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THE MAXIMAL ENTROPY MEASURE DETECTS NON-UNIFORM
HYPERBOLICITY

Juan Rivera-Letelier†

Abstract. We characterize two of the most studied non-uniform hyperbolicity condi-
tions for rational maps, semi-hyperbolicity and the topological Collet-Eckmann condi-

tion, in terms of the maximal entropy measure.

With the same tools we give an extension of the result of Carleson, Jones and Yoccoz
that semi-hyperbolicity characterizes those polynomial maps whose basin of attraction

of infinity is a John domain, to rational maps having a completely invariant attracting

basin.

1. Introduction

Two of the most studied non-uniform hyperbolicity conditions for complex rational
maps can be formulated in topological terms. The first is “semi-hyperbolicity”, that
was introduced by Carleson, Jones and Yoccoz to characterize those complex polyno-
mials whose basin of attraction of infinity is a John domain, see [3]. The second is
the “Topological Collet-Eckmann” condition, that was introduced in the context of
rational maps by Przytycki and Rohde in [21]. Graczyk and Smirnov [5] and Przy-
tycki [18] showed that this condition characterizes those polynomials whose basin of
attraction of infinity is a Hölder domain.

In this paper we characterize each of these conditions in terms of the maximal
entropy measure. Recall that each rational map of degree at least two possesses a
unique invariant probability measure of maximal entropy and that this measure is
supported on the Julia set of the rational map [4, 11, 9]. For a polynomial, the
maximal entropy measure coincides with the harmonic measure of its Julia set.

To state our main results, let f be a rational map of degree at least two and fix a
small radius r > 0. For a point x in the Riemann sphere C and an integer m ≥ 1 we
define the semi-local degree of fm at x as follows. Let W be the connected component
of f−m(B(fm(x), r)) containing x. Then fm : W → B(fm(x), r) is a ramified covering
and the semi-local degree of fm at x is by definition the degree of this map.

The rational map f is said to be semi-hyperbolic, if for a sufficiently small r > 0
there is a constant D ≥ 1, such that for each integer m ≥ 1 the semi-local degree
of fm at each point of J(f) is less than or equal to D.
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Recently, Häıssinsky and Pilgrim showed that the maximal entropy measure of a
semi-hyperbolic rational map is doubling on the Julia set, see [6, Proposition 4.2.9].
Recall that a Borel measure ρ on a metric space (X,dist) is said to be doubling, if
there are constants C∗ > 0 and r∗ > 0 such that for each x ∈ X and r ∈ (0, r∗) we
have

ρ(B(x, 2r)) ≤ C∗ρ(B(x, r)).

Our first result is that in fact this property of the maximal entropy measure charac-
terizes semi-hyperbolicity.

Theorem A. A complex rational map of degree at least two is semi-hyperbolic if and
only if its maximal entropy measure is doubling on the Julia set.

Combining this result with the main result of [3], we obtain that if a John domain is
the basin of attraction of infinity of a complex polynomial, then its harmonic measure
is doubling on the boundary. This result should be compared with a result of Kim
and Langmeyer [8, Theorem 2.3], that a bounded Jordan domain is a John domain
if and only if its harmonic measure is doubling on the boundary. Note however that
there are planar simply-connected John domains for which the harmonic measure is
not doubling on the boundary [1].

A rational map f satisfies the Topological Collet-Eckmann (TCE) condition, if for
some r > 0 there are constants D ≥ 1 and θ ∈ (0, 1) such that the following property
holds. For each x ∈ J(f) the set Gx of those integers m ≥ 1 for which the semi-local
degree of fm at x is less than or equal to D satisfies,

lim inf
n→+∞

1
n

#(Gx ∩ {1, . . . , n}) ≥ θ.

Clearly, every semi-hyperbolic rational map satisfies the TCE condition.

Theorem B. Let f be a complex rational map of degree at least two and let ρf be
the maximal entropy measure of f . Then f satisfies the TCE condition if and only if
there are constants r0 > 0, α > 0 and C > 0 such that for all x ∈ J(f) and r ∈ (0, r0)
we have

ρf (B(x, r)) ≥ Crα.

