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FORM-TYPE CALABI-YAU EQUATIONS

JIXIANG FU, ZHIZHANG WANG, AND DAMIN WU

ABSTRACT. Motivated from mathematical aspects of the superstring theory, we intro-
duce a new equation on a balanced, hermitian manifold, with zero first Chern class.
By solving the equation, one will obtain, in each Bott—Chern cohomology class, a bal-
anced metric which is hermitian Ricci—flat. This can be viewed as a differential form
level generalization of the classical Calabi-Yau equation. We establish the existence and
uniqueness of the equation on complex tori, and prove certain uniqueness and openness
on a general Kdhler manifold.

1. Setting and Equations

In the superstring theory, the internal space X2 is a complex three-dimensional
manifold with a non-vanishing holomorphic three-form Q [15] (cf. [1]). The N =1
supersymmetry requires [15, 10]

d(|| @ || »*) =0,
for some hermitian metric (form) w. The above equation in mathematics says that

w is a conformally balanced metric. (We recall that [14] a hermitian metric w on an
n-dimensional complex manifold X" is called balanced if w satisfies that

dw™ 1) =0 on X™.)

Note that [8, 6] the torus bundles over K3 surfaces and over complex abelian surfaces
twisted by two anti-self dual (1,1)-forms admit a non-vanishing holomorphic three-
form  and a natural balanced metric wg such that

(1.1) €2 Jlwo= 1.

As important examples in the superstring theory and non-Kéhler complex geome-
try, the complex manifolds #(S® x S3) for any k > 2 [4, 12] also admit a non-
vanishing holomorphic three-form [4] and a balanced metric [5]. Moreover, we know
that #(S® x S%) satisfies the d0-lemma [4]. A natural question to ask is, whether
#1,(93 x §3) admits a balanced metric wy such that (1.1) holds. Such a metric wy, if
exists, will play an important role in the superstring theory and hermitian geometry.

More generally, let X™ (n > 3) be a complex n-dimensional manifold with a non-
vanishing holomorphic n-form {2 and with a balanced metric wy. We want to look for
a balanced metric w such that

st

1 _
(1.2) Wl =t 4 ~—5— 09,

for some real (n — 2,n — 2)—form ¢, and such that

(1.3) I€2||, = some positive constant Cj.
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In other words, we would like to find solutions of (1.3) in the cohomology class
w1 € Hpe"" 1 (X). Here H3L(X) stands for the Bott-Chern cohomology:

(ker & Nker 9) N QP 7(X)
im 00 N Qr4(X)

One can certainly normalize the constant Cp in (1.3) to be 1, as in (1.1). However, it

may be more convenient to set
_1
2
CO = (/ w") ’
X

from the equation point of view. As in the Kéhler case, equation (1.3) is equivalent
to the equation

HEL(X) =

detw [ Q 12, _efwa"

14 = = .
(14) detwo 922 ¢ [ywp

Here we denote
o =92, [ o
X

and denote

: V=T ¢ _
det w = det(g;5), if w= 5 Z gi5dzi N dz;.
ij=1
At the moment, we write

Wi 4 ga&p - (g)m(n Y

> (We)is(i g)dz Adz A Adz A dz A Ndizg A dzy
i,j=1
Here the sign function s(i,j) is equal to 1 if ¢ < j, and is equal to —1 if ¢ > j. By
(1.2) and
—1\n—1
W= (5) -
2
(detw) Y g7s(i,j)dzs Ndzy A Ndzg A dz A+ A dzg A dZ,
i,j=1
we have B
(detw)g” = (V)5 forall 1 <i,j <mn.
Hence,

detw = {det [(¥,);5]} 77 = {det [wi ™" + (vV=1/2)08] } 7.

