since f ∈ Liploc(Ω), it follows that f ∈ Lq
ρα(Ω).

Hence fΩ,ρa is finite, and we easily obtain

‖f − fΩ,ρα‖
Lq

ρα (Ω)
≤ 2‖f − fB∗‖

Lq
ρα (Ω)

.

By (2.16), η1 and η are equivalent in size independent of Ω, and it is now clear that
(1.8) holds. This completes the proof of Theorem 1.1. �

Remark 3.3. (i) We claim that under the hypotheses of Theorem 1.1, the fol-
lowing Poincaré inequality also holds for both parts (i) and (ii) of the theorem:

‖f − fD‖Lq
ρα (Ω)

≤ Cη
β
p−

α
q |Ω|

1
q−

1
p diam(Ω)1−

β
p + α

q ‖∇f‖
Lp

ρβ (Ω)
+

C
ρα(Ω)1/q

min{|D|, |B∗|}
diam(D′)‖∇f‖

L1(D′)
,(3.10)
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with C = C(p, q, α, β, n), for any convex domain D ⊂ Ω and for all locally
Lipschitz continuous functions f on Ω, where fD =

∫
D f/|D|, D′ is any convex

domain containing both D and B∗, and B∗ is the central Φ-ball as before. In
fact, we have

‖f − fD‖Lq
ρα (Ω)

≤ ‖f − fB∗‖
Lq

ρα (Ω)
+ ρα(Ω)1/q|fB∗ − fD|;

the first term on the right was estimated in (3.8) and (3.9), and by [CW3,
Theorem 1.2],

|fB∗ − fD| ≤ |fB∗ − fD′ |+ |fD′ − fD|

≤ 1
|B∗|

∫
B∗

(|fB∗ − f |+ |f − fD′ |)

+
1
|D|

∫
D

(|fD − f |+ |f − fD′ |)

≤ diam(B∗)
2|B∗|

‖∇f‖
L1(B∗)

+
diam(D′)

2|B∗|
‖∇f‖

L1(D′)

+
diam(D)

2|D|
‖∇f‖

L1(D)
+

diam(D′)
2|D|

‖∇f‖
L1(D′)

≤ 2
diam(D′)

min{|D|, |B∗|}
‖∇f‖

L1(D′)
.

The claim now follows. Also, for any E ⊂ Ω of positive measure, Hölder’s
inequality gives

ρα(Ω)1/q|fΩ,ρα − fE,ρα | ≤
(

ρα(Ω)
ρα(E)

)1/q

‖f − fΩ,ρα‖
Lq

ρα (E)

≤
(

ρα(Ω)
ρα(E)

)1/q

‖f − fΩ,ρα‖
Lq

ρα (Ω)
.

It follows from Theorem 1.1 that

‖f − fE,ρα‖
Lq

ρα (Ω)
≤ C

(
ρα(Ω)
ρα(E)

)1/q

η
β
p−

α
q |Ω|

1
q−

1
p diam(Ω)1−

β
p + α

q ‖∇f‖
Lp

ρβ (Ω)
,

and consequently by arguments similar to those above,

‖f − fE‖Lq
ρα (Ω)

≤ C
(

ρα(Ω)
ρα(E)

) 1
q

η
β
p−

α
q |Ω|

1
q−

1
p diam(Ω)1−

β
p + α

q ‖∇f‖
Lp

ρβ (Ω)

+ρα(Ω)
1
q

ρα(E) ‖f − fE‖
L1

ρα (E)
.

In particular, if E is a δ-ball then ρ is essentially constant on E, and by
using the last two inequalities we obtain that ||f − fE ||Lq

ρα (Ω) is less than

C

(
ρα(Ω)
ρα(E)

)1/q

η
β
p−

α
q |Ω|

1
q−

1
p diam(Ω)1−

β
p + α

q ‖∇f‖
Lp

ρβ (Ω)
.

(ii) Using similar ideas, we can replace ρ by dΦ in Theorem 1.1, that is, with the
same hypotheses,
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‖f − fΩ,dα
Φ
‖

Lq
dα
Φ

(Ω)
≤ C(p, q, α, β, n)η

β
p−

α
q |Ω|

1
q−

1
p diam(Ω)1−

β
p + α

q ‖∇f‖
Lp

d
β
Φ

(Ω)
.

This can be proved by using the fact that if 2B ⊂ Ω, then dΦ(x) ∼ dΦ(y) for
all x, y ∈ B.

