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FORM–TYPE CALABI–YAU EQUATIONS

Jixiang Fu, Zhizhang Wang, and Damin Wu

Abstract. Motivated from mathematical aspects of the superstring theory, we intro-
duce a new equation on a balanced, hermitian manifold, with zero first Chern class.

By solving the equation, one will obtain, in each Bott–Chern cohomology class, a bal-

anced metric which is hermitian Ricci–flat. This can be viewed as a differential form
level generalization of the classical Calabi–Yau equation. We establish the existence and

uniqueness of the equation on complex tori, and prove certain uniqueness and openness

on a general Kähler manifold.

1. Setting and Equations

In the superstring theory, the internal space X3 is a complex three-dimensional
manifold with a non-vanishing holomorphic three-form Ω [15] (cf. [1]). The N = 1
supersymmetry requires [15, 10]

d(‖ Ω ‖ω ω2) = 0,

for some hermitian metric (form) ω. The above equation in mathematics says that
ω is a conformally balanced metric. (We recall that [14] a hermitian metric ω on an
n-dimensional complex manifold Xn is called balanced if ω satisfies that

d(ωn−1) = 0 on Xn. )

Note that [8, 6] the torus bundles over K3 surfaces and over complex abelian surfaces
twisted by two anti-self dual (1, 1)-forms admit a non-vanishing holomorphic three-
form Ω and a natural balanced metric ω0 such that

(1.1) ‖ Ω ‖ω0= 1.

As important examples in the superstring theory and non-Kähler complex geome-
try, the complex manifolds #k(S3 × S3) for any k ≥ 2 [4, 12] also admit a non-
vanishing holomorphic three-form [4] and a balanced metric [5]. Moreover, we know
that #k(S3 × S3) satisfies the ∂∂̄–lemma [4]. A natural question to ask is, whether
#k(S3 × S3) admits a balanced metric ω0 such that (1.1) holds. Such a metric ω0, if
exists, will play an important role in the superstring theory and hermitian geometry.

More generally, let Xn (n ≥ 3) be a complex n-dimensional manifold with a non-
vanishing holomorphic n-form Ω and with a balanced metric ω0. We want to look for
a balanced metric ω such that

(1.2) ωn−1 = ωn−1
0 +

√
−1
2

∂∂̄ϕ,

for some real (n− 2, n− 2)–form ϕ, and such that

(1.3) ‖Ω‖ω = some positive constant C0.
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In other words, we would like to find solutions of (1.3) in the cohomology class
[ωn−1

0 ] ∈ Hn−1,n−1
BC (X). Here Hp,q

BC(X) stands for the Bott–Chern cohomology:

Hp,q
BC(X) =

(ker ∂ ∩ ker ∂̄) ∩ Ωp,q(X)
im ∂∂̄ ∩ Ωp,q(X)

.

One can certainly normalize the constant C0 in (1.3) to be 1, as in (1.1). However, it
may be more convenient to set

C0 =
(∫

X

ωn
)− 1

2

,

from the equation point of view. As in the Kähler case, equation (1.3) is equivalent
to the equation

(1.4)
detω
detω0

=
‖ Ω ‖2ω0

‖ Ω ‖2ω
= ef

∫
X
ωn∫

X
ωn0

.

Here we denote

ef = ‖Ω‖2ω0

∫
X

ωn0 ,

and denote

detω = det(gij̄), if ω =
√
−1
2

n∑
i,j=1

gij̄dzi ∧ dz̄j .

At the moment, we write

ωn−1
0 +

√
−1
2

∂∂̄ϕ =
(√−1

2

)n−1

(n− 1)!

·
n∑

i,j=1

(Ψϕ)ij̄s(i, j)dz1 ∧ dz̄1 ∧ · · · ∧ d̂zi ∧ · · · d̂z̄j ∧ · · · ∧ dzn ∧ dz̄n.

Here the sign function s(i, j) is equal to 1 if i ≤ j, and is equal to −1 if i > j. By
(1.2) and

ωn−1 =
(√−1

2

)n−1

(n− 1)!

· (detω)
n∑

i,j=1

gij̄s(i, j)dz1 ∧ dz̄1 ∧ · · · ∧ d̂zi ∧ · · · d̂z̄j ∧ · · · ∧ dzn ∧ dz̄n,

we have
(detω)gij̄ = (Ψϕ)ij̄ , for all 1 ≤ i, j ≤ n.

Hence,

detω =
{
det
[
(Ψϕ)ij̄

]} 1
n−1 =

{
det
[
ωn−1

0 + (
√
−1/2)∂∂̄ϕ

]} 1
n−1 .