Here det[w( ™" + (v/=1/2)00¢p)] stands for the determinant of n x n matrix of its
coefficients. Thus, equation (1.4) is equivalent to

detlwf ™" + (vV=1/2)00¢] _ s (IX w) |

n—1 n
det wy Jx wi

(1.5)
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We call the above equation the form-type Calabi—Yau equation. Clearly, by integrat-
ing (1.4), we obtain a compatibility condition

(1.6) /6fw6’:/ wg -
X e

Let us denote by P(wg) the set of all smooth real (n — 2,n — 2)—forms 1 such that

(1.7) w4 ga&p >0 onX.
The question is therefore reduced to find, for a given f € C°°(X) with (1.6), a smooth
real (n —2,n — 2)—form ¢ € P(wp) satisfying (1.5).

Here is the geometric interpretation of our equation. Let us briefly recall some
definitions related to the hermitian connection. We follow [9]. Let R be the curvature
of hermitian connection with respect to metric w. Then,

0 ij . :09iq 09,;
Y 1

_8zk821 Oz, 07 '
p,q=1
We set
n =
Rig= Y 9" R,
ij=1
and associate with it a real (1, 1)-form given by

Ric" =v/=1 " Rydz A dz.

k=1
We call Ricl the Ricci curvature of the hermitian connection. Clearly,
Ric" = /=190 1og(det w).

So || Q ||lo= Co is equivalent to the Ricci curvature Ric" = 0.

On the other hand, we can also define the Ricci form Ric® of the spin connection
(i.e. Bismut connection) on a hermitian manifold. The relation between the two Ricci
forms is given by [11]

Ric® = Ric" + dd*w.
Here d* is the adjoint operator of d with respect to the metric w. So when w is bal-
anced, Ric® = Ric", and hence, || Q ||,= Cp is also equivalent to the Ricci curvature
of the spin connection is zero.

In particular, if wg is Kéhler and let ¢ to be

n—2
. n—1 v—1_= —i—2 i
either wu ;_O ( ; ) (T&’ﬂu)n TTAWY, or

VA T AV I
_ 8u/\3u/\z< . >(288u) A wh,

2 -
=0

then (1.5) is reduced to
det(wo + Y5L00u)

f
el.
det wy
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This is the classic equation in the Calabi Conjecture on ¢;(X) = 0, which was settled
by Yau [16].

It seems to us that a form-type equation such as (1.5) has not yet been studied.
To begin with, we consider the form-type Calabi—Yau equation on 7", the complex
n-torus. Let (z1,...,2,) be the complex coordinates on T induced from C™. Then,
any non-vanishing holomorphic n-form € on 7" is equal to

dzi A+ Ndzy,

up to multiplying a nonzero constant. We fix such an n-form . By a constant
form or a constant metric on T™ we mean a differential form or a metric on 7™ with
constant coefficients. Let wg be a balanced metric on T". As far as the Bott—Chern
cohomology class of wgfl is concerned, we can assume, without loss of generality,
that wy is a constant metric on 7™. This is due to the fact that any closed differential
form on T™ is cohomologous to a constant form, and the 99-Lemma. Our result is

as follows:

Theorem 1. Let Q) be a non-vanishing holomorphic n-form on T™ (n > 3), and wy be
a constant metric on T™ such that |||, = 1. We denote by Cy a positive constant.

(1) If Co < 1, then for any metric w on T™ such that W™ '] = [wi™'] €
HyS " H(T™) and that |||, = Co, we must have Co =1 and

w = wq-

"1 = g

(2) For each Cy > 1, there exists a metric w on T™ such that [w wo

and that
12l = Co.