(iii) It has already been shown in [CD] that two necessary conditions for (1.8) in
case q ≥ p are

1
q
≥ 1

p
− 1

n
and 1− n + β

p
+

n + α

q
≥ 0.

Let us now show that in case 1 ≤ q < p, it is necessary that 1−(1+β)/p+(1+
α)/q > 0. For simplicity, consider n = 2 and let Ω = Q0 = (−1, 1) × (0, 2).
For k ∈ N, k > 1, and i = 1, · · · , 2k−1, set

Rk
i = ((i− 1)2−k, i2−k)× (2−k, 2−k+1)

and

Lk
i = (−i2−k,−(i− 1)2−k)× (2−k, 2−k+1).

Fix a nonzero polynomial P on Q = [0, 1]× [0, 1] that vanishes on ∂Q. Define
a piecewise polynomial function gk on the strip [−1/2, 1/2] × [2−k, 2−k+1]
with gk(−x, y) = −gk(x, y) as follows: first define gk on the cube [0, 2−k] ×
[2−k, 2−k+1] by

gk(x, y) = P (2kx, 2k(y − 2−k)) for (x, y) ∈ [0, 2−k]× [2−k, 2−k+1],

and then extend gk periodically to other cubes [(i−1)2−k, i2−k]× [2−k, 2−k+1]
and set gk = 0 elsewhere in Q0. It is easy to see that (with ρ defined relative
to Q0)∫

Q0
gk(z)ρ(z)αdz = 0 and ‖gk‖q

Lq
ρα (Rk

i )
= ‖gk‖q

Lq
ρα (Lk

i )
∼ 2−k(2+α)‖P‖q

Lq(Q)

and

‖∇gk‖p

Lp

ρβ (Lk
i )

= ‖∇gk‖p

Lp

ρβ (Rk
i )
∼ 2−k(2+β−p)‖∇P‖p

Lp(Q)
.

Now let fN =
∑N+1

k=2 (2k)(1+α)/qgk, and note that
∫

Q0
fN ραdz = 0 and

‖fN‖Lq
ρa (Q0)

/‖∇fN‖Lp

ρβ (Q0)
∼

‖P‖
Lq(Q)

‖∇P‖
Lp(Q)

N1/q/
(∑N+1

k=2 2kp[1− 1+β
p + 1+α

q ]
)1/p

.

If 1− 1+β
p + 1+α

q = 0, the right side equals

‖P‖
Lq(Q)

‖∇P‖
Lp(Q)

N1/q−1/p →∞ as N →∞

since q < p, while if 1 − 1+β
p + 1+α

q < 0, the right side exceeds a positive
constant times a similar factor with N1/q−1/p replaced by N1/q. It follows
that we must have 1− (1 + β)/p + (1 + α)/q > 0.

(iv) Inequality (1.8) is sharp in the sense that the exponent of η is optimal, which
was already established in [CD].
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4. Appendix

First, let us establish (2.9). Note that if t > 0 and xo + (ρox/t) ∈ Ω, we have
xo − (ρox/(νt)) ∈ Ω by applying (1.3) with k = 1/ν. (2.9) is now clear and hence
d(y, x) ≤ νd(x, y) ≤ nd(x, y) for all x, y.

We now show that η ≤ η1 ≤ 2η, where η1 is defined in (2.14). In fact, if x1, y1 ∈
B(0, 1) then by (2.7),

|x1 − y1| ≤ |x1|+ |y1| ≤ ηΦ(x1) + ηΦ(y1) < η + η = 2η,

and therefore η1 ≤ 2η. Also, by (2.8) and (2.11), max{|x| : x ∈ ∂B(0, 1)} = η, so that
η ≤ η1.

Next, we recall the classical definition of eccentricity and show that η is equivalent
to it in size. For an open bounded convex set Ω, let R̃(Ω) be the infimum of the radii
of all Euclidean balls that enclose Ω, and let r̃(Ω) be the supremum of the radii of
all Euclidean balls enclosed in Ω. Then r̃(Ω) = maxx∈Ω ρ(x) ≤ R̃(Ω). The classical
definition of the eccentricity of Ω is

(4.1) η̃ = R̃(Ω)/r̃(Ω).

We claim that

(4.2)
1

2(1 + n)
η ≤ η̃ ≤ 2η.