Here det[ωn−1
0 + (

√
−1/2)∂∂̄ϕ] stands for the determinant of n × n matrix of its

coefficients. Thus, equation (1.4) is equivalent to

(1.5)
det[ωn−1

0 + (
√
−1/2)∂∂̄ϕ]

detωn−1
0

= e(n−1)f

(∫
X
ωn∫

X
ωn0

)n−1

.
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We call the above equation the form-type Calabi–Yau equation. Clearly, by integrat-
ing (1.4), we obtain a compatibility condition

(1.6)
∫
X

efωn0 =
∫
X

ωn0 .

Let us denote by P(ω0) the set of all smooth real (n− 2, n− 2)–forms ψ such that

(1.7) ωn−1
0 +

√
−1
2

∂∂̄ψ > 0 on X.

The question is therefore reduced to find, for a given f ∈ C∞(X) with (1.6), a smooth
real (n− 2, n− 2)–form ϕ ∈ P(ω0) satisfying (1.5).

Here is the geometric interpretation of our equation. Let us briefly recall some
definitions related to the hermitian connection. We follow [9]. Let R be the curvature
of hermitian connection with respect to metric ω. Then,

Rij̄kl̄ = −
∂2gij̄
∂zk∂z̄l

+
n∑

p,q=1

gpq̄
∂giq̄
∂zk

∂gpj̄
∂z̄l

.

We set

Rkl̄ =
n∑

i,j=1

gij̄Rij̄kl̄,

and associate with it a real (1, 1)-form given by

Rich =
√
−1

n∑
k,l=1

Rkl̄dzk ∧ dz̄l.

We call Rich the Ricci curvature of the hermitian connection. Clearly,

Rich =
√
−1∂̄∂ log(detω).

So ‖ Ω ‖ω= C0 is equivalent to the Ricci curvature Rich = 0.
On the other hand, we can also define the Ricci form Rics of the spin connection

(i.e. Bismut connection) on a hermitian manifold. The relation between the two Ricci
forms is given by [11]

Rics = Rich + dd∗ω.

Here d∗ is the adjoint operator of d with respect to the metric ω. So when ω is bal-
anced, Rics = Rich, and hence, ‖ Ω ‖ω= C0 is also equivalent to the Ricci curvature
of the spin connection is zero.

In particular, if ω0 is Kähler and let ϕ to be

either u

n−2∑
i=0

(
n− 1
i

)(√−1
2

∂∂̄u
)n−i−2 ∧ ωi0, or

−
√
−1
2

∂u ∧ ∂̄u ∧
n−3∑
i=0

(
n− 1
i

)(√−1
2

∂∂̄u
)n−i−3 ∧ ωi0,

then (1.5) is reduced to
det(ω0 +

√
−1
2 ∂∂̄u)

detω0
= ef .
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This is the classic equation in the Calabi Conjecture on c1(X) = 0, which was settled
by Yau [16].

It seems to us that a form-type equation such as (1.5) has not yet been studied.
To begin with, we consider the form-type Calabi–Yau equation on Tn, the complex
n-torus. Let (z1, . . . , zn) be the complex coordinates on Tn induced from Cn. Then,
any non-vanishing holomorphic n-form Ω on Tn is equal to

dz1 ∧ · · · ∧ dzn
up to multiplying a nonzero constant. We fix such an n-form Ω. By a constant
form or a constant metric on Tn we mean a differential form or a metric on Tn with
constant coefficients. Let ω0 be a balanced metric on Tn. As far as the Bott–Chern
cohomology class of ωn−1

0 is concerned, we can assume, without loss of generality,
that ω0 is a constant metric on Tn. This is due to the fact that any closed differential
form on Tn is cohomologous to a constant form, and the ∂∂̄–Lemma. Our result is
as follows:

Theorem 1. Let Ω be a non-vanishing holomorphic n-form on Tn (n ≥ 3), and ω0 be
a constant metric on Tn such that ‖Ω‖ω0 = 1. We denote by C0 a positive constant.

(1) If C0 ≤ 1, then for any metric ω on Tn such that [ωn−1] = [ωn−1
0 ] ∈

Hn−1,n−1
BC (Tn) and that ‖Ω‖ω = C0, we must have C0 = 1 and

ω = ω0.

(2) For each C0 > 1, there exists a metric ω on Tn such that [ωn−1] = [ωn−1
0 ]

and that
‖Ω‖ω = C0.

One can see from Theorem 1 that the normalization constant C0 plays a role here.
When C0 ≤ 1, the theorem tells us that the Calabi–Yau metric is the unique canonical
balanced metric. It is the second case, C0 > 1, that marks the difference between a
form-type equation and a usual function-type equation. In this case, we establish the
existence of a desired balanced metric which is not Calabi–Yau. We further generalize
the uniqueness part, Theorem 1 (1), to an arbitrary Calabi–Yau manifold:

Theorem 2. Let X be a compact Kähler manifold with a non-vanishing holomorphic
n-form Ω. Let ω0 be a Calabi–Yau metric such that ‖Ω‖ω0 = 1. Then, for any
balanced metric ω on X such that ωn−1 represents the Bott–Chern cohomology class
of ωn−1

0 and such that ‖Ω‖ω = C0 ≤ 1, we have

ω = ω0.