One can see from Theorem 1 that the normalization constant Cy plays a role here.
When Cj < 1, the theorem tells us that the Calabi—Yau metric is the unique canonical
balanced metric. It is the second case, Cy > 1, that marks the difference between a
form-type equation and a usual function-type equation. In this case, we establish the
existence of a desired balanced metric which is not Calabi-Yau. We further generalize
the uniqueness part, Theorem 1 (1), to an arbitrary Calabi—Yau manifold:

Theorem 2. Let X be a compact Kdahler manifold with a non-vanishing holomorphic
n-form Q. Let wy be a Calabi-Yau metric such that ||Qw, = 1. Then, for any
balanced metric w on X such that w™ ' represents the Bott—Chern cohomology class
of wy™t and such that ||, = Cy < 1, we have

W = wy-

For a general case that wg is non-Kéahler, one can use the continuity method to
solve (1.5). As an initial step we consider the openness. Here we have to assume X
to be a Kéhler manifold, endowed with a Kéhler metric n. For nonnegative integers k
and m, and a real number 0 < a < 1, we denote by C*®(A™™ (X)) the Holder space
of real (m, m)-forms on X, and in particular, C¥*(A%0(X)) = C**(X). Let

Fre) ={ge e [ ey [ af.



FORM-TYPE CALABI-YAU EQUATIONS 891

Then F*%(X) is a hypersurface in the Banach space C*%(X). Let wy be a Hermitian
metric on X, and P(wg) be the set given by (1.7). We define a map M : P(wg) N
Crk+2,a(An72,n72(X)) N ]:k,oz(X) by

M) = log (Z?) — log Gﬁig) :

where by abuse of notation, P(wg) N C¥*2:¢(A"=27=2(X)) stands for
{p € CFF2(A"=2"=2(X));wi ™t 4 (V=1/2)0dy > 0},
and for each ¢ € P(wp) N CF+2(An=2n=2( X)), we denote by wy, the positive (1,1)—
form on X such that
wgfl =wit + (V—=1/2)00¢.

Note that equation (1.5) can be written as
M(p) = f.

Theorem 3. Let X be an n-dimensional Kdhler manifold (n > 3), wo be a Hermitian
metric on X, k > n + 4 be an integer, and 0 < o < 1 be a real number. Given
f € FF(X), suppose that ¢ € P(wp) N C*+2:2(A"=21=2(X)) satisfies

M(p) = f.

Then, there is a positive number &, such that for any g € F*(X) with lg—fllcre(x) <
§, there exists a function ¥ € P(wo) N CkF+2(A"=2n=2(X)) such that

M) =g.

The rest of the paper is organized as follows: In Section 2, we first show Theorem 1
(1). Next, we prove Theorem 1 (2) by explicitly constructing a smooth solution
© € P(wp) for the form-type equation. These arguments make use of special properties
such as the flat structure of T". We prove Theorem 2 at the end of Section 2. In this
respect, we essentially present two proofs for the uniqueness on 7", as they may have
interests of their own. In Section 3, we prove Theorem 3 in full details, where one
can see the compatibility condition is crucial. Moreover, the approach differs from
the standard one in that, the special (n — 2, n — 2)—forms (un™~2) are taken, and also
in the argument of Proposition 15 and Proposition 16.

2. Uniqueness and Existence

In this section, we adopt the following index convention, unless otherwise indicated.
For an (n — 1,n — 1)-form ©, we denote

N/ — n—1
o= ("3")" -1
> 5(p,q)Opgdzt Adzt - AdzP NdZP A AdZINZTA - A d2" A dE"
p.q
in which

-1, ifp>gq;
2.1 q) =
(2.1) s(p,q) {1’ ifp<a.
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Here we introduce the sign function s so that,
dzP NdZ9 A s(p,q)dzt Adz' - AdeP AdZP A+ AdZIAdZI A - Ade™ A dE"
:dzl/\alil/\-~-/\0lz"/\d,§"7 forall 1 < p,q <n.

And, if the matrix (6,4) is invertible, we denote by (©P7) the transposed inverse of
(qu), i.e.7 )
> 0:0" =4y
!

In the following, we may also use the summation convention on repeating indices.

2.1. Torus case. Throughout this subsection, we consider X = T", the complex
n-torus with n > 3. We shall prove Theorem 1. Note that the first part of Theorem 1
follows immediately from Lemma 4 below. We shall prove the second part in Lemma 7.