This result adds yet another characterization of the TCE condition to those given
in [20]. See also [19, Corollary 1.1].

We determine the optimal constant α appearing in the statement of this theorem,
see Remark 4 in §3.

1.1. Semi-hyperbolicity and John domains. Our final result is an extension to
rational maps of the result of Carleson, Jones and Yoccoz for polynomials. It is not
directly related to the previous results, but we have included it here as its proof uses
some of the tools developed to prove Theorem A. Note that for a polynomial the
basin of attraction of infinity is completely invariant.

Theorem C. Let f be a rational map of degree at least two having a completely
invariant attracting basin A. Then A is a John domain if and only if f is semi-
hyperbolic.
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There are simple examples showing that the hypothesis that the completely invari-
ant Fatou component A is an attracting basin is necessary, see §1.2.

One of the implications of this theorem is given by an extension of one of the results
of Carleson, Jones and Yoccoz, shown by Mihalache in [16]: each Fatou component
of a semi-hyperbolic rational map is a John domain, see also [27] for the case of
connected Julia sets. See §1.2 for several examples of rational maps showing that the
converse of this last result does not hold in general.

To prove the reverse implication we use the (straightforward) fact that every John
domain is porous. Recall that a subset J of C is porous if there is ξ ∈ (0, 1) such that
the following property holds: for each sufficiently small r > 0 and each x ∈ J there is
y ∈ B(x, r) such that the ball B(y, ξr) is disjoint from J . The key step in the proof
is to show that if A is porous, then there are no recurrent critical points in the Julia
set (Lemma 6). Then we conclude using the extension to rational maps of one of the
results of Carleson, Jones and Yoccoz [3], given by Yin in [27]: a rational map is semi-
hyperbolic if and only if it has neither parabolic periodic points nor recurrent critical
points in the Julia set. An important preliminary step in the proof of Theorem C is
to show that the map satisfies the TCE condition. This follows from the fact that
each John domain is a Hölder domain and from results in [5, 20]. In fact we show the
following stronger version of Theorem C: A is a Hölder domain whose boundary is
porous at each critical point of f if and only if f is semi-hyperbolic, see Theorem C’
in §5.

We end the introduction with a question, formulated with the intent of understand-
ing further the connection between the geometry of Julia sets and the non-uniform
expansion of the corresponding maps. As remarked above the Julia set of a semi-
hyperbolic polynomial is porous. However, there are polynomials having a porous
Julia set that are not semi-hyperbolic. See [22, 26] for an example with a parabolic
periodic point and [15, Theorem 4.1] for one with a Siegel disk.

It would be interesting to know if the following variant of porosity characterizes
semi-hyperbolicity. We say that a subset K of C is boundary porous if there is a
constant ξ ∈ (0, 1) such that for each sufficiently small r > 0 and each x ∈ ∂K there
is y ∈ B(x, r) such that the ball B(y, ξr) is disjoint from K.

Question 1. Let f be a polynomial whose filled-in Julia set is boundary porous. Is f
semi-hyperbolic?

1.2. Notes and references. Each doubling measure satisfies the property described
in Theorem B, see Lemma 1. An analogous upper bound holds for the maximal
entropy measure of each rational map f : there are C ′ > 0, α′ > 0 such that for all
x ∈ J(f) and r > 0 we have

ρf (B(x, r)) ≤ C ′rα′
,

see for example [23, Lemma 4].
See [6, Theorem 4.2.3] and [10, Theorem 8.1] for other characterizations of semi-

hyperbolic rational maps and [1] for a refinement of the result of Carleson, Jones and
Yoccoz. Mihalache showed in [16] that each Fatou component of a semi-hyperbolic
rational map with connected Julia set is a John domain with a uniform constant.
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There are several examples showing the converse of this last result does not hold
in general. Perhaps the simplest is the rational map R(z) = 1

z − z. It is not semi-
hyperbolic because z = ∞ is a parabolic fixed point of R. On the other hand the
Fatou set of R consists of the upper and lower half-plane, both of which are John
domains in C. Since each of these components is completely invariant by R, this
example also shows that in Theorem C the hypothesis that the completely invariant
Fatou component A is an attracting basin is necessary. There are similar examples
of any given degree, see for example [2, p. 79] and [27].