For a general case that ω0 is non-Kähler, one can use the continuity method to
solve (1.5). As an initial step we consider the openness. Here we have to assume X
to be a Kähler manifold, endowed with a Kähler metric η. For nonnegative integers k
and m, and a real number 0 < α < 1, we denote by Ck,α(Λm,m(X)) the Hölder space
of real (m,m)–forms on X, and in particular, Ck,α(Λ0,0(X)) ≡ Ck,α(X). Let

Fk,α(X) =
{
g ∈ Ck,α(X);

∫
X

eg ωn0 =
∫
X

ωn0

}
.



FORM–TYPE CALABI–YAU EQUATIONS 891

Then Fk,α(X) is a hypersurface in the Banach space Ck,α(X). Let ω0 be a Hermitian
metric on X, and P(ω0) be the set given by (1.7). We define a map M : P(ω0) ∩
Ck+2,α(Λn−2,n−2(X)) → Fk,α(X) by

M(ψ) = log
(
ωnψ
ωn0

)
− log

(∫
X
ωnψ∫

X
ωn0

)
,

where by abuse of notation, P(ω0) ∩ Ck+2,α(Λn−2,n−2(X)) stands for

{ψ ∈ Ck+2,α(Λn−2,n−2(X));ωn−1
0 + (

√
−1/2)∂∂̄ψ > 0},

and for each ψ ∈ P(ω0)∩Ck+2,α(Λn−2,n−2(X)), we denote by ωψ the positive (1, 1)–
form on X such that

ωn−1
ψ = ωn−1

0 + (
√
−1/2)∂∂̄ψ.

Note that equation (1.5) can be written as

M(ϕ) = f.

Theorem 3. Let X be an n-dimensional Kähler manifold (n ≥ 3), ω0 be a Hermitian
metric on X, k ≥ n + 4 be an integer, and 0 < α < 1 be a real number. Given
f ∈ Fk,α(X), suppose that ϕ ∈ P(ω0) ∩ Ck+2,α(Λn−2,n−2(X)) satisfies

M(ϕ) = f.

Then, there is a positive number δ, such that for any g ∈ Fk,α(X) with ‖g−f‖Ck,α(X) ≤
δ, there exists a function ψ ∈ P(ω0) ∩ Ck+2,α(Λn−2,n−2(X)) such that

M(ψ) = g.

The rest of the paper is organized as follows: In Section 2, we first show Theorem 1
(1). Next, we prove Theorem 1 (2) by explicitly constructing a smooth solution
ϕ ∈ P(ω0) for the form-type equation. These arguments make use of special properties
such as the flat structure of Tn. We prove Theorem 2 at the end of Section 2. In this
respect, we essentially present two proofs for the uniqueness on Tn, as they may have
interests of their own. In Section 3, we prove Theorem 3 in full details, where one
can see the compatibility condition is crucial. Moreover, the approach differs from
the standard one in that, the special (n− 2, n− 2)–forms (uηn−2) are taken, and also
in the argument of Proposition 15 and Proposition 16.

2. Uniqueness and Existence

In this section, we adopt the following index convention, unless otherwise indicated.
For an (n− 1, n− 1)–form Θ, we denote

Θ =
(√−1

2

)n−1

(n− 1)!

·
∑
p,q

s(p, q)Θpq̄dz
1 ∧ dz̄1 · · · ∧ d̂zp ∧ dz̄p ∧ · · · ∧ dz̄q ∧ d̂z̄q ∧ · · · ∧ dzn ∧ dz̄n,

in which

(2.1) s(p, q) =

{
−1, if p > q;
1, if p ≤ q.
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Here we introduce the sign function s so that,

dzp ∧ dz̄q ∧ s(p, q)dz1 ∧ dz̄1 · · · ∧ d̂zp ∧ dz̄p ∧ · · · ∧ dz̄q ∧ d̂z̄q ∧ · · · ∧ dzn ∧ dz̄n

= dz1 ∧ dz̄1 ∧ · · · ∧ dzn ∧ dz̄n, for all 1 ≤ p, q ≤ n.

And, if the matrix (Θpq̄) is invertible, we denote by (Θpq̄) the transposed inverse of
(Θpq̄), i.e., ∑

l

Θil̄Θ
jl̄ = δij .

In the following, we may also use the summation convention on repeating indices.

2.1. Torus case. Throughout this subsection, we consider X = Tn, the complex
n-torus with n ≥ 3. We shall prove Theorem 1. Note that the first part of Theorem 1
follows immediately from Lemma 4 below. We shall prove the second part in Lemma 7.

Lemma 4. Let ω0 be a constant metric on Tn. Suppose that there exists an (n −
2, n− 2)–form ϕ ∈ P(ω0) and a constant 0 < C0 ≤ 1 such that

(2.2) C0 det
(
ωn−1

0 +
√
−1
2

∂∂̄ϕ

)
= detωn−1

0 .