Lemma 4. Let wy be a constant metric on T™. Suppose that there exists an (n —
2,n —2)—form ¢ € P(wg) and a constant 0 < Cy < 1 such that

V=1 -
(2.2) Co det (wgl + 288@) =detw] .

Then, we have Cy = 1 and

V—=100¢ = 0.

We need two propositions to derive Lemma 4. Let (z1,. .., z,) be the complex coor-
dinates on T™ induced from C™. The corresponding real coordinates are (x1, ..., Zay,).
Here we denote

0 1 0 0
2. i = X1 + vV —1xg; h — == —v-1
(2.3) 2 = Toj_1 T9;, and hence, T2 ( - 22_),

for all 1 <4 < n. We choose the following volume form on 7T™:
dV = (V=1/2)"dzy Adzy A+ Adzp A dZ,.

Here are two elementary facts:

Proposition 5. For any smooth complex function [ defined on T™, we have

0% f
av =0 foralli,j=1---,n.
o 02002, , or all 7, j ,n
Proof. We write
I=hH+V-1fa
where fi, fo are real functions on T". Then,
2 2 2 2 2
Pt ! ! e 9 h . ! _
821'82’]‘ (91721'_131'2]'_1 (91’21'3562]' 65821'(9:172]'_1 8I2i_1aI2j

We have a similar equation for fy. And note that
dV =dx1 A --- Ndzoy,.

The result then obviously follows from the fundamental theorem of calculus. O
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Proposition 6. Let B = (b;;) be a hermitian matriz on T", in which each entry b;;
is a complex smooth function defined on T™ such that

/ bij dV = 0.

Assume that I + B is everywhere positive definite, and there is a constant ¢ > 1 such
that

det(I + B) =c onT", where I = (0;5).
Then, c =1 and B = 0.

Proof. Since I 4+ B is positive definite, we have

(2.4) @ > 2/det(I 1 B)= ¥/ on T"

Integrating (2.4) over T, we obtain

I+B
/ av— [ BB s e [ av
n Tn n Tn

Thus, ¢ = 1, and the inequality of (2.4) is in fact an equality. That is,

(25) WED _ aaT B =1 o1
Now at an arbitrary point x in 7™, we choose a unitary matrix U such that
UBUT = dial{\,- -+, \n}.
Then (2.5) is equivalent to that
1+ M=14X=---=14X,=1.
This implies that
A =0, foralle=1,...,n.
Therefore, B = 0 at x. Since x is arbitrary, this finishes the proof. O
Let us now proceed to prove Lemma 4:

Proof of Lemma 4. Let

nl (ﬁ)"_l(n —1)!

WO = T
N Wogs(p,q)dzt AdZUA - AdZP A A NS A Az A dE
p,q

Here (V¥;3) is a constant, positive definite, hermitian matrix, and s(p, ) is given by
(2.1). We can then take a non-degenerate constant matrix A such that

(2.6) AW;)AT = 1.
We define a hermitian matrix F, = ((Fy);;) on T™ by

ga&p - (g)"fl(n —1)!

S (F)pas(poq)dz" NdE A NP A A AdZTA - A d2" A dE"
p,q
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It follows from Proposition 5 that

/ (Fy)i;dV = 0.
Then, by (2.2) and (2.6),
det(I + AF,AT) = C; .
Since ¢ € P(wp), we obtain
I+AF,A" >0 onT"
Applying Proposition 6 yields that Cy = 1, and
AF AT =,

and therefore,
F,=0.

O

The following lemma establishes the second part of Theorem 1. By a linear transfor-
mation, if necessary, we can assume the constant metric wy on T™ to be the standard

metric:

-1
wo = g(dzl /\d21+"'+dzn/\d§n>'

Lemma 7. For any 0 < § < 1, there exists a smooth
such that

/o

(n—2,n—2)—form ¢ € P(wo)

-1
(2.7) det (wgl + 238(,0) = §detwy .