By (2.12), r(Ω) = ρo = dist(xo, ∂Ω), and thus the open Euclidean ball D(xo, r(Ω))
with center xo and radius r(Ω) is contained in Ω. Hence, r(Ω) ≤ r̃(Ω). Also,
diam(Ω)/2 ≤ R̃(Ω) ≤ diam(Ω), and consequently

R̃(Ω) ≤ diam(Ω) = η1r(Ω) ≤ 2ηr(Ω) ≤ 2ηr̃(Ω).

Thus, η̃ = R̃(Ω)/r̃(Ω) ≤ 2η. It remains to show that η ≤ 2(1 + n)η̃. We first show
that

(4.3) r̃(Ω) ≤ (1 + ν)r(Ω).

To see this, suppose for simplicity that xo = 0, and let z be the center of an open
Euclidean ball of largest radius in Ω, i.e., of radius r̃(Ω). If α = 1/ν, then −αz ∈ Ω
by (1.3). Also, since xo = 0, (2.1) implies there is a point y ∈ ∂Ω with |y| = ρo =
r(Ω) = Φ(y). Since the closure of the Euclidean ball D(z, r̃(Ω)) lies in Ω, so does
the point z + r̃(Ω)y′ with y′ = y/|y|. Note that Φ(y′) = 1. The two triangles with
vertices −αz, z, z + r̃(Ω)y′ and −αz, 0, α

1+α r̃(Ω)y′ are coplanar and similar, and the
point α

1+α r̃(Ω)y′ is the intersection of the line segment 0y with the one from αz to
z + r̃(Ω)y′. Since Ω is convex, this point lies in Ω. As Ω = {x : Φ(x) ≤ r(Ω)}, we
obtain Φ

(
α

1+α r̃(Ω)y′
)
≤ r(Ω) or α

1+α r̃(Ω) ≤ r(Ω), which is the same as (4.3). Finally,

η =
max{|x| : x ∈ ∂Ω}

r(Ω)
≤ diam(Ω)

r(Ω)
≤ 2R̃(Ω)

r̃(Ω)/(1 + ν)
= 2(1 + ν)η̃ ≤ 2(1 + n)η̃.

This completes the proof that our definition of eccentricity is equivalent to the stan-
dard one.

Proof of Lemma 2.3. To show part (i), fix t with 0 < tξ < ρo. Then
tz′ ∈ Ω since Φ(tz′) = tΦ(z′) = tξ < ρo. By (2.3), Φ(ρoz

′/ξ) = ρo, and so the point
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(ρo/ξ)z′ ∈ ∂Ω by (2.12). Hence dΦ(tz′) ≤ ρo − tξ since

dΦ(tz′) = min{Φ(y − tz′) : y ∈ Ωc}

≤ Φ
(

ρo

ξ
z′ − tz′

)
=
(

ρo

ξ
− t

)
Φ(z′) = ρo − tξ.

To show the opposite inequality dΦ(tz′) ≥ ρo− tξ, we first claim that B(tz′, ρo− tξ) ⊂
Ω. In fact, if w ∈ B(tz′, ρo − tξ), then

Φ(w) ≤ Φ(w − tz′) + Φ(tz′) < ρo − tξ + tΦ(z′) = ρo,

proving the claim. Now fix any y ∈ ∂Ω and let ỹ be the point of intersection of
∂B(tz′, ρo − tξ) and the line segment connecting tz′ and y. Then y − tz′ = c(ỹ − tz′)
for some c ≥ 1, and consequently

Φ(y − tz′) = cΦ(ỹ − tz′) ≥ Φ(ỹ − tz′) = ρo − tξ.

Thus dΦ(tz′) ≥ ρo−tξ and part (i) is proved. Note that part (i) implies that (ρo/ξ)z′ ∈
∂B(tz′, ρo − tξ).

For part (ii), suppose that 0 < t1 < t0. Let us first show that if t0 − t1 + r1 ≤ r0,
then B(t1z′, r1ξ̄) ⊂ B(t0z′, r0ξ̄). Let y ∈ B(t1z′, r1ξ̄). Then

Φ(y − t0z
′) ≤ Φ(y − t1z

′) + Φ
(
(t0 − t1)(−z′)

)
< r1ξ̄ + (t0 − t1)ξ̄ ≤ r0ξ̄,

so y ∈ B(t0z′, r0ξ̄) as desired. Conversely, since B(t1z′, r1ξ̄) ⊂ B(t0z′, r0ξ̄), it follows
by taking closures that if y satisfies Φ(y−t1z