Then, we have C0 = 1 and √
−1∂∂̄ϕ = 0.

We need two propositions to derive Lemma 4. Let (z1, . . . , zn) be the complex coor-
dinates on Tn induced from Cn. The corresponding real coordinates are (x1, . . . , x2n).
Here we denote

(2.3) zi = x2i−1 +
√
−1x2i, and hence,

∂

∂zi
=

1
2

(
∂

∂x2i−1
−
√
−1

∂

∂x2i

)
,

for all 1 ≤ i ≤ n. We choose the following volume form on Tn:

dV = (
√
−1/2)ndz1 ∧ dz̄1 ∧ · · · ∧ dzn ∧ dz̄n.

Here are two elementary facts:

Proposition 5. For any smooth complex function f defined on Tn, we have∫
Tn

∂2f

∂zi∂zj
dV = 0, for all i, j = 1 · · · , n.

Proof. We write

f = f1 +
√
−1f2,

where f1, f2 are real functions on Tn. Then,

4
∂2f1
∂zi∂zj

=
∂2f1

∂x2i−1∂x2j−1
− ∂2f1
∂x2i∂x2j

−
√
−1
(

∂2f1
∂x2i∂x2j−1

+
∂2f1

∂x2i−1∂x2j

)
.

We have a similar equation for f2. And note that

dV = dx1 ∧ · · · ∧ dx2n.

The result then obviously follows from the fundamental theorem of calculus. �
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Proposition 6. Let B = (bij̄) be a hermitian matrix on Tn, in which each entry bij̄
is a complex smooth function defined on Tn such that∫

Tn

bij̄ dV = 0.

Assume that I +B is everywhere positive definite, and there is a constant c ≥ 1 such
that

det(I +B) = c on Tn, where I ≡ (δij̄).

Then, c = 1 and B = 0.

Proof. Since I +B is positive definite, we have
tr(I +B)

n
= n
√

det(I +B) = n
√
c on Tn.(2.4)

Integrating (2.4) over Tn, we obtain∫
Tn

dV =
∫
Tn

tr(I +B)
n

dV ≥ n
√
c

∫
Tn

dV.

Thus, c = 1, and the inequality of (2.4) is in fact an equality. That is,

tr(I +B)
n

= n
√

det(I +B) = 1, on Tn.(2.5)

Now at an arbitrary point x in Tn, we choose a unitary matrix U such that

UBŪT = dial{λ1, · · · , λn}.
Then (2.5) is equivalent to that

1 + λ1 = 1 + λ2 = · · · = 1 + λn = 1.

This implies that

λi = 0, for all i = 1, . . . , n.

Therefore, B = 0 at x. Since x is arbitrary, this finishes the proof. �

Let us now proceed to prove Lemma 4:

Proof of Lemma 4. Let

ωn−1
0 =

(√−1
2

)n−1

(n− 1)!

·
∑
p,q

Ψpq̄s(p, q)dz1 ∧ dz̄1 ∧ · · · ∧ d̂zp ∧ · · · ∧ · · · ∧ d̂z̄q ∧ · · · ∧ dzn ∧ dz̄n.

Here (Ψij̄) is a constant, positive definite, hermitian matrix, and s(p, q) is given by
(2.1). We can then take a non-degenerate constant matrix A such that

A(Ψij̄)Ā
T = I.(2.6)

We define a hermitian matrix Fϕ = ((Fϕ)ij̄) on Tn by
√
−1
2

∂∂̄ϕ =
(√−1

2

)n−1

(n− 1)!

·
∑
p,q

(Fϕ)pq̄s(p, q)dz1 ∧ dz̄1 ∧ · · · ∧ d̂zp ∧ · · · ∧ · · · ∧ d̂z̄q ∧ · · · ∧ dzn ∧ dz̄n.
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It follows from Proposition 5 that∫
Tn

(Fϕ)ij̄dV = 0.

Then, by (2.2) and (2.6),

det(I +AFϕĀ
T ) = C−1

0 .

Since ϕ ∈ P(ω0), we obtain

I +AFϕĀ
T > 0 on Tn.

Applying Proposition 6 yields that C0 = 1, and

AFϕĀ
T = 0,

and therefore,
Fϕ = 0.

�

The following lemma establishes the second part of Theorem 1. By a linear transfor-
mation, if necessary, we can assume the constant metric ω0 on Tn to be the standard
metric:

ω0 =
√
−1
2
(
dz1 ∧ dz̄1 + · · ·+ dzn ∧ dz̄n

)
.