Proof of Lemma 7. We set

V=1

(2.8) 2

n—2
o= (Mm-1)! <> [u(z1,21)dz;»,/\d23 A Ndzy, NdZy,

+ v(zl,Zl)dZQ/\dZQ/\cjz\g/\LZ,E\;g/\dZ4/\dZ4/\~~/\dzn/\d2n].

Here u, v are two real, smooth, periodic functions to be determined, with 1+ Au > 0
and 14 Av > 0. Since v and v depend only on the first variable, the equation (2.7)

becomes that

2 2
(2.9) (1 n %) (1 + %) — 5

This reduces to an equation on T'. Note that
0%u 0%v
— = A’u,’ — =
82’1 821 8Z1 aZl

Av,

where A is the standard Laplacian on T, i.e., the Laplacian associated with wq|p1.

We can rewrite (2.9) as

(2.10) 1+ Au=

1+ Av’
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Our strategy is to fix a function v and then solve (2.10) for a function u. Note that
for a fixed v, the necessary and sufficient condition to solve (2.10) is that

WO‘Tl
2.11 1=0 .
( ) /Tl w0|T T1 1+ Av
Now let
(2.12) v = —dksin (Zl ‘2”1) — _dksinz,,

where 0 < k < 1 is a constant to be determined, and the change of coordinates is
given by (2.3). Then, (2.11) becomes that

4
dxy ANdxo = —————dx1 Ad
/Tl o 2 /Tl 1+ ksin 1 o 2

that is,

27 5
2.13 —dx1 = 2.
( ) /0 1+ ksinxy o T

It follows from the proposition below that, for each 0 < § < 1, there exists a real
number 0 < k < 1, depending only on 4, such that (2.13) holds. Therefore, for v
given by (2.12), there is a smooth function u, unique up to a constant, satisfies (2.10).
Also, by the construction,

1+ Av >0, 1+ Au > 0.
Thus, by (2.8) we obtain an (n — 2,n — 2)—form ¢ € P(wp) which solves (2.7). O

Proposition 8. Let

1 [ 1
2.14 Z(k)=— —d forall 0 <k < 1.
(2.14) (k) 27r/0 1+ ksinx “ orafils i<

Then, for any 0 < 6 < 1, there exists a unique number 0 < ks < 1 such that

Z(k(;) =1L
Proof. Clearly, the function Z is smooth on 0 < k < 1. Note that Z(0) = 1, and that

1 2m
DT ———
27 Japso 1+ ksinz

Y L k1o

= ———arctany/—— — +oo, ask—1".

1 — k? 1-k

The existence then follows from the intermediate value theorem in calculus. The
uniqueness is due to the monotonicity of Z on [0, 1), which is readily seen by verifying
Z'(0) =0 and Z"(k) > 0 on [0,1). O

Lemma 7 can be easily generalized to the case of the product of a compact hermitian
manifold with T%, k > 3. See the corollary below:



896 JIXIANG FU, ZHIZHANG WANG, AND DAMIN WU

Corollary 9. Let M™ = N" % x T* k > 3, where (N" %, wy) is an (n — k)-
dimensional compact hermitian manifold. We denote w = wn + wg, where wy is a
constant metric on T*. Then, for any 1 > 6 > 0, there exists a smooth (n—2,n—2)—

form ¢ € P(w) on M such that

V=1 _
det (w"—l + 288¢> = ddet(w™1).

Proof. Let

b =uwi *Ag,
where ¢ is the (k—2, k—2)-form on T* obtained by Lemma 7, i.e., ¢ € P(wp) satisfies
that such that

1 _
det (wgl + 288@) = ddet(wf™h).
Then, obviously 1 satisfies the requirement. O

2.2. Kéahler case. In this subsection, we shall prove Theorem 2. Observe that it is
sufficient to prove the following lemma.