′) ≤ r1ξ̄, then Φ(y−t0z
′) ≤ r0ξ̄. Choosing

y = (t1 − r1)z′ and noting that Φ((t1 − r1)z′ − t1z
′) = Φ(−r1z

′) = r1ξ̄, we obtain
Φ((t1−r1−t0)z′) ≤ r0ξ̄, or equivalently, −(t1−r1−t0)ξ̄ ≤ r0ξ̄. Hence t0−t1+r1 ≤ r0

and (ii) is proved.
We now show (iii). Under the hypothesis of (iii), it follows from (ii) that

t0 − t1 − (r/ξ̄) > r0/ξ̄, and hence t0 − t1 > (r0/ξ̄) + (r/ξ̄) > r0/ξ̄.

By hypothesis and part (i),

r = δdΦ(t1z′) = δ(ρo − t1ξ) > δξ(t0 − t1),

where to obtain the last inequality we used the hypothesis of (iii). Combining esti-
mates gives

r > δξr0/ξ̄ ≥ δr0/ν since ξ̄/ξ ≤ ν.

Finally, to verify part (iv), let z ∈ B(x, δdΦ(x)) ∩B(y, δdΦ(y)), and choose ζ with
dΦ(x) = Φ(ζ − x). Then

dΦ(y) ≤ Φ(ζ − y) ≤ Φ(ζ − x) + Φ(x− z) + Φ(z − y)

≤ Φ(ζ − x) + νΦ(z − x) + Φ(z − y) ≤ dΦ(x) + νδdΦ(x) + δdΦ(y).
Combining terms, we obtain

dΦ(y) ≤ 1 + νδ

1− δ
dΦ(x) < (2 + ν)dΦ(x) since δ < 1/2.

This proves the first assertion in part (iv), and the remaining ones are left to the
reader, completing the proof of Lemma 2.3. �

Proof of Proposition 2.4. The main idea of the proof is standard but must be
adapted to Φ-balls. First, note by Lemma 2.3(iv) that if B1 and B2 are two Φ-balls
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whose closures intersect and r(B1) ≤ 2r(B2), then B1 ⊂ (3 + 2ν)B2. We will write
cν = 3 + 2ν.

We will now construct a preliminary cover of Ω by modifying the Vitali-type ar-
gument used in [Z] and [CD]. We may assume without loss of generality that xo = 0,
so that Ω = B(0, ρo) with ρo = dist(0, ∂Ω). Fix 0 < δ′ < 1/(4cν) and let dΦ be as
usual. Set F = {B(x, δ′dΦ(x)) : x ∈ Ω} and R = sup{r(B) : B ∈ F}. First, let
F1 = {B ∈ F : R/2 < r(B) ≤ R} and choose a maximal pairwise disjoint subfamily
G1 of F1 such that B(0, δ′ρo) ∈ G1 . Note that

⋃
B∈F1

B ⊂
⋃

B∈G1
cνB. Then let

F2 = {B ∈ F : R/4 < r(B) ≤ R/2, B ∩
⋃

Bα∈G1
B = ∅}, and again choose a maxi-

mal pairwise disjoint subfamily G2 of F2. Continuing the process, we find a family
F ′ =

⋃
Gi ⊂ F of pairwise disjoint balls such that Ω ⊂

⋃
B′∈F ′ cνB′.

Next, fix any x0 6= 0 and denote x0/|x0| by x′0, so that x0 = |x0|x′0. We now
construct the desired sequence of balls centered along the line segment from x0 to
0. Let Q′

0 = B(x0, δ
′dΦ(x0)). The collection of δ′-Whitney Φ-balls centered on

the segment x00 is {B(tx′0, δ
′dΦ(tx′0)) : 0 ≤ t ≤ |x0|}. For any such ball, we have

t ≤ |x0| = Φ(x0)/Φ(x′0) < ρo/Φ(x′0), and therefore by Lemma 2.3(i),

dΦ(tx′0) = ρo − tΦ(x′0),

which increases as t decreases. The balls which correspond to t = 0 and to t = |x0|
are B(0, δ′ρo) and Q′

0 respectively. If B(0, δ′ρo) and Q′
0 are disjoint, we can choose

t1 with 0 ≤ t1 < |x0| such that the ball Q′
1 = B(t1x′0, δ

′dΦ(t1x′0)) is disjoint from Q′
0

but Q′
0 ⊂ cνQ′

1. Here we use the fact that if the closures of Q′
1 and Q′

0 intersect,
then Q′

0 ⊂ cνQ′
1 as r(Q′

1) > r(Q′
0). The increasing nature of dΦ(tx′0) as t decreases

guarantees that we can continue the process a finite number N−1 of times (depending
on x0) until Q′

N−1 intersects B(0, δ′ρo)), and we let Q′
N = B(0, δ′ρo). The balls

{Qi = cνQ′
i} have bounded intercepts depending only on n by a standard volume

argument as {Q′
i} are disjoint, except for the last one B(0, δ′ρo), and since intersecting

Qi have comparable radii by Lemma 2.3(iv). Since Qi−1 intersects Qi and both are
cνδ′-Whitney Φ-balls with cνδ′ < 1/2, then Qi ⊂ C(ν)Qi−1 and vice versa by Lemma
2.3(iv). Furthermore, Q′

i−1 ⊂ Qi ∩ Qi−1 and Qi ∪ Qi−1 ⊂ C(ν)Qi−1 ⊂ C(ν)Q′
i−1.

Next, let us show that Q0 ⊂ C(ν, δ′)Qi for all i. Let w ∈ Q0 = cνQ′
0. Since

r(Q′
0) = δ′(ρo − |x0|Φ(x′0)), then

Φ(w − tix
′
0) ≤ Φ(w − x0) + Φ(x0 − tix

′
0)

≤ cνδ′(ρo − |x0|Φ(x′0)) + (|x0| − ti)Φ(x′0)
≤ cνδ′(ρo − tiΦ(x′0)) + (Φ(x0)− tiΦ(x′0)) ≤ (cνδ′ + 1)(ρo − tiΦ(x′0)).

Since r(Qi) = cνδ′(ρo − tiΦ(x′0)), it follows that w ∈ C(ν, δ′)Qi with C(ν, δ′) =
(cνδ′ + 1)/(cνδ′), as desired.

We now construct a Boman cover of Ω. Let 0 < δ < 1/2. For cν as above and a
suitably large constant C(ν) to be chosen, let c̄ν = C(ν)cν and choose δ′ with c̄νδ′ = δ.
Use δ′ to construct the collection F ′ of pairwise disjoint δ′-Whitney Φ-balls exactly as
above. Our Boman cover will consist of the δ-Whitney Φ-balls {c̄νB′ : B′ ∈ F ′}. Fix
B′

0 = B(x0, r0) ∈ F ′, x0 6= 0. Let {Q0, Q1, · · · , QN = B(0, cνδ′ρo)} be the sequence
of cνδ′-Whitney Φ-balls centered on the segment x00 as above. For i = 1, . . . , N ,
choose B′

i ∈ F ′ so that cνB′
i contains the center of Qi. Of course, we will always

choose cνB′
N = QN = B(0, cνδ′ρo). Since cνB′

i and Qi are intersecting cνδ′-Whitney
balls with cνδ′ < 1/2, Lemma 2.3(iv) shows there exists C(ν) such that Qi ⊂ c̄νB′

i,
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where c̄ν = C(ν)cν . Similarly, Qi−1 ⊂ c̄νB′
i−1. Since Q′

i−1 ⊂ Qi ∩ Qi−1, then
Q′

i−1 ⊂ c̄νB′
i ∩ c̄νB′

i−1, and since c̄νB′
i, c̄νB′

i−1, c̄νQ′
i−1 are intersecting c̄νδ′-balls, we

have c̄νB′
i ∪ c̄νB′

i1
⊂ C(ν)c̄νQ′

i−1. In particular,

Q′
i−1 ⊂ c̄νB′

i ∩ c̄νB′
i−1 ⊂ C(ν)c̄νQ′

i−1.

It is now easy to see that W = {c̄νB′ : B′ ∈ F ′} is a Boman cover with M1

depending only on n and M2 depending only on δ, n. Note that balls in W have
bounded intercepts (depending on n) again by a volume argument, using the fact
that intersecting Whitney balls have comparable radii and {B/c̄ν : B ∈ W} are
pairwise disjoint. This completes the proof of Proposition 2.4. �
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mogénes, Lecture Notes in Math. 242, Springer-Verlag, New York, 1971.

[DL] S. Dekel and D. Leviatan, The Bramble-Hilbert lemma for convex domains, Siam J. Math.
Analysis 35 (2004), 1203-1212.
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