Lemma 7. For any 0 < δ < 1, there exists a smooth (n− 2, n− 2)–form ϕ ∈ P(ω0)
such that

det
(
ωn−1

0 +
√
−1
2

∂∂̄ϕ

)
= δ detωn−1

0 .(2.7)

Proof of Lemma 7. We set

ϕ = (n− 1)!
(√

−1
2

)n−2 [
u(z1, z̄1)dz3 ∧ dz̄3 ∧ · · · ∧ dzn ∧ dz̄n

+ v(z1, z̄1)dz2 ∧ dz̄2 ∧ d̂z3 ∧ d̂z̄3 ∧ dz4 ∧ dz̄4 ∧ · · · ∧ dzn ∧ dz̄n
]
.

(2.8)

Here u, v are two real, smooth, periodic functions to be determined, with 1 + ∆u > 0
and 1 + ∆v > 0. Since u and v depend only on the first variable, the equation (2.7)
becomes that

(2.9)
(
1 +

∂2u

∂z1∂z̄1

)(
1 +

∂2v

∂z1∂z̄1

)
= δ.

This reduces to an equation on T 1. Note that

∂2u

∂z1∂z̄1
= ∆u,

∂2v

∂z1∂z̄1
= ∆v,

where ∆ is the standard Laplacian on T 1, i.e., the Laplacian associated with ω0|T 1 .
We can rewrite (2.9) as

(2.10) 1 + ∆u =
δ

1 + ∆v
.
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Our strategy is to fix a function v and then solve (2.10) for a function u. Note that
for a fixed v, the necessary and sufficient condition to solve (2.10) is that

(2.11)
∫
T 1
ω0|T 1 = δ

∫
T 1

ω0|T 1

1 + ∆v
.

Now let

(2.12) v = −4k sin
(z1 + z̄1

2

)
= −4k sinx1,

where 0 < k < 1 is a constant to be determined, and the change of coordinates is
given by (2.3). Then, (2.11) becomes that∫

T 1
dx1 ∧ dx2 =

∫
T 1

δ

1 + k sinx1
dx1 ∧ dx2,

that is, ∫ 2π

0

δ

1 + k sinx1
dx1 = 2π.(2.13)

It follows from the proposition below that, for each 0 < δ < 1, there exists a real
number 0 < k < 1, depending only on δ, such that (2.13) holds. Therefore, for v
given by (2.12), there is a smooth function u, unique up to a constant, satisfies (2.10).
Also, by the construction,

1 + ∆v > 0, 1 + ∆u > 0.

Thus, by (2.8) we obtain an (n− 2, n− 2)–form ϕ ∈ P(ω0) which solves (2.7). �

Proposition 8. Let

Z(k) =
1
2π

∫ 2π

0

1
1 + k sinx

dx, for all 0 ≤ k < 1.(2.14)

Then, for any 0 < δ < 1, there exists a unique number 0 < kδ < 1 such that

Z(kδ) = δ−1.

Proof. Clearly, the function Z is smooth on 0 ≤ k < 1. Note that Z(0) = 1, and that

Z(k) ≥ 1
2π

∫ 2π

3π/2

dx

1 + k sinx

=
1

π
√

1− k2
arctan

√
1 + k

1− k
→ +∞, as k → 1−.

The existence then follows from the intermediate value theorem in calculus. The
uniqueness is due to the monotonicity of Z on [0, 1), which is readily seen by verifying
Z ′(0) = 0 and Z ′′(k) > 0 on [0, 1). �

Lemma 7 can be easily generalized to the case of the product of a compact hermitian
manifold with T k, k ≥ 3. See the corollary below:
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Corollary 9. Let Mn = Nn−k × T k, k ≥ 3, where (Nn−k, ωN ) is an (n − k)-
dimensional compact hermitian manifold. We denote ω = ωN + ω0, where ω0 is a
constant metric on T k. Then, for any 1 > δ > 0, there exists a smooth (n−2, n−2)–
form ψ ∈ P(ω) on M such that

det
(
ωn−1 +

√
−1
2

∂∂̄ψ

)
= δ det(ωn−1).

Proof. Let
ψ = ωn−kN ∧ ϕ,

where ϕ is the (k−2, k−2)–form on T k obtained by Lemma 7, i.e., ϕ ∈ P(ω0) satisfies
that such that

det
(
ωk−1

0 +
√
−1
2

∂∂̄ϕ

)
= δ det(ωk−1

0 ).

Then, obviously ψ satisfies the requirement. �

2.2. Kähler case. In this subsection, we shall prove Theorem 2. Observe that it is
sufficient to prove the following lemma.

Lemma 10. Let (X,ω0) be a compact Kähler manifold. Consider

det
(
ωn−1

0 +
√
−1
2

∂∂̄ϕ

)
= C1 detωn−1

0 ,

where ϕ ∈ P(ω0), and C1 > 0 is a constant. If C1 ≥ 1, then
√
−1∂∂̄ϕ = 0.

Proof. By a direct calculation, since ω0 is Kähler, we have∫
X

(ωn−1
0 )ij̄

(√−1
2

∂∂̄ϕ
)
ij̄
ωn0 = n

∫
X

ω0 ∧
(√−1

2
∂∂̄ϕ

)
= 0.