Lemma 10. Let (X,wq) be a compact Kihler manifold. Consider

V=1 -
det (wg_l + 288@) =Cydetwy™t,

where ¢ € P(wp), and Cy1 > 0 is a constant. If C1 > 1, then

V—=100¢ = 0.
Proof. By a direct calculation, since wq is Kéahler, we have

/X(wg—l)ij(\/;ilﬁ&p)ij wy = n/XwO A (g@&,o) =0.

Similar to the torus case, we apply the arithmetic—geometric mean inequality to obtain

) ldemg—l)] o

Cl/n
! det(wj™h)

(2.15)

1+ (Wi b)i (\/leaé@)

Integrating over X with respect to wy and using first equality yields that

Cll/"/wgg/wg.
p'e X

This shows that C; = 1 and we must have a pointwise equality in (2.15). This forces

that
v—1

2

IN

i

00y = 0.
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3. Openness

Let (X,n) be a Kéhler manifold, and wy be a Hermitian metric on X. Given
f € C=(X), we would like to study the solution ¢ € P(wp) of the following equation

ef

n
w¢:

3.1 2 "
3.1) Wy 14 Xw

s

Here w,, is a positive (1,1)-form on X such that

Wit = wp T 4 (V=1/2)00e,

o]
V:/wg'.
b'e

Equation (3.1) is the same as (1.4), which is equivalent to the form-type Calabi-Yau
equation (1.5). A compatibility condition for (3.1) is

/ eful =V
X

In what follows, we fix k to be an integer greater than n 4+ 3, and fix a real number
a with 0 < a < 1. We denote by C**(X) the usual Holder space of real-valued

and

functions on X. Recall that
fk’a(X) = {g € C’“‘“(X);/ edwl = V} ,
X

which is a hypersurface in the Banach space C*(X). For any ¢ contained in the
intersection of P(wp) and CF+2(An=2n=2(X)),

w? 1
M) =log =% —log [ — n ko X)),
() = tog 2 —log (5 [ ) € P

By the map M, equation (3.1) can be rewritten as
M(p) = f.
To prove Theorem 3, we first compute the linearization of M.

Proposition 11. Let G(p) = w} for all ¢ € P(wo), and denote by G, the Fréchet
derivative of G at v. Then, given ¢ € P(wg), we have

.
Golw) = 1000 N

for all ¢ € CFF2a(An=2n=2(X)).
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Proof. For any real (n — 2,n — 2)—form 1,

d
Go(y) = s (wngsw)

s=0
(3:2) =t A L )
. = ©+s
¢ ds s=0
d n—1 n—1 d
= — A N — s
dS (w@+sw) o w@ + wtp ds (wtﬂ‘i‘ w) o0
_ d
(3:3) = (V=1/2)00¢ Nw, + wﬁ_l A %(ersw
s=0

Comparing (3.2) with (3.3), we obtain that
G, (1) = %(\/—1 /2)00 A w,.

Corollary 12. For any ¢ € P(wy), the Fréchet derivative of M at ¢ is given by

_ n(V=1/2)00% Aw, n [x(V/=1/2)00¢ Aw,,

(n — 1wy - (n—1) [ywn ’

for all ¢ € CFF2a(An=2n=2(X)).

M ()

Next, we recall the Local Surjectivity Theorem (see [13, p. 175 and p. 108], for
example).

Theorem (Local Surjectivity Theorem). Let £ and F be Banach manifolds, and
U C & be an open subset. If §:U — F is a C* map, and F¢ = DF(€) is onto from
the tangent space T¢E to the tangent space Tg(e)F, then § is locally onto; that is, there
exist open neighborhoods Uy of & and Vi of §(&) such that F|y, : Uy — Vi is onto.

Thus, to show Theorem 3, it suffices to show that the linearization M, is surjec-
tive from CF+29(A"=2n=2(X)) to Ty F*(X), which denotes the tangent space of
FF(X) at f. Now let us introduce the space

EM(X) = {h € C’W(X);/X hw} = o}.

Note that £¥(X) is itself a Banach space, as a closed subspace in C**(X). There
is another point of view: We can define an equivalence relation on the elements in
Ch(X) by
h ~ g if and only if h — g = some constant.
In this regard, £5%(X) = C**(X)/ ~. Observe that
Ty FH(X) = EM(X).

To prove the surjectivity of M, we consider a special class of the (n —2,n — 2)-
forms, that is,
(3.4) Y =un""2, where u € EF72(X).
We recall that n is the Kahler metric on X. For simplicity we denote

L(u) = My (un"~?).
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Then, by Corollary 12,
~ n(V/=1/2)00u A2 Aw, 1 [ (VE1/2)00u At TP Aw,
(n — 1wy (n—l)fxwg '

We shall prove the following result:

(3.5) Lu

Lemma 13. Let k > n+4, and 0 < a < 1. For any h € EH%(X), there exists a
unique function u € E¥+2%(X) satisfying that

(3.6) Lu=h.

Lemma 13 implies that M, : CkF2o(An=2n=2(X)) — £M(X) is surjective, and
hence, Theorem 3 follows.

The rest of this section is devoted to prove Lemma 13. We denote by WP (Q, w,,)
the usual Sobolev space with respect to w, on a domain € in X. In the rest of this
section, we may denote W*P(Q) = W*P(Q,w,) for simplicity; furthermore, when
Q = X, we abbreviate Wk? = WFP(X) = W*P(X,w,). Notice that W2(X) =
L3(X).

We introduce the following spaces:

Hz{veW“(X);/Xwg:o},
£={ueL2(X);/Xvwg:0}.

Clearly, H and L are Hilbert spaces, as closed subspaces in W2(X) and L?*(X),
respectively. We define a bilinear map A : H x H — R by

nyv/—1

and

_ n—2 3 3
A(u7v)—4(n_1)/xn Awg A (Ou A Ov + Ov A Ou)
nv—1 n—2 3 3

Definition 14. Given h € L, we say that u € H is a weak solution of the equation
(3.7) —Lu = h,
if w satisfies that

(3.8) Au,v) = / hvwy = (h,v) L2, for all v € H.
X

Let us remark that, if u is a classical solution of (3.7), i.e., u € C?(X), then one
can obtain (3.8) by integrating (3.7) by parts with respect to wj;. Conversely, we have
the following result:

Proposition 15. If u € C3(X) satisfies (3.8) for some h € CY(X) N L, then
—Lu = h.
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Proof. First, we claim the following fact: If y € C!(X) satisfy that
(3.9) / xvwg, =0, for all v € H,
X

then y is a constant function on X. To see this, let

V=17 — fXXWE.
X fxw$7

then v € H and (3.9) implies that

/X |v|2wg =0.

This proves the claim. It follows that
n(v/=1/2)00u A "2 Aw,

(n—1wg

— h = some constant.

Thus, integrating with respect to wg yields the result. O

The following weak maximum principle is similar to that on a domain in the Eu-
clidean space (see, for example, Gilbarg—Trudinger [7, p. 179]). Proposition 16 is
trivial, if dw, = 0.

Proposition 16. Suppose that u € H satisfies

(3.10) A(u,v) =0, for all v € H.

Then, u = 0.

Proof. It suffices to prove supy u < 0, as one can then replace u by —u. (Here sup

stands for the essential supremum.) Suppose the contrary. Take a constant § such
that 0 < § < supy u, and define

 Sxlu—0)Twp
Sx wg

in which (u — 6)™ = max{u — §,0}. Then, v € H and

(3.11) v=(u—09)"

)

dv = d(u— 8)* = du, ifu>0,
0, if u <é.

Let us denote by I" the compact support of dv. Then, we obtain by (3.10) and metric
equivalence of 7, w,,, that

Vol = [ Vo <C [ ol ol
Here and below, we denote by C a generic positive constant depending only on 7, w,,
and n. Apply Holder’s inequality to get
(312) HVUHLQ S OH’UHL2(F).