Another interesting example, pointed out in [16], is given by the mating of quadratic
polynomials with a Siegel disk, that was studied by Yampolsky and Zakeri in [25]. In
fact, this rational map is not semi-hyperbolic as it has a Siegel disk and yet each of
its Fatou components is a quasi-disk and hence a John domain.

To give a different class of examples we consider the following direct consequence
of the results of Roesch in [24], see §5 for the proof.

Fact 1. Let N be a twice renormalizable Newton method of a cubic polynomial with
simple roots. Suppose furthermore that N has no parabolic periodic points or Siegel
disks. Then the Fatou components of N are quasi-disks with a uniform constant.

A direct consequence of this fact is that the Fatou components of N are John
domains with a uniform constant. Notice that the rational map N can be chosen
so as to have a Cremer periodic point or to have no neutral cycles and a recurrent
critical point in the Julia set.

2. Preliminaries

We endow C with the spherical metric, that we denote by dist. Unless otherwise
stated, distances, balls, diameters and derivatives, will be all taken with respect to
the spherical metric.

Given a rational map f , an integer m ≥ 1 and a subset V of C, a connected
component of f−m(V ) will be called a pull-back of V by fm.

2.1. Critical points. Given a complex rational map f we denote by Crit(f) the set
of critical points of f and by Crit′(f) the set of those critical points of f which are in
the Julia set. We will say that f has critical connections if there is an integer n ≥ 1
such that fn(Crit′(f))∩Crit′(f) 6= ∅. We will say that a critical point c ∈ Crit′(f) is
exposed, if for each integer n ≥ 1 we have fn(c) 6∈ Crit(f).

We denote by `max(f) the maximal local degree of f at a critical point in J(f) and
put ̂̀

max(f) := max{`max(fn) : n ≥ 1}.

Note that `̂max(f) ≤ 22 deg(f)−2 and that `̂max(f) = `max(f) in the case where f does
not have critical connections.

2.2. Maximal entropy measure. As noted before, each rational map f of degree
at least two has a unique measure of maximal entropy. We will denote this measure
by ρf . The topological support of ρf is equal to J(f) and the Jacobian of ρf is
constant equal to deg(f). We will use several times the following property of ρf .



MAXIMAL ENTROPY MEASURE AND NON-UNIFORM HYPERBOLICITY 855

Fact 2. Let f be a rational map and let ρf be its maximal entropy measure. Let V be
an open and connected subset of C, let m ≥ 1 be an integer and let W be a pull-back
of V by fm. If we denote by D the degree of fm : W → V , then

ρf (W ) = D deg(f)−mρf (V ).

This property is a direct consequence of the fact that the Jacobian of ρf is constant
equal to deg(f) and of the fact that ρf does not charge points.

2.3. Doubling measures. We will use the following property of doubling measures.

Lemma 1. Let (X, d) be a compact metric space and let ρ be a doubling measure
on X. Then there are constants C > 0 and α > 0 such that for each sufficiently
small r > 0 and each x ∈ X we have

ρ(B(x, r)) ≥ Crα.

Proof. Let r∗ > 0 and C∗ > 0 be constants associated to the doubling property of ρ
and let ε > 0 be such that for each x ∈ X we have ρ(B(x, r∗/2)) ≥ ε. Given r ∈ (0, r∗),
let n ≥ 0 be the unique integer such that 2nr < r∗ ≤ 2n+1r. Then

ρ(B(x, r)) ≥ C−n
∗ ρ(B(x, 2nr)) ≥ C−n

∗ ε.