Similar to the torus case, we apply the arithmetic–geometric mean inequality to obtain

C
1/n
1 =

[
det(ωn−1

ϕ )

det(ωn−1
0 )

]1/n

≤ 1 + (ωn−1
0 )ij̄

(√−1
2

∂∂̄ϕ
)
ij̄
.

(2.15)

Integrating over X with respect to ω0 and using first equality yields that

C
1/n
1

∫
X

ωn0 ≤
∫
X

ωn0 .

This shows that C1 = 1 and we must have a pointwise equality in (2.15). This forces
that √

−1
2

∂∂̄ϕ = 0.

�
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3. Openness

Let (X, η) be a Kähler manifold, and ω0 be a Hermitian metric on X. Given
f ∈ C∞(X), we would like to study the solution ϕ ∈ P(ω0) of the following equation

(3.1)
ωnϕ
ωn0

=
ef

V

∫
X

ωnϕ.

Here ωϕ is a positive (1, 1)–form on X such that

ωn−1
ϕ = ωn−1

0 + (
√
−1/2)∂∂̄ϕ,

and

V =
∫
X

ωn0 .

Equation (3.1) is the same as (1.4), which is equivalent to the form-type Calabi–Yau
equation (1.5). A compatibility condition for (3.1) is∫

X

efωn0 = V.

In what follows, we fix k to be an integer greater than n+3, and fix a real number
α with 0 < α < 1. We denote by Ck,α(X) the usual Hölder space of real-valued
functions on X. Recall that

Fk,α(X) =
{
g ∈ Ck,α(X);

∫
X

eg ωn0 = V

}
,

which is a hypersurface in the Banach space Ck,α(X). For any ψ contained in the
intersection of P(ω0) and Ck+2,α(Λn−2,n−2(X)),

M(ψ) ≡ log
ωnψ
ωn0

− log
(

1
V

∫
X

ωnψ

)
∈ Fk,α(X).

By the map M , equation (3.1) can be rewritten as

M(ϕ) = f.

To prove Theorem 3, we first compute the linearization of M .

Proposition 11. Let G(ϕ) = ωnϕ for all ϕ ∈ P(ω0), and denote by Gϕ the Fréchet
derivative of G at ϕ. Then, given ϕ ∈ P(ω0), we have

Gϕ(ψ) =
n
√
−1

2(n− 1)
∂∂̄ψ ∧ ωϕ,

for all ψ ∈ Ck+2,α(Λn−2,n−2(X)).
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Proof. For any real (n− 2, n− 2)–form ψ,

Gϕ(ψ) =
d

ds

(
ωnϕ+sψ

)∣∣∣∣
s=0

= nωn−1
ϕ ∧ d

ds
(ωϕ+sψ)

∣∣∣∣
s=0

(3.2)

=
d

ds
(ωn−1
ϕ+sψ)

∣∣∣∣
s=0

∧ ωϕ + ωn−1
ϕ ∧ d

ds
(ωϕ+sψ)

∣∣∣∣
s=0

= (
√
−1/2)∂∂̄ψ ∧ ωϕ + ωn−1

ϕ ∧ d

ds
(ωϕ+sψ)

∣∣∣∣
s=0

.(3.3)

Comparing (3.2) with (3.3), we obtain that

Gϕ(ψ) =
n

n− 1
(
√
−1/2)∂∂̄ψ ∧ ωϕ.

�

Corollary 12. For any ϕ ∈ P(ω0), the Fréchet derivative of M at ϕ is given by

Mϕ(ψ) =
n(
√
−1/2)∂∂̄ψ ∧ ωϕ
(n− 1)ωnϕ

−
n
∫
X

(
√
−1/2)∂∂̄ψ ∧ ωϕ

(n− 1)
∫
X
ωnϕ

,

for all ψ ∈ Ck+2,α(Λn−2,n−2(X)).

Next, we recall the Local Surjectivity Theorem (see [13, p. 175 and p. 108], for
example).

Theorem (Local Surjectivity Theorem). Let E and F be Banach manifolds, and
U ⊂ E be an open subset. If F : U → F is a C1 map, and Fξ ≡ DF(ξ) is onto from
the tangent space TξE to the tangent space TF(ξ)F , then F is locally onto; that is, there
exist open neighborhoods U1 of ξ and V1 of F(ξ) such that F|U1 : U1 → V1 is onto.

Thus, to show Theorem 3, it suffices to show that the linearization Mϕ is surjec-
tive from Ck+2,α(Λn−2,n−2(X)) to TfFk,α(X), which denotes the tangent space of
Fk,α(X) at f . Now let us introduce the space

Ek,α(X) =
{
h ∈ Ck,α(X);

∫
X

hωnϕ = 0
}
.

Note that Ek,α(X) is itself a Banach space, as a closed subspace in Ck,α(X). There
is another point of view: We can define an equivalence relation on the elements in
Ck,α(X) by

h ∼ g if and only if h− g ≡ some constant.
In this regard, Ek,α(X) = Ck,α(X)/ ∼. Observe that

TfFk,α(X) = Ek,α(X).

To prove the surjectivity of Mϕ, we consider a special class of the (n − 2, n − 2)–
forms, that is,

(3.4) ψ = uηn−2, where u ∈ Ek+2,α(X).

We recall that η is the Kähler metric on X. For simplicity we denote

L(u) = Mϕ(uηn−2).
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Then, by Corollary 12,

(3.5) Lu =
n(
√
−1/2)∂∂̄u ∧ ηn−2 ∧ ωϕ

(n− 1)ωnϕ
−
n
∫
X

(
√
−1/2)∂∂̄u ∧ ηn−2 ∧ ωϕ
(n− 1)

∫
X
ωnϕ

.

We shall prove the following result:

Lemma 13. Let k ≥ n + 4, and 0 < α < 1. For any h ∈ Ek,α(X), there exists a
unique function u ∈ Ek+2,α(X) satisfying that

(3.6) Lu = h.

Lemma 13 implies that Mϕ : Ck+2,α(Λn−2,n−2(X)) → Ek,α(X) is surjective, and
hence, Theorem 3 follows.

The rest of this section is devoted to prove Lemma 13. We denote by W k,p(Ω, ωϕ)
the usual Sobolev space with respect to ωϕ on a domain Ω in X. In the rest of this
section, we may denote W k,p(Ω) = W k,p(Ω, ωϕ) for simplicity; furthermore, when
Ω = X, we abbreviate W k,p = W k,p(X) = W k,p(X,ωϕ). Notice that W 0,2(X) ≡
L2(X).

We introduce the following spaces:

H =
{
v ∈W 1,2(X);

∫
X

v ωnϕ = 0
}
,

and

L =
{
v ∈ L2(X);

∫
X

v ωnϕ = 0
}
.

Clearly, H and L are Hilbert spaces, as closed subspaces in W 1,2(X) and L2(X),
respectively. We define a bilinear map A : H×H → R by

A(u, v) =
n
√
−1

4(n− 1)

∫
X

ηn−2 ∧ ωϕ ∧
(
∂u ∧ ∂̄v + ∂v ∧ ∂̄u

)
+

n
√
−1

4(n− 1)

∫
X

vηn−2 ∧ (∂u ∧ ∂̄ωϕ + ∂ωϕ ∧ ∂̄u)
)
.

Definition 14. Given h ∈ L, we say that u ∈ H is a weak solution of the equation

(3.7) −Lu = h,

if u satisfies that

(3.8) A(u, v) =
∫
X

hv ωnϕ ≡ 〈h, v〉L2 , for all v ∈ H.

Let us remark that, if u is a classical solution of (3.7), i.e., u ∈ C2(X), then one
can obtain (3.8) by integrating (3.7) by parts with respect to ωnϕ. Conversely, we have
the following result:

Proposition 15. If u ∈ C3(X) satisfies (3.8) for some h ∈ C1(X) ∩ L, then

−Lu = h.
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Proof. First, we claim the following fact: If χ ∈ C1(X) satisfy that

(3.9)
∫
X

χv ωnϕ = 0, for all v ∈ H,

then χ is a constant function on X. To see this, let

v = χ−
∫
X
χωnϕ∫

X
ωnϕ

;

then v ∈ H and (3.9) implies that ∫
X

|v|2ωnϕ = 0.

This proves the claim. It follows that

n(
√
−1/2)∂∂̄u ∧ ηn−2 ∧ ωϕ

(n− 1)ωnϕ
− h = some constant.

Thus, integrating with respect to ωnϕ yields the result. �

The following weak maximum principle is similar to that on a domain in the Eu-
clidean space (see, for example, Gilbarg–Trudinger [7, p. 179]). Proposition 16 is
trivial, if dωϕ = 0.

Proposition 16. Suppose that u ∈ H satisfies

(3.10) A(u, v) = 0, for all v ∈ H.
Then, u = 0.

Proof. It suffices to prove supX u ≤ 0, as one can then replace u by −u. (Here sup
stands for the essential supremum.) Suppose the contrary. Take a constant δ such
that 0 < δ < supX u, and define

(3.11) v = (u− δ)+ −
∫
X

(u− δ)+ωnϕ∫
X
ωnϕ

,

in which (u− δ)+ = max{u− δ, 0}. Then, v ∈ H and

dv = d(u− δ)+ =

{
du, if u > δ,

0, if u ≤ δ.

Let us denote by Γ the compact support of dv. Then, we obtain by (3.10) and metric
equivalence of η, ωϕ, that

‖∇v‖2L2 =
∫

Γ

|∇v|2ωnϕ ≤ C

∫
Γ

|v||∇v|ωnϕ.

Here and below, we denote by C a generic positive constant depending only on η, ωϕ,
and n. Apply Hölder’s inequality to get

(3.12) ‖∇v‖L2 ≤ C‖v‖L2(Γ).

On the other hand, combining the Sobolev inequality and Poincaré inequality yields
that

(3.13) ‖v‖L2n/(n−1) ≤ C(‖∇v‖L2 + ‖v‖L2) ≤ C‖∇v‖L2 .
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Hence, by (3.12) and (3.13),

‖v‖L2n/(n−1) ≤ C‖v‖L2(Γ) ≤ C|Γ| 1
2n ‖v‖L2n/(n−1) ,

in which |Γ| denotes the measure of Γ with respect to ωϕ. It follows that

|Γ| = |{u > δ, |du| > 0}| ≥ C−1.

Letting δ tend to supu implies that |du| > 0 on a set of positive measure in {x ∈
X;u(x) = supu}, which is evidently impossible by Lemma 7.7 in Gilbarg–Trudinger
[7, p. 152]. �

The next two propositions are standard, for which we need the Lax–Milgram The-
orem (see Evans [2, p. 297], for example) and the Fredholm alternative (see [2, p.
641] for example). We include them here for completeness.

Theorem (Lax–Milgram Theorem). Let H be a real Hilbert space, and I : H ×
H → R be a bilinear mapping. Assume that, there exist positive constants β and µ
such that

|I(u, v)| ≤ β‖u‖‖v‖, for all u, v ∈ H,
and

I(v, v) ≥ µ‖v‖2, for all v ∈ H.
Then, for any bounded linear functional f on H, there exists a unique element u ∈ H
satisfying that

I(u, v) = f(v) for all v ∈ H.

Theorem (Fredholm alternative). Let E be a Banach space and K : E → E be a
compact linear operator. Then,

ker(I −K) = {0} if and only if Im(I −K) = E,

where I : E → E is the identity operator.

Proposition 17. There exists a nonnegative constant γ, depending on ωϕ and η,
such that for any h ∈ L, there exists a unique weak solution u ∈ H of

(3.14) −Lγu ≡ −Lu+ γu = h.

That is, the function u satisfies

(3.15) A(u, v) + γ〈u, v〉L2 = 〈h, v〉L2 , for all v ∈ H.

Proof. We have, by the metric equivalence of η and ωϕ,

|A(u, v)| ≤ β‖u‖W 1,2‖v‖W 1,2 ,

and
A(u, u) + γ‖u‖L2 ≥ µ‖u‖W 1,2 .

Here β > 0, γ ≥ 0, and µ > 0 are constants depending only on η and ωϕ. The result
then follows from applying Lax–Milgram Theorem to

I(u, v) = A(u, v) + γ〈u, v〉L2 , for all u, v ∈ H.

�
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Proposition 18. For any h ∈ L, there exists a unique weak solution u ∈ H of

−Lu = h.

Proof. By Proposition 17 we can define a map L−1
γ : L → H as follows: For each

f ∈ L, we define L−1
γ (f) to be the unique function w ∈ H satisfying

A(w, v) + γ〈w, v〉L2 = 〈f, v〉L2 .

Clearly, L−1
γ is linear, and is a compact operator from L to L, in view of Rellich

Theorem. To prove the result, it suffices to show that, for a given h ∈ L, there exists
a unique u ∈ L satisfying that

u = L−1
γ (h+ γu).

Equivalently, we need to solve a unique u ∈ L for the following equation:

(I − γL−1
γ )u = L−1

γ h.

To invoke the Fredholm alternative, we turn to the kernel of (I − γL−1
γ ) in L, i.e.,

{u ∈ L; u− γL−1
γ u = 0}.

This is equivalent to investigate the function u ∈ H such that

A(u, v) = 0 for all v ∈ H.

By Proposition 16, u = 0. The result then follows from the Fredholm alternative. �

Now we are in a position to prove Lemma 13:

Proof of Lemma 13. The uniqueness of (3.6) is an immediate consequence of Propo-
sition 18, since a C2 solution of (3.6) is in particular a weak solution of −Lu = −h.

Given h ∈ Ck,α(X), we have h ∈ W k,2(X), since X is compact. Then, by Propo-
sition 18, equation (3.6) has a weak solution u ∈W 1,2(X). Then, we obtain

u ∈W k+2,2(X),

by the local regularity theorem (see, for example, Evans [2, p. 314] or Gilbarg–
Trudinger [7, p. 186]). Since k ≥ n + 4, k − 2n/2 − 1 ≥ 3. We apply the Sobolev
imbedding theorem to obtain that

u ∈ C3(X).

By Proposition 15, u is the classical solution for (3.6). It follows from the bootstrap
argument ([7, p. 109]) that

u ∈ Ck+2,α(X).

�
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