On the other hand, combining the Sobolev inequality and Poincaré inequality yields
that

(3.13) [0l p2nsn-1) < C([[VV]|z2 + [|v]lL2) < C[ V]2
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Hence, by (3.12) and (3.13),
[Vl z2n/tn-1) < Cllvliz2y < CITP 0]l g2n /e,
in which |I'| denotes the measure of I" with respect to w,. It follows that
T = [{u> 6, |dul > 0} > C~1.

Letting § tend to supw implies that |du| > 0 on a set of positive measure in {z €
X;u(x) = supu}, which is evidently impossible by Lemma 7.7 in Gilbarg—Trudinger
7, p. 152]. O

The next two propositions are standard, for which we need the Lax—Milgram The-
orem (see Evans [2, p. 297], for example) and the Fredholm alternative (see [2, p.
641] for example). We include them here for completeness.

Theorem (Lax—Milgram Theorem). Let H be a real Hilbert space, and I : H x
H — R be a bilinear mapping. Assume that, there exist positive constants 3 and p
such that

[T(,0)] < Bllullol,  for all uv € H,
and
I(v,v) > pljv||?, for allv e H.

Then, for any bounded linear functional f on H, there exists a unique element u € H
satisfying that
I(u,v) = f(v) forallve H.

Theorem (Fredholm alternative). Let E be a Banach space and K : E — E be a
compact linear operator. Then,

ker(I — K) ={0} ifandonlyif Im(/—-K)=EFE,
where I : E — FE is the identity operator.

Proposition 17. There exists a nonnegative constant v, depending on w, and 7,
such that for any h € L, there exists a unique weak solution uw € H of

(3.14) —Lyu=—-Lu+~vyu=h.
That is, the function u satisfies

(3.15) A(u,v) +v{u,v)r2 = (h,v) 2, for all v € H.

Proof. We have, by the metric equivalence of  and w,,,

|A(u, v)| < Bllullwzl|vflwrz,
and

Auyu) +lullze > s
Here 8 > 0, v > 0, and p > 0 are constants depending only on 1 and w,. The result
then follows from applying Lax—Milgram Theorem to

I(u,v) = A(u,v) + y{u,v) 2, for all u,v € H.
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Proposition 18. For any h € L, there exists a unique weak solution uw € H of

—Lu=h.

Proof. By Proposition 17 we can define a map L L. L — H as follows: For each
f € L, we define L7'(f) to be the unique function w € H satisfying

A(U},”U) + ’)/<U),U>L2 = <fa U>L2~

Clearly, L ! is linear, and is a compact operator from £ to £, in view of Rellich
Theorem. To prove the result, it suffices to show that, for a given h € L, there exists
a unique u € L satisfying that

u= L;l(thfyu).
Equivalently, we need to solve a unique u € L for the following equation:
(I —=~L;")u=L"h.
To invoke the Fredholm alternative, we turn to the kernel of (I —~L3') in L, i.e.,
{u € L; u—'yL,;lu = 0}.
This is equivalent to investigate the function u € H such that
A(u,v) =0 for all v € H.
By Proposition 16, © = 0. The result then follows from the Fredholm alternative. [

Now we are in a position to prove Lemma 13:

Proof of Lemma 13. The uniqueness of (3.6) is an immediate consequence of Propo-
sition 18, since a C? solution of (3.6) is in particular a weak solution of —Lu = —h.

Given h € C**(X), we have h € W*2(X), since X is compact. Then, by Propo-
sition 18, equation (3.6) has a weak solution v € W12(X). Then, we obtain

u € WH22(X),

by the local regularity theorem (see, for example, Evans [2, p. 314] or Gilbarg—
Trudinger [7, p. 186]). Since k > n+4, k —2n/2 — 1 > 3. We apply the Sobolev
imbedding theorem to obtain that

u € C3*(X).
By Proposition 15, u is the classical solution for (3.6). It follows from the bootstrap

argument ([7, p. 109]) that
u € CF2(X).
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