This shows the desired assertion with α = lnC∗/ ln 2 and C = r−α
∗ ε. �

A compact subset J of the Riemann sphere is uniformly perfect, if there are η̂ > 1
and r̂ > 0 such that for each x ∈ J(f) and each r ∈ (0, r̂) the annulus B(x, η̂r)\B(x, r)
intersects J .

Lemma 2. Let J be a uniformly perfect compact subset of C and ρ a doubling measure
supported on J . Then the following properties hold.

1. There are η0 > 1, ε0 ∈ (0, 1) and r0 > 0 such that for each r ∈ (0, r0)
and x ∈ J we have

ρ(B(x, η0r) \B(x, r)) ≥ ε0ρ(B(x, r)).

2. There are η1 > 1 and r1 > 0 such that for each r ∈ (0, r1) and x ∈ J we have

ρ(B(x, η1r)) ≥ 2ρ(B(x, r)).

Proof.
1. Let C∗ > 0 and r∗ > 0 be the constants associated to the doubling property of ρ
and let η̂ > 1 and r̂ > 0 be the constants associated to the uniform perfectness of J .
Let n ≥ 1 be a sufficiently large integer such that 2n ≥ 2(η̂ + 1).

Given x ∈ J and r ∈ (0,min{2−nr∗, 2−1r̂}), let x′ ∈ B(x, 2η̂r) \ B(x, 2r) be in J .
Since ρ is doubling on J we have

ρ(B(x′, 2(η̂ + 1)r)) ≤ ρ(B(x′, 2nr)) ≤ Cn
∗ ρ(B(x′, r)).

As B(x, r) ⊂ B(x′, 2(η̂+ 1)r), we conclude that ρ(B(x′, r)) ≥ C−n
∗ ρ(B(x, r)). On the

other hand, using that x′ ∈ B(x, 2η̂r) \B(x, 2r) we have

B(x′, r) ⊂ B(x, (2η̂ + 1)r) \B(x, r)

and hence
ρ(B(x, (2η̂ + 1)r) \B(x, r)) ≥ C−n

∗ ρ(B(x, r)).
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This shows that the desired property holds with η0 = 2η̂ + 1, ε0 = C−n
∗ and r0 =

min{2−nr∗, 2−1r̂}.
2. Let η0 > 1, ε0 ∈ (0, 1) and r0 > 0 be given by part 1 and let n ≥ 1 be a sufficiently
large integer such that (1 + ε0)n ≥ 2. Using part 1 inductively, we obtain that for
each r ∈ (0, η−n

0 r0),

ρ(B(x, ηn
0 r)) ≥ (1 + ε0)nρ(B(x, r)) ≥ 2ρ(B(x, r)).

This shows the desired property with η1 = ηn
0 and r1 = η−n

0 r0. �

2.4. Distortion lemma. The following geometric lemma is a direct consequence of
Koebe distortion theorem. We omit the proof.

Lemma 3. Given R > r > 0 put

A(r,R) := {z ∈ C : r < |z| < R}.

Then there are constants M > 1 and δ > 0 such that for each univalent map

ϕ : A(1, 8) → C,

satisfying diam(ϕ(A(1, 8))) < δ and for each x enclosed by the image of ϕ, we have

sup{dist(x, y) : y ∈ ϕ(A(2, 4))}
inf{dist(x, y) : y ∈ ϕ(A(2, 4))}

≤M.

3. TCE condition

This section is devoted to the proof of Theorem B. We will use the fact that the
TCE condition is characterized by each of the following conditions, see [20]. Let f be
a rational map of degree at least two.

Exponential shrinking of components (ESC). There are r0 > 0
and λ > 1 such that for each x ∈ J(f) and each integer m ≥ 1, each
connected component W of f−m(B(x, r)) satisfies

diam(W ) ≤ λ−m.

Recall that given an integer n ≥ 1, a periodic point p of period n of f is repelling
if |(fn)′(p)| > 1.

Uniform hyperbolicity on periodic orbits. There is λ > 1 such
that for each integer n ≥ 1 and each repelling periodic point p of
period n we have |(fn)′(p)| ≥ λn.

Proof of Theorem B. Let f be a rational map satisfying the TCE condition and
let r0 > 0 and λ > 1 be the constants given by the ESC condition. Let ε > 0
be sufficiently small so that for every x ∈ J(f) we have ρf (B(x, r0)) > ε.

Let x ∈ J(f) and r̂ ∈ (0, 1) be given and let n ≥ 1 be the integer such that λ−n ≤
r̂ < λ−(n−1). Let W be the connected component of f−n(B(fn(x), r0)) containing x
and let D ≥ 1 be the degree of fn : W → B(fn(x), r0). Then, by Fact 2 we have

ρf (W ) = D deg(f)−nρf (B(fn(x), r0)) ≥ ε deg(f)−n.
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By the ESC condition it follows that diam(W ) ≤ λ−n, so W ⊂ B(x, r̂). Thus, if we
put α := ln deg(f)

ln λ and C := ελ−α, then

ρf (B(x, r̂)) ≥ ε deg(f)−n = ε(λ−n)α ≥ Cr̂α.

This shows the desired property of ρf .
Suppose now that f is a rational map for which there are constants r0 > 0, α > 0

and C > 0, such that for each x ∈ J(f) and each r ∈ (0, r0) we have

ρf (B(x, r)) ≥ Crα.

We will show that f is uniformly hyperbolic on periodic orbits. As remarked above,
this implies that f satisfies the TCE condition. Let n ≥ 1 be an integer and let p
be a repelling periodic point of f of period n. Then there is a local inverse ϕ of fn

which is defined on a neighborhood of p and which fixes p. Furthermore, if r1 > 0 is
sufficiently small, then ϕ is defined on B(x, r1) and there is a constant C1 > 0 such
that for each k ≥ 1 we have

B(p, C1|(fn)′(p)|−k) ⊂ ϕk(B(p, r1)).

By Fact 2 we have

deg(f)−knρf (B(p, r1)) = ρf (ϕk(B(p, r1)))

≥ ρf (B(p, C1|(fn)′(p)|−k)) ≥ CCα
1 |(fn)′(p)|−kα.

Since this holds for every integer k ≥ 1, it follows that |(fn)′(p)| ≥ deg(f)n/α. This
shows that f is uniformly hyperbolic on periodic orbits with constant λ = deg(f)1/α.

�

Remark 4. For a rational map f satisfying the TCE condition we will now determine
the optimal constant α in Theorem B. For each integer n ≥ 1 and each periodic
point p of period n, put

χ(p) =
1
n

ln |(fn)′(p)|,

and
χper := inf{χ(p) : p repelling periodic point of f}.

Then, in [20] it is shown that ESC holds for each λ ∈ (1, exp(χper)).
Thus, the proof of Theorem B gives that if α is a constant for which the conclusion

of this theorem holds, then α ≥ ln deg(f)/χper. On the other hand, we proved that
the conclusion of Theorem B holds for each α > ln deg(f)/χper.

4. Semi-hyperbolicity

This section is devoted to the proof of Theorem A. The proof is based on Lemma 5
below and makes use of the fact that a rational map satisfying the TCE condition
has arbitrarily small “nice couples”, as shown in [19]. We will also use the fact that a
rational map is semi-hyperbolic if and only if it has neither parabolic periodic points
nor recurrent critical points in the Julia set. This was shown by Carleson, Jones and
Yoccoz in [3] for polynomials and then it was extended to rational maps by Yin in [27,
Theorem 1.1].

Throughout all this section we fix a complex rational map f of degree at least two.
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An open neighborhood V of Crit′(f) that is disjoint from the forward orbit of
critical points not in J(f) is called a nice set for f , if for each integer n ≥ 1 we
have fn(∂V )∩V = ∅ and if each connected component of V is simply-connected and
contains precisely one element of Crit′(f). We say that a pair of nice sets (V̂ , V ) is a
nice couple for f , if V ⊂ V̂ and if for each integer n ≥ 1 we have fn(∂V ) ∩ V̂ = ∅.
We will say that a nice couple (V̂ , V ) for f is small, if there is a small r > 0 such
that V̂ ⊂ B(Crit′(f), r). Given topological disks U, Û ⊂ C such that U ⊂ Û , we
define mod(Û ;U) as the supremum of the modulus of those annuli that separate U
and C \ Û . If f is a rational map and if (V̂ , V ) is a nice couple for f , then we define
the modulus of (V̂ , V ) as

mod(V̂ ;V ) := min{mod(V̂ c;V c) : c ∈ Crit′(f)}.
In the proof of Theorem A we will use the fact that a rational map satisfying the

TCE condition has arbitrarily small nice couples of arbitrarily large modulus, see [19,
Proposition 4.2].

Lemma 5. Let f be a rational map of degree at least two having arbitrarily small
nice couples of arbitrarily large modulus. Then for each recurrent critical point c0
in J(f), κ ∈ (0, 1), N ≥ 2 and each r∗ > 0 there is c ∈ Crit′(f), r ∈ (0, r∗) and an
integer m ≥ 1, such that fm(c0) ∈ B(c, r) and such that the pull-back Û (resp. U)
of B(c, r) (resp. B(c, κr)) containing c0 satisfies the following properties.

1. diam(Û) < r∗.
2. The degree of fm on Û and the degree of fm on U is the same.
3. The set A := Û \ U is an annulus and the map

fm : A→ B(c, r) \B(c, κr)

is a covering map whose degree is at least N and at most `̂max(f)N .

To prove this lemma we will make the following definition. Let f be a rational map
of degree at least two and let C be a subset of Crit′(f). We will say that an open
neighborhood V of C which is disjoint from the forward orbits of the critical points
which are not in J(f) is a nice set for f relative to C , if for each integer n ≥ 1 we
have fn(∂V )∩V = ∅, and if each connected component of V is simply-connected and
contains precisely one element of C . Notice that a nice set for f is a nice set for f
relative to Crit′(f). Given nice sets V̂ and V for f relative to C satisfying V ⊂ V̂ ,
we will say that (V̂ , V ) is a nice couple for f relative to C , if for each integer n ≥ 1
we have fn(∂V ) ∩ V̂ = ∅.

Proof of Lemma 5. If f has critical connections, then by replacing c0 by a critical
point in its forward orbit if necessary, we assume that c0 is exposed. Let C0 be the
set of all those critical points of f in J(f) whose forward orbit accumulates on c0.
Note that for each c ∈ Crit(f) \ C0 the ω-limit set of c is disjoint from C0. Thus
there is r0 > 0 such that if for some c ∈ Crit(f) and some integer n ≥ 1 we have
fn(c) ∈ B(C0, r0), then c ∈ C0.

Fix a periodic orbit O of period at least two of f , disjoint from Crit′(f). Let m0 > 0
be sufficiently large so that the following property holds. If W ⊂ C is a topological
disk disjoint from O and if K ⊂ W is a compact set such that W \K is an annulus
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of modulus at least m0, then diam(K) < r∗ and for each x ∈ K there is r ∈ (0, r∗)
such that K ⊂ B(x, κr) and B(x, r) ⊂W , see for example [14, Proposition 2.1].

Let n ≥ 1 be sufficiently large integer such that 2n ≥ N and fix a sufficiently small
nice couple (V̂ , V ) such that V̂ is disjoint fromO, contained inB(Crit′(f), r0) and such
that mod(V̂ ;V ) ≥ 3`̂max(f)nm0. Note that each pull-back W of V̂ is disjoint form O.
Furthermore, if for some integer m ≥ 1 and c ∈ Crit(f) we have fm(c) ∈ B(C0, r0),
then c ∈ C0.
1. Let C ′

0 be the set of those exposed critical points in C0. We have c0 ∈ C ′
0. We will

construct by induction a sequence of nice couples ((V̂n, Vn))n≥0 for f relative to C ′
0,

as follows. For each c ∈ C ′
0 denote by V̂ c

0 (resp. V c
0 ) the connected component of V̂

(resp. V ) containing c and put

V̂0 :=
⋃

c∈C ′
0

V̂ c
0 and V0 :=

⋃
c∈C ′

0

V c
0 .

Clearly (V̂0, V0) is a nice couple for f relative to C ′
0.

Let n ≥ 0 be a given integer and suppose by induction that (V̂n, Vn) is already
defined. As the forward orbit of each c ∈ C ′

0 accumulates on c0 there is an integer
m ≥ 1 such that fm(c) ∈ Vn. Let mn(c) be the least such integer and let V̂ c

n+1 (resp.
V c

n+1) be the pull-back of V̂n (resp. Vn) by fmn(c) containing c. Clearly V c
n+1 ⊂ V̂ c

n+1

and since (V̂n, Vn) is a nice couple for f relative to C ′
0, it follows that V̂ c

n+1 ⊂ Vn and
that

V̂n+1 :=
⋃

c∈C ′
0

V̂ c
n+1 and Vn+1 :=

⋃
c∈C ′

0

V c
n+1,

form a nice couple for f relative to C ′
0.

2. Let n ≥ 1 be given. Using the fact that (V̂n, Vn) is a nice couple for f relative
to C ′

0, it follows that if f does not have critical connections, then fmn(c)−1 is univalent
on f(V̂ c

n ). If f does have critical connections, then fmn(c)−1 might not be univalent
on f(V̂ c

n ), but in this case fmn(c)−1 is unicritical on this set and its unique critical
value is contained in C ′

0. In all cases it follows that fmn(c) does not have critical
points in V̂ c

n+1 \ V c
n+1 and the degree of fmn(c) on V̂n and the degree of fmn(c) on Vn

are the same.
3. Put m0 = 0 and for each j ∈ {1, . . . , n} let cj ∈ C ′

0 and mj ≥ 1 be such
that fmj (V̂ c0

n ) = V̂
cj

n−j . Furthermore, put d0 = 1 and for each j ∈ {0, . . . , n−1} denote
by dj the degree of fmn−mj : V̂ cj

n−j → V̂ cn
0 . Then the degree of fmn−mj : V cj

n−j → V cn
0

is equal to dj and for each j ∈ {0, . . . , n− 1} we have

2dj ≤ dj+1 ≤ `̂max(f)dj .

Thus 2n ≤ dn ≤ `̂max(f)n and hence there is j ∈ {0, . . . , n} such that

N ≤ dn/dj ≤ `̂max(f)N.

Since fmn−mj : V̂ cj

n−j → V̂ cn
0 is of degree dj ≤ `̂max(f)j and does not have critical

points in V̂ cj

n−j \ V
cj

n−j , it follows that

mod(V̂ cj

n−j ;V
cj

n−j) = d−1
j mod(V̂ cn

0 ;V cn
0 ) ≥ 3m0`̂max(f)n−j .
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Let Ṽ be a topological disk compactly contained in V̂ cj

n−j , such that

V
cj

n−j ⊂ Ṽ ,mod(V̂ cj

n−j ; Ṽ ) ≥ m0`̂max(f)n−j and mod(Ṽ ;V cj

n−j) ≥ m0.

By our choice of m0 there is r ∈ (0, r∗) such that V cj

n−j ⊂ B(cj , κr) and B(cj , r) ⊂
Ṽ ⊂ V̂

cj

n−j . Let B̃ (resp. Û , U) be the pull-back of Ṽ (resp. B(cj , r), B(cj , κr))
by fmj containing c0. Since the degree of fmj : V̂ c0

n → V̂
cj

n−j is less than or equal

to `̂max(f)n−j , it follows that mod(V̂ c0
n ; B̃) ≥ m0. By our choice of m0 this im-

plies diam(Û) ≤ diam(B̃) < r∗. Since V c0
n ⊂ U ⊂ Û ⊂ V̂ c0

n and since the degree
of fmj : V̂ c0

n → V̂
cj

n−j is equal to dn/dj and this map does not have critical points
in V̂ c0

n \ V c0
n , the conclