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THE LINEAR SPACE OF BETTI DIAGRAMS OF MULTIGRADED
ARTINIAN MODULES

Gunnar Fløystad

Abstract. We study the linear space generated by the multigraded Betti diagrams of

Zn-graded artinian modules of codimension n whose resolutions become pure of a given

type when taking total degrees. We show that the multigraded Betti diagram of the
equivariant resolution constructed in [3] by D.Eisenbud, J.Weyman, and the author,

and all its twists, form a basis for this linear space. We also show that it is essentially

unique with this property.

Introduction

Recent years has seen a breakthrough in the studies of syzygies of graded modules
over the polynomial ring S = k[x1, . . . , xn]. In [1], M.Boij and J.Söderberg formu-
lated conjectures describing the positive cone of Betti diagrams of artinian modules
over the polynomial ring. The conjectures were subsequently proven by the work of
D.Eisenbud, J.Weyman, and the author in [3], and by Eisenbud and F.-O. Schreyer in
[4]. Fundamental in showing the conjectures is to show the existence of pure resolution
of artinian modules. A resolution is pure if it has the form

S(−d0)β0 ← S(−d1)β1 ← · · · ← S(−dn)βn

for a sequence d : d0 < d1 < · · · < dn. In [3] the existence of such resolutions of
graded artinian modules is shown for every sequence d when char k = 0. Moreover
the construction there is a quite explicit GL(n)-equivariant resolution. In particular
it is equivariant for the diagonal matrices and hence Zn-graded.

The beauty and naturality of this resolution is apparent from the construction.
It has recently been generalised by S.Sam and Weyman in [8] to wider classes of
equivariant resolutions. In this paper we consider the class of resolutions of Zn-
graded artinian modules which become pure when taking total degrees. We establish,
in a precise sense, that the equivariant resolution constructed in [3], or rather its
multigraded Betti diagram, is the fundamental resolution in this class.

Before stating the results more precisely, let us consider a simple example for
illustration. If F• is a resolution of a Zn-graded module, we have a twisted complex
F•(a) for a ∈ Zn. If β is the Betti diagram of F•, then F•(a) will have a Betti diagram
which we denote by β(a).

Example 0.1. The following example was worked out together with J.Weyman. Let
S = k[x1, x2] and suppose d1 − d0 = 2 and d2 − d1 = 3. The equivariant resolution
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has the following form where we have written the bidegrees of the generators below
the terms.

(1) S3

(2, 0)
(1, 1)
(0, 2)

← S5

(4, 0)
(3, 1)
(2, 2)
(1, 3)
(0, 4)

← S2

(4, 3)
(3, 4)

.

Let β1 be its bigraded Betti table. In [1, Remark 3.2] Boij and Söderberg also gave a
construction of pure resolutions in the case of two variables. These were resolutions
of a quotient of a pair of monomial ideals. For the type above the resolution had the
following bidegrees.

(2) S3

(4, 0)
(2, 2)
(0, 4)

← S5

(6, 0)
(4, 2)
(3, 3)
(2, 4)
(0, 6)

← S2

(6, 3)
(3, 6)

.

Let β2 be its Betti diagram. Then β2 is a linear combination of twists of β1 but
not vice versa : β2 = β1(2, 0) − β1(1, 1) + β1(0, 2). This indicates that in some way
the complex (1), or at least its Betti diagram, is more fundamental than that of the
complex (2).

Now let ei = di− di−1 and let e be the sequence of these differences. Consider Zn-
graded resolutions and their Betti diagrams, of artinian Zn-graded modules over the
polynomial ring S of dimension n. We shall be interested in those resolutions which
become pure when taking total degrees and for which the difference sequence of these
total degrees is e. Let L(e) be the Q-vector space generated by such Betti diagrams.
Our result is a complete description of this vector space when k has characteristic 0.
For the given e, consider the equivariant resolution constructed in [3], which has e as
difference vector of the total degrees, and let β (which of course depends on e) be its
Z-graded Betti diagram. Also let r be the greatest common divisor of e1, . . . , en. In
the case r = 1 our main result Theorem 1.4 says the following.

Theorem. The set of twisted diagrams β(a) where a ∈ Zn, constitute a basis for the
lattice of integral points in L(e). Moreover, up to a twist a, β is the unique Betti
diagram with this property.

In particular the β(a) where a ∈ Zn form a basis for the vector space L(e).

This theorem shows the canonical stature of the multigraded Betti diagram of the
equivariant resolution.

For arbitrary r the theorem holds true but with β being the Betti diagram of a
somewhat modified resolution. We consider the equivariant resolution with difference
sequence e′ where e = r · e′. By replacing xi by xr

i in this resolution corresponding
to e′, we obtain a resolution with difference sequence e, and now let β be the Betti
diagram of this complex. With this modification the above theorem holds for any r
(when k has characteristic 0).

The Betti diagrams of Zn-graded artinian modules fulfil a multigraded version of
the Herzog-Kühl equations. We then introduce the Q-vector space L′(e) generated
by Zn-graded diagrams (that need not arise from resolutions) whose total degrees are
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pure with difference vector e, and which fulfil the multigraded Herzog-Kühl equations.
Note that the field k is not involved in the definition of this linear space.

There is a natural injection L(e) → L′(e). With L(e) replaced by L′(e), the
theorem above also holds and is the essential part of our first main Theorem 1.2 (this
does not involve k). This statement will imply that L′(e) may be identified with the
Laurent polynomial ring Q{t1, . . . , tn}, and L(e) may be identified as an ideal I (k; e)
in this ring. When k has characteristic 0, what we say above shows that this ideal is
the whole ring. But when it has characteristic p it is an intriguing question, which
we do not know much about, to describe this ideal.

In the case where the resolutions are simply Z-graded instead of Zn-graded, one
may also consider the vector space L(e). This decomposes as a sum of one-dimensional
spaces L(d), one for each d with difference sequence equal to e. Taking the lattice of
integer points in L(d), it is conjectured in [3] that all sufficiently large diagrams may
be realised as Betti diagrams of resolutions. There are however positive diagrams
which are not realised by any resolution, see also [5] and [2] for more in this direction.
Our result implies, see Corollary 1.6, that in the Zn-graded case, if you take an integer
lattice point of L(d), a Zn-graded diagram, and form the Z-graded diagram from it by
taking total degrees, then such a diagram must be an integer multiple of the Z-graded
Betti diagram associated to the equivariant resolution.

Of course, even more interesting than the linear space L(e) is the positive ratio-
nal cone P (e) generated by the Betti diagrams of resolutions of Zn-graded artinian
modules which are pure with respect to total degrees and with difference sequence
e of the total degrees. It is considerably more difficult to describe this cone. In the
paper [7] by Boij and the author, we describe this cone completely in the case of two
variables, and give some examples in the case of three variables.

The organisation of the paper is as follows. In Section 1 we give basic facts and
notations. We note that multigraded Betti diagrams fulfil strong numerical criteria,
the multigraded versions of the Herzog-Kühl equations. We recall the form of the
equivariant complex, and state our main results concerning the basis of the linear
space L′(e), and that L(e) identifies with this space when k has characteristic 0. The
terms of the equivariant resolution are of the form S⊗k Sλ for a Schur module Sλ. In
Section 2 we study the associated Schur polynomials sλ of the terms in the resolution.
In order to establish our main result, we find the greatest common divisor of these
polynomials. In Section 3 we describe the structure of the linear space L′(e). From
this description and the results in Section 2 concerning Schur polynomials, we give
the (immediate) proofs of the main theorems describing L(e) and L′(e).

1. The linear space of multigraded Betti diagrams

In this section we give the basic facts and notations concerning multigraded Betti
diagrams. We describe the multigraded Herzog-Kühl equations. We recall the con-
struction of pure resolutions in [3]. In the end we give the statement of our main
result.

1.1. Betti diagrams and the Herzog-Kühl equations. Let S = k[x1, . . . , xn]
be the polynomial ring over a field k. We shall study Zn-graded free resolutions of
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artinian Zn-graded S-modules

F0 ← F1 ← · · · ← Fn.

For a multidegree a = (a1, a2, . . . , an) in Zn let |a| =
∑

ai be its total degree. We
shall be interested in the case that these resolutions become pure if we make them
singly graded by taking total degrees. So there is a sequence d0 < d1 < · · · < dn such
that

Fi = ⊕|a|=di
S(−a)βi,a .

The multigraded Betti diagram of such a resolution is the element

{βi,a}i = 0, . . . , n
a ∈ Zn

∈ ⊕ZnNn+1.

A way of representing a multigraded Betti diagram which will turn out very con-
venient for us, is to represent β = {βi,a} where i = 0, . . . , n and a ∈ Zn by Laurent
polynomials

Bi(t) =
∑
a∈Zn

βi,a · ta.

We call this the Betti polynomial of the diagram β or the resolution F•. We thus get
an (n + 1)-tuple of Laurent polynomials

B = (B0, B1, . . . , Bn).

Given a set of total degrees d : d0 < d1 < · · · < dn. Let L(d) in ⊕ZnQn+1 be the
linear subspace generated by multigraded Betti diagrams of artinian Zn-graded mod-
ules whose resolutions become pure of degrees d0, . . . , dn after taking total degrees.

Furthermore let ei = di − di−1. This gives the difference vector ∆d = e =
(e1, . . . , en). Most of the time it will be convenient to fix the difference vector in-
stead of the vector of total degrees. We therefore let L(e) = ⊕∆d=eL(d) be the linear
subspace of ⊕ZnQn+1 generated by all multigraded Betti diagrams which become pure
when considering total degrees, and where the difference vector of these total degrees
is e.

There are some natural restrictions on L(e) coming from the multigraded Herzog-
Kühl equations, drawn to my attention by M.Boij. If the resolution resolves the
module M , the multigraded Hilbert series of M is

hM (t) =

∑
i,a(−1)iβi,a · ta

Πn
k=1(1− ti)

.

If M is artinian, hM (t) is a polynomial and

(3)
∑
i,a

(−1)iβi,at
a = hM (t) ·Πn

k=1(1− ti).

For each multigraded a ∈ Zn and integer k = 1, . . . , n, let the projection πk(a) be
(a1, . . . , âk, . . . , an), the (n− 1)-tuple where we omit ak.

We obtain the multigraded analogs of the Herzog-Kühl (HK) equations by setting
tk = 1 in (3) for each k. This gives for every â in Zn−1 and k = 1, . . . , n an equation

(4)
∑

i,πk(a)=â

(−1)iβi,a = 0.
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Now let L′(e) be the linear space of elements in ⊕a∈ZnQn+1 which fulfil the multi-
graded HK-equations above, and become pure diagrams when taking total degrees,
and with the difference sequence of these total degrees equal to e. There is a nat-
ural injection L(e) → L′(e). Note that L′(e) does not depend on the field k, but
L(e) does. Our second main Theorem 1.4 states that this map is an isomorphism in
characteristic 0.

1.2. The equivariant resolution and Schur polynomials. In [3] the author
together with D.Eisenbud and J.Weyman constructed a GL(n)-equivariant pure res-
olution of an artinian module, whose form we now describe. For a partition λ =
(λ1, . . . , λn) let Sλ be the associated Schur module, which is an irreducible represen-
tation of GL(n) (see for instance [6]). The action of the diagonal matrices in GL(n)
gives a decomposition of Sλ as a Zn-graded vector space. The basis elements are
given by semi-standard Young tableau of shape λ with entries from 1, 2, . . . , n. All
the nonzero graded pieces in this decomposition have total degree |λ| =

∑n
i=1 λi. The

free module S ⊗k Sλ then becomes a free multigraded module where the generators
all have total degree |λ|.

Now given the difference vector e, let

λi =
n∑

j=i+1

(ej − 1)

and define a sequence of partitions for i = 0, . . . , n by

(5) α(e, i) = (λ1 + e1, λ2 + e2, . . . , λi + ei, λi+1, . . . , λn).

The construction in [3] then gives a GL(n)-equivariant resolution

(6) E(e) : S ⊗k Sα(e,0) ← S ⊗k Sα(e,1) ← · · · ← S ⊗k Sα(e,n)

of an artinian S-module. Note that our notation differs somewhat from [3]. There
the α’s depend on d while we use the difference vector as argument.

The Betti polynomial of S⊗kSλ will be the character of Sλ which is the Schur poly-
nomial sλ. For a matrix (aij) where i, j = 1, . . . , n, let |aij | denote the determinant
of the matrix. The Schur polynomial is then given by the expression

sλ =
|tλj+n−j

i |
|tn−j

i |
.

Note that the denominator here is D = Πi<j(tj − ti).

It is also interesting to note the following.

Lemma 1.1. For i = 0, . . . , n, the i’th Betti polynomial Bi associated to the equi-
variant complex E(e), is the maximal minor obtained by deleting column n− i in the
n× (n + 1) matrix 

1 ten
1 t

en+en−1
1 · · · t

en+en−1+···+e1
1

1 ten
2 t

en+en−1
2 · · · t

en+en−1+···+e1
2

...
1 ten

n t
en+en−1
1 · · · t

en+en−1+···+e1
n


divided by D = Πi<j(tj − ti).
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Proof. Let ρ = (n− 1, n− 2, · · · , 1, 0). The partition α(e, i) is then

(
n∑
1

ej ,
n∑
2

ej , . . . ,
n∑
i

ej ,
n∑

i+2

ej , . . . , 0)− ρ

and the associated Schur polynomial is then the minor we get in the matrix above by
omitting column n− i, and dividing by D. �

1.3. The linear space L(e). For a multigraded Betti diagram β = {βi,a} and a
multidegree t in Zn, we get the twisted Betti diagram β(−t) which in homological
degree i and multidegree a is given by βi,a−t. If F· is a resolution with Betti diagram
β, then F·(−t) is a resolution with Betti diagram β(−t).

Also let Fr : S → S be the map sending xi 7→ xr
i . Denote by S(r) the ring S with

the S-module structure given by Fr. Given any complex F· we may tensor it with
−⊗S S(r) and get a complex we denote by F

(r)
· . Note that if F· is pure with degrees

d, then F
(r)
· is pure with degrees r · d.

The following are our main results and shows that the numerical part of the equi-
variant complex, its multigraded Betti diagram, plays the fundamental role when
considering multigraded Betti diagrams of resolutions of artinian Zn-graded modules.

Theorem 1.2. Let r = gcd(e1, . . . , en) and let e = r · e′. The Betti diagrams
βE(e′)(r)(a) where a varies over Zn, form a basis for the lattice of integral points
in L′(e). Moreover βE(e′)(r) is, up to sign and twist with a ∈ Zn, the unique element
in L′(e) with this property.

In particular, the βE(e′)(r)(a) where a varies over Zn form basis for the vector space
L′(e).

The proof will be given in Section 3. The first part of Theorem 1.2 may also be
formulated in an equivalent way in terms of the associated (n + 1)-tuple of Betti
polynomials introduced at the end of Subsection 1.1.

Theorem 1.2′ Let s = (s0, . . . , sn) be the (n + 1)-tuple of Betti polynomials of
E(e′)(r). If B = (B0, . . . , Bn) is any (n + 1)-tuple of homogeneous Laurent poly-
nomials fulfilling the HK-equations (4), and where the difference vector of the total
degrees is e, then B = p · s for some homogeneous Laurent polynomial p.

Example 1.3. Letting B(1) and B(2) be the triples of Betti polynomials of the resolu-
tions (1) and (2) of the example in the introduction, we have

B(2) = (t21 − t1t2 + t22)B(1).

Letting Q{t1, . . . , tn} be the Laurent polynomial ring, we see that L′(e) is the free
module Q{t1, . . . , tn}·s. Identifying L′(e) with this Laurent polynomial ring we have:

Theorem 1.4. The image of the map L(e)→ L′(e) is an ideal in the Laurent poly-
nomial ring. When k has characteristic 0 or n = 2, this map is an isomorphism.

The ideal, which is the image of the above map, depends on e and may depend on
the field k; denote it I (k; e). In the case when k has characteristic p and n ≥ 3, it is
an interesting question to determine this ideal.
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Question 1.5. Is the ideal I (k; e) in the Laurent polynomial ring Q{t1, . . . , tn}
always nonzero? Is it always equal to the whole ring?

1.4. The associated diagrams when taking total degrees. On the rational rays
of pure Z-graded Betti diagrams, it is an open question what integral points come
from actual pure resolutions. The following says that in the case of diagrams arising
from Zn-graded resolutions of artinian modules over k[x1, . . . , xn], we will not get
more than what we get from the equivariant resolution. See however the following
remark.

Corollary 1.6. (Char. k = 0.) Let π be the Zn-graded Betti diagram of a Zn-graded
artinian module over k[x1, . . . , xn], whose resolution becomes pure when taking total
degrees. Then the associated Z-graded Betti diagram π is an integer multiple of the
associated Z-graded Betti diagram of the equivariant resolution, suitably twisted.

Proof. By Theorems 1.2 and 1.4, π is a linear combination
∑

i kiβE(ai) where all the
ai have the same total degree, say a. Let P be the (n+1)-tuple of Laurent polynomials
associated to π, and s the associated (n + 1)-tuple of Laurent polynomials associated
to the equivariant resolution. Then

P =
∑

i

kit
ais,

and we will show that all coefficients here are integers. Considering the first polyno-
mial in the tuple we have P0 =

∑
i kit

ais0. Since the highest weight vectors of Schur
modules have multiplicity one, the lexicographically largest term of s0 has coefficient
1. The coefficient of the highest lexicographic term of P0 must then equal ki for some
i, and so ki is an integer. Then P0 − kit

ais0 has integer coefficients. In this way we
may continue and get that all kj are integers. Taking total degress we get

π = (
∑

i

ki) βE(a).

�

Remark 1.7. On the ray generated by the diagram

τ =
(

1 2 − −
− − 2 1

)
,

the equivariant diagram is 3τ . The above says that it is not possible to realize 2τ
(or 5τ or 7τ) as coming from a Z3-graded diagram over the polynomial ring in three
variables. It is however possible to realize 2τ as coming from a Z4-graded diagram
over the polynomial ring S in four variables. Just take a general Z4-graded map :

S2
(0,0,0,0) ← S(1,0,0,0) ⊕ S(0,1,0,0) ⊕ S(0,0,1,0) ⊕ S(0,0,0,1).

Then 2τ will be the Z-graded diagram of the resolution of the cokernel. Note however
that the cokernel is not artinian.

2. Schur polynomials

We describe the greatest common divisor of the Betti polynomials occurring in the
equivariant pure resolutions. We do this in Theorem 2.9 and this is the only result of
this section that we use later on.
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2.1. Common divisors and group actions. Suppose a group G acts on the poly-
nomial ring k[t1, . . . , tn]. A polynomial p is semi-invariant if the groups acts as
g.p = µ(g)p for some character µ : G→ k.

Lemma 2.1. Let p and q be semi-invariant polynomials in k[t1, . . . , tn]. Then their
greatest common divisor is also a semi-invariant.

Proof. If b is the greatest common divisor, then g.b is also a common divisor. Hence
g.b = µ(g)b for some character µ. �

We now give two cases where one may actually conclude that if p and q are invari-
ants, their greatest common divisor is also an invariant. Recall the algebra morphism
Fr : S → S of Subsection 1.3.

Lemma 2.2. Let p and q be polynomials in k[t1, . . . , tn] and b their greatest common
divisor. For a natural number r, the greatest common divisor of p(r) and q(r) is b(r).

Proof. The group (Zr)n acts on the polynomial ring, and p(r) and q(r) are invariants.
Note that any semi-invariant polynomial for this group has the form m · c(r) for some
monomial m = xa1

1 · · ·xan
n where each 0 ≤ ai < r and this monomial is uniquely

determined by the character. Write p = m1p1 where m1 is a monomial and p1 does
not have any monomial as a factor, and similarly q = n1q1. Let mc(r) be the greatest
common divisor of p(r) and q(r) where m is a monomial and c(r) does not have a
monomial factor. Then m divides m

(r)
1 and n

(r)
1 , and m

(r)
1 /m and n

(r)
1 /m are semi-

invariants with the same character. If this character is non-trivial they will have a
common monomial factor. But this is impossible by choice of c. Hence m is also an
invariant. �

Lemma 2.3. The greatest common divisor of two symmetric polynomials in

k[t1, . . . , tn]
is also a symmetric polynomial.

Proof. The symmetric group Sn has two characters, the trivial one and the sign
of the permutation. If the greatest common divisor f is not symmetric then σ ·
f = (−1)sign(σ)f . Hence f is divisible by ti − tj for each pair i < j and so by
D = Πi<j(tj − ti). But then both p/D and q/D are semi-invariants with the sign
character, and so are again divisible by D. Thus f = D2f ′ where f ′ is a greatest
common divisor of p/D2 and q/D2. By induction on degree we may assume that f ′

is symmetric. �

2.2. Common divisors of Schur polynomials. For a polynomial f in k[t1, . . . , tn]
write

f = tN1 f + lower terms in t1 + tn1f

where the last term is the one with the smallest power of t1. The polynomials f and
f are in k[t2, . . . , tn]. Note that if f = gh then f = gh and f = gh. For a partition
λ = (λ1, . . . , λn) let

λ = (λ2, . . . , λn)(7)
λ = (λ1 − λn, . . . , λn−1 − λn).
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By the way Schur polynomials are derived from semi-standard Young tableaux, we
see that

sλ = sλ, sλ = (t2 · · · tn)λnsλ.

Example 2.4. Let n = 3 and λ = (4, 2, 1). Then

s4,2,1 = t41t
2
2t3 + t41t

2
3t2 + t42t

2
3t1 + t42t

2
1t3 + t43t

2
1t2 + t43t

2
2t1

+ t31t
3
2t3 + t31t

3
3t2 + t32t

3
3t1 + 2t31t

2
2t

2
3 + 2t32t

2
1t

2
2 + 2t33t

2
1t

2
2.

We get

s4,2,1 = t22t3 + t23t2 = s2,1

s4,2,1 = t42t
2
3 + t43t

2
2 + t32t

3
3 = (t2t3)s3,1

We shall use the notation

ξa(t1, t2) = ta−1
1 + ta−2

1 t2 + · · ·+ ta−1
2

which factors as Πω(t1 − ωt2) where the product is over all a’th roots of 1 except 1
itself. Note that this is equal to the Schur polynomial sa−1,0. Finally let

ρ = (n− 1, n− 2, . . . , 1, 0), ρ′ = (n− 2, n− 3, . . . , 1, 0).

Lemma 2.5. Let f be a symmetric polynomial having a non-trivial common factor
with srρ−ρ. Then spρ−ρ will divide f for some divisor p ≥ 2 of r.

Proof. We have

srρ−ρ = Πi<j(tri − trj)/Πi<j(ti − tj) = Πi<jξr(ti, tj).

Suppose, say, t1 − ωt2 is a common factor where ω 6= 1 is a primitive p’th root of
unity where p ≥ 2 divides r. Writing

f = Σa∈Zn−2ta3
3 · · · tan

n pa(t1, t2)

where the pa(t1, t2) are symmetric polynomials over Z, we see that t1−ωt2 is a factor
of each pa(t1, t2). Hence ξp(t1, t2) is a factor of f . Since f is symmetric, all ξp(ti, tj)
must divide f and so spρ−ρ will divide f . �

Lemma 2.6. If r is a common divisor of λ1, . . . , λn, write λ = r · λ′ for a partition
λ′. Then

sλ−ρ = s
(r)
λ′−ρ · srρ−ρ.

Proof. The following short argument was brought to our attention by J.Weyman and
S.Sam.

sλ−ρ =
|tλj

i |
|tn−j

i |
=

|tλj

i |
|tr(n−j)

i |
· |t

r(n−j)
i |
|tn−j

i |
= s

(r)
λ′−ρ · srρ−ρ.

�

Lemma 2.7. For any λ and r, the polynomials s
(r)
λ and srρ−ρ are relatively prime.
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Proof. If n = 2 then
s
(r)
λ1,λ2

= (t1t2)λ2r · s(r)
λ1−λ2,0.

So we must show that for any a, the polynomials s
(r)
a−1,0 and sr−1,0 are relatively

prime. These polynomials are
tar
1 − tar

2

tr1 − tr2
and

tr1 − tr2
t1 − t2

.

Since tar
1 − tar

2 does not have any multiple factors, these are relatively prime.
Let now n ≥ 3. If the polynomials in the statement have a greatest common

divisor f , then f is a common divisor of of s
(r)
λ = sλ

(r) = s
(r)

λ
and srρ−ρ = srρ′−ρ′ .

By induction the greatest common divisor of these is 1. If f is not 1 it has by Lemma
2.5 a factor of the form spρ−ρ for some p ≥ 2 dividing r. But then spρ′−ρ′ would be
a factor of f = 1. �

Lemma 2.8. Suppose λ− ρ is non-negative and r is relatively prime to at least one
λi − λi+1 where 1 ≤ i ≤ n− 1. Then sλ−ρ and srρ−ρ are relatively prime.

Proof. If n = 2, then
sλ1−1,λ2 = (t1t2)λ2sλ1−λ2−1,0.

This is relatively prime to sr−1,0, since ξp(t1, t2) and ξq(t1, t2) are relatively prime
when p and q are.

Let n ≥ 3. If sλ−ρ and srρ−ρ have a non-trivial common factor they have a common
factor spρ−ρ where p ≥ 2 divides r. Suppose that p is relatively prime to λ1 − λ2.
Then spρ−ρ, which is (t2 · · · tn)p−1 · spρ′−ρ′ , is a common factor of sλ−ρ and srρ−ρ

which are respectively

(t2 · · · tn)λn−1 · sλ−ρ′ and (t2 · · · tn)r−1 · srρ′−ρ′ .

Then spρ′−ρ′ would have to be a common factor of sλ−ρ′ and srρ′−ρ′ which by induc-
tion is not possible.

Now assume that p is relatively prime to λi − λi+1 for some 2 ≤ i ≤ n− 1. Then
spρ−ρ = spρ′−ρ′ is a common factor of sλ−ρ′ and srρ′−ρ′ . But by induction these two
latter polynomials are relatively prime, so again we get a contradiction. �

Now we are ready to prove the main result of this subsection.

Theorem 2.9. Let r be the greatest common divisor of e1, . . . , en. Then srρ−ρ is the
greatest common divisor of

(8) sα(e,0), sα(e,1), . . . , sα(e,n).

Letting ei = re′i we have
sα(e,i) = srρ−ρ · s(r)

α(e′,i).

Proof. 1. The last equation is by Lemma 2.6. To show the statement, it is by Lemma
2.2 enough to show that if the greatest common divisor r = 1, then the greatest
common divisor of the sα(e,i)’s is 1. We do this by induction on n. When n = 2, the
Schur polynomials are

s(e2−1,0), s(e1+e2−1,0), s(e1+e2−1,e2) = (t1t2)e2s(e1−1,0).
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The first polynomial is ξe2 and the last polynomial is ξe1 , and these are relatively
prime when e1 and e2 are.

2. Suppose then n ≥ 3. Let a be the greatest common divisor of e1, . . . , en−1 and
b the greatest common divisor of e2, . . . , en. Then a and b are relatively prime. Let
f be the greatest common divisor of the sα(e,i) for i = 0, . . . , n. It is symmetric by
Lemma 2.3. Also f does not have any variables as a factor. Otherwise it would be
divisible by t1t2 · · · tn but this does not go together with f dividing sα(e,0).

By Lemma 2.6 note that

sα(e,0) = sbρ−ρ · s(b)
α(e′,0)

where e′ = (∗, e2/b, . . . , en/b) (by Lemma 1.1 the last factor above does not depend
on the first coordinate of e′). Also

sα(e,n) = saρ−ρ · (t1 · · · tn)en · s(a)
α(e′′,0)

where e′′ = (∗, e1/a, . . . , en−1/a) (again by Lemma 1.1 the last factor above does
not depend on the first coordinate of e′′). Now f will be relatively prime to sbρ−ρ

and saρ−ρ. This is so since sbρ−ρ is relatively prime to sα(e,n) by Lemma 2.8 because
α(e, n)1−α(e, n)2+1 = e1, and since saρ−ρ is relatively prime to sα(e,0) by Lemma 2.8
because α(e, 0)n−1 − α(e, n)n + 1 = en. Hence we may conclude that f is a common
factor of s

(b)
α(e′,0) and s

(a)
α(e′′,0).

3. Now we consider f . It divides

s
(b)
α(e′,0) = sα(e′,0)

(b) = s
(b)

α(e′,0)
= s

(b)
α(e′,0)

where e′ = (∗, e3/b, . . . , en/b). But it also divides the sα(e,i) and for i ≥ 1 these are
by (5) and (7) equal to

sα(e,i), i ≥ 1

where e = (e2, . . . , en). By induction the greatest common divisor of these polynomi-
als is sbρ′−ρ′ . We may then by Lemma 2.7 conclude that f = 1. Since f is symmetric
we have

f = tm1 + lower terms in t1 + f

where f does not have any variable as a factor.

4. Now consider f . We know that f divides s
(a)
α(e′′,0). Note that

sα(e′′,0) = (t2 · · · tn)e
′′
n−1 · sα(e′′,0)

where e′′ = (∗, e1/a, . . . , en−2/a). Hence f divides s
(a)
α(e′′,0).

But f also divides sα(e,i) for i = 0, . . . , n− 1 which is

(t2 · · · tn)en−1 · sα(ê,i)

where ê = (e1, . . . , en−1). Hence f is a common factor of the sα(ê,i). By induction
their greatest common divisor is saρ′−ρ′ . By Lemma 2.7 we may now conclude that
f = 1. Since f is symmetric we may further conclude that f = 1. �
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3. The linear space of diagrams fulfilling the Herzog-Kühl equation

The theorem below provides a nice structural description of the Q-vector space
L′(e) of diagrams fulfilling the HK-equations (4). Recall again that L′(e) does not
depend on the field k. Using this theorem and Theorem 2.9, which gives the common
factor of the Schur polynomials, the proofs of our main Theorems 1.2 and 1.4 are
rather immediate.

Theorem 3.1. Let e = (e1, . . . , en) be a vector of positive integers.
a. There is an (n + 1)-tuple (A0, . . . , An) of homogeneous Laurent polynomials in

n variables, such that L′(e) has a basis consisting of all ta(A0, . . . , An) where a varies
in Zn.

b. The Ai’s have no common factors except for units (which are products of nonzero
constants and Laurent monomials ta), and are uniquely determined up to common
multiplication by a unit.

We prove this towards the end of this section. As a consequence of the above
theorem we can prove our main theorems.

Proof of Theorem 1.2. Let e = r·e′. The associated (n+1)-tuple of Betti polynomials
to the complex E(e′)(r) is ( when k has characteristic 0)

s = (s(r)
α(e′,0), . . . , s

(r)
α(e′,n)).

This will be a multiple of (A0, . . . , An) in Theorem 3.1 above. By Theorem 2.9 the
greatest common divisor of these Schur polynomials is 1. Hence we can take them to
be equal to the Ai’s. So if B is in L′(e), then B = ps for some Laurent polynomial p.
And if B is integral, it follows by the same argument as in Corollary 1.6, that p must
have integer coefficients, proving the first part of Theorem 1.2.

To prove the second part of Theorem 1.2, note that if A′ is another element in
L′(e) with the property of A, it must be γtaA for some rational number γ and a in
Zn. But when the coefficients of the polynomials in A′ are integers then γ must be
an integer, since the highest weight of the Schur modules Sα(e′,i) always occurs with
multiplicity one. And if γtaA is part of a lattice basis, only the values γ = ±1 can
occur. �

Proof of Theorem 1.4. If E is a resolution with Betti polynomials B, then E(a)
has Betti polynomials taB. Hence the image of L(e) → L′(e), where the latter is
Q{t1, . . . , tn} · s, identifies as an ideal in the Laurent polynomial ring.

If k has characteristic 0, the generator s is in the image so the map is an isomor-
phism. If n = 2 it is shown in [7], Proposition 3.1, that there exists resolutions with
Betti polynomials s, regardless of k. �

3.1. Properties of tuples fulfilling the HK-equations.

Proposition 3.2. Let B = (B0, . . . , Bn) be an homogeneous (n + 1)-tuple in L′(e).
a. If B0 = 0 then B = 0.

Assume B0 is nonzero. Let B0 = tb11 B∗
0+ lower terms in t1, where B′

0 is a Laurent
polynomial in t2, . . . , tn.

b. Then B1 = tb1+e1
1 B∗

0+ lower terms in t1.
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c. Each Bi is nonzero and the highest power of t1 occurring in Bi for i ≥ 1 is
tb1+e1
1 .

Proof. Note that the statement holds when n = 1. We shall then work further using
induction. Let u be the smallest index such that Bu 6= 0. Suppose Bu = tp1

1 B∗
u+

lower terms in t1. Let tp2
2 · · · tpn

n be a monomial in B∗
u. Since the total degree of Bu

is fixed equal to du, then in Bu this term occurs only with tp1
1 as the power of t1. So

let Bu = cptp1
1 · · · tpn

n + other terms, where the coefficient cp is nonzero.
The Herzog-Kühl equations give, by the projection omitting the first coordinate,

that some Bv, where v > u, will contain the monomial tp1+dv−du

1 tp2
2 · · · tpn

n (denoting
the degree of Bi by di).

Let A1 be the highest power of t1 occurring in any Bi. Write B = tA1
1 B′+ lower

terms in t1, where B′ is a nonzero homogeneous (n+1)-tuple in the variables t2, . . . , tn.
By what we have shown A1 ≥ p1 +dv−du. This gives A1 > p1 and the smallest u′ for
which B′

u′ is nonzero must be > u. By omitting B′
0 (which is zero) we may consider B′

as an n-tuple in t2, . . . , tn. Also we see that it will satisfy the Herzog-Kühl equations
for n-tuples, by looking at the equations satisfied by B when we always keep the first
coordinate equal to A1. By induction on n we get that B′

1 is nonzero and so the index
u must be 0. This proves a. and shows that b1 = p1. Also, by induction from c. we
get that each B′

i is nonzero, for i ≥ 1. Hence we get Bi nonzero for i ≥ 1, and we
also have shown B0 nonzero, proving the first part of c.

Let tq2
2 · · · tqn

n be a term occurring in B′
1. The Herzog-Kühl equations with projec-

tion omitting the first coordinate, gives that tA1−e1
1 tq2

2 · · · tqn
n occurs as a term in B0.

Hence A1 − e1 ≤ b1. Since we also have A1 ≥ b1 + e1 we get A1 = b1 + e1. Since the
B′

i are nonzero this also proves the second part of c.
Now if cptp1

1 · · · tpn
n is a term in B0 with p1 = b1, it follows by the HK-equations,

by the projection omitting the first coordinate, that t
p1+

Pv
i=1 ei

1 tp2
2 · · · tpn

n occurs as a
term in Bv for some v. Since A1 = b1 + e1 this only happens for v = 1 and with
coefficient cp, thus proving b. �

Lemma 3.3. Let p be a homogeneous Laurent polynomial and B a homogeneous
(n+1)-tuple. Then p·B fulfils the HK-equations if and only if B fulfils these equations.

Proof. The if direction is clear. So suppose p ·B fulfils the HK-equations but B does
not. So for some n − 1-tuple â the equation (4) is not fulfilled. By re-indexing we
may assume that â are the first coordinates in a, i.e. k = n in (4).

Also suppose â is the lexicographic largest (n−1)-tuple such that the HK-equations
for B do not hold. Write p = tλ1

1 tλ2
2 · · · tλn

n + lower terms for the lex order. Then we
see that for the (n− 1)-tuple

(λ1, λ2, . . . , λn−1) + (â1, â2, . . . , ân−1),

the HK-equations for p · B where we keep the first n − 1 coordinates fixed equal to
the (n− 1)-tuple above, does not hold. �

Corollary 3.4. If p is any Laurent polynomial, and B is any (n+1)-tuple of Laurent
polynomials, then B is in L′(e) if and only if p ·B is in L′(e). In particular L′(e) is
a submodule of Ln+1.

Proof. This is because L′(e) is a graded vector space. �
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Given a Laurent polynomial B0, let tc1
1 · · · tcn

n be the lexicographic largest term in
B0. For each i = 1, . . . , n let bi be the smallest integer such that

tc1
1 · · · t

ci−1
i−1 tbi

i t
di+1
i+1 · · · t

dn
n

is in B0 for some choice of di+1, . . . , dn. We define the valuation of B0 to be

(c1 − b1, c2 − b2, . . . , cn − bn).

Example 3.5. The valuation of the Schur polynomial s4,2,1 of Example 2.4 is (3, 1, 0).

The valuation is in Nn (note however that cn − bn is always zero). We now order
Nn lexicographically with 0 < 1 < 2 < · · · . We may note that Nn with this ordering
is a well-ordered set, i.e. each subset has a smallest element. When B is an (n + 1)-
tuple of Laurent polynomials with B0 nonzero, we define the valuation of B to be the
valuation of B0.

3.2. The abstract situation. To give a more transparent argument we will now
abstract our situation. Let L be an integral domain, and M a submodule of Ln+1.
Suppose we have a map v : M\{0} → T , which we call a valuation, to a well ordered
set T , subject to the following requirements.

1. If p is in L and b in M , then v(pb) ≥ v(b).
2. If b is in Ln+1 and p in L, then pb is in M if and only if b is in M .
3. Let a and b be in M . Then there exists nonzero p and q in L such that pa−qb

is either zero or has valuation < max{v(a), v(b)}.
Note that if L is the Laurent polynomial ring, M is L′(e), and T = Nn, by letting

v(B) be the valuation as defined in the end of the preceding subsection, it fulfils 1.
and 2. Note that v is welldefined since B0 is nonzero if B is nonzero.

We shall later show that it fulfils 3. But let us assume that we have a valuation as
above. We then get a stronger version of 3.

Lemma 3.6. Given a valuation v as above, and let a and b be nonzero in M . Then
there are nonzero p and q in L such that pa − qb is either zero or has valuation
< min{v(a), v(b)}.

Proof. Suppose v(a) ≤ v(b). We can then find nonzero p1 and q1 such that b′ =
q1b− p1a is zero or has valuation < v(b). If b′ is nonzero with valuation ≥ a, we may
continue and find nonzero p2 and q2 such that

b′′ = q2b
′ − p2a = q2q1b− (p1q2 + p2)a

is either zero or has valuation < v(b′). In this way we may continue. If the process
does not stop we have an infinite strictly decreasing chain of valuations, contrary to
T being well-ordered. Hence for some n we obtain

b(n) = qn · b(n−1) − pn · a
= qnqn−1 · · · q1 · b− p′na

(for some p′n) which has valuation < v(a), or is zero. Note that qnqn−1 · · · q1 is
nonzero. By 1. we must also have p′n nonzero. �

We are now ready to prove our structure result for valuations fulfilling requirements
1., 2. and 3.
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Proposition 3.7. Suppose L is a unique factorisation domain, and M is a submodule
of Ln+1 with a valuation fulfilling 1., 2., and 3. Then there is an a in M such that M
is the submodule of Ln+1 generated by a. Any a in M such that the greatest common
divisor of its components a1, . . . , an+1 is 1, is such a generator.

Proof. Given the first statement, the second is clear. Let a be a nonzero element
of M with the smallest possible valuation. Then we may write a = pa′ for some
polynomial p where the components of a′ has 1 as their greatest common divisor. By
axiom 1. v(a′) ≤ v(a) and so we may assume that a is a′. Now choose any nonzero b
in M . Then there are nonzero p and q such that qb−pa is either zero or has valuation
< v(a). The latter is not so by assumption, so qb = pa. We factor out any common
factors of p and q. But then by unique factorisation and construction of a we must
have q a unit. �

We will now show that the property 3. holds in our case when L is the Laurent
polynomial ring in n variables and M is the submodule L′(e).

Proposition 3.8. Let A and B be (n+1)-tuples in L′(e) and v the valuation defined
at the end of Subsection 3.1. Then there are nonzero Laurent polynomials p and q
such that pA− qB is zero or has valuation < max{v(A), v(B)}.

Proof. If n = 1 then A = (αta, αta+e1) and B = (βtb, βtb+e1) so this clearly holds.
Suppose n ≥ 2. By adjusting A and B by units, actually Laurent monomials tc,

we may assume that the leading terms of the first polynomials in A and B for the
lex order are their valuations. (In Example 3.5 this amounts to replacing s4,2,1 by
t−1
1 t−1

2 t−1
3 s4,2,1.) Let

A = ta1
1 A′ + lower terms in t1

B = tb11 B′ + lower terms in t1,

and assume b1 ≥ a1. Then the valuation of A′ is the projection π1(v(A)) and the
valuation of B′ is π1(v(B)). By induction on n and Lemma 3.6 we may find nonzero
p and q in variables t2, . . . , tn such that qB′ − pA′ is zero or has valuation less than
that of both π1(v(A)) and π1(v(B)). But then qB− tb1−a1

1 pA will have valuation less
than the maximum of v(A) and v(B). �

We may now finish off.

Proof of Theorem 3.1. Parts a. and b. follow from Proposition 3.7 by letting L be
the Laurent polynomial ring in the variables t1, . . . , tn, and v the valuation defined
at the end of Subsection 3.1. This is a valuation by Proposition 3.8. �

Acknowledgements

I thank M.Boij and J.Weyman for discussions concerning this paper.



958 GUNNAR FLØYSTAD

References

[1] M. Boij and J. Soderberg, Graded Betti numbers of Cohen-Macaulay modules and the multiplicity
conjecture, Journal of the London Mathematical Society 78 (2008), no. 1, 78–101.

[2] D. Eisenbud, D. Erman, and F. Schreyer, Beyond Numerics: The Existence of Pure Filtrations,

Arxiv preprint arXiv:1001.0585 (2010).
[3] D. Eisenbud, G. Fløystad, and J. Weyman, The existence of pure free resolutions, ArXiv preprint

arXiv:0709.1529 (2007). To appear in Annales de l’institut Fourier.

[4] D. Eisenbud and F. Schreyer, Betti numbers of graded modules and cohomology of vector bundles,
Journal of the American Mathematical Society 22 (2009), no. 3, 859–888.

[5] Erman, D., The semigroup of Betti diagrams, Algebra and Number Theory 3 (2009), no. 3,

341–365.
[6] W. Fulton and J. Harris, Representation theory: A first course, Springer (1991).

[7] B. M. and G. Fløystad, The positive cone of Betti diagrams of bigraded artinian modules of

codimension two, ArXiv preprint arXiv:1001.3238 (2010).
[8] S. Sam and J. Weyman, Pieri resolutions for classical groups, Journal of Algebra (2010).

Matematisk Institutt, University of Bergen, Johs. Brunsgt. 12, 5008 Bergen, Norway

E-mail address: gunnar@mi.uib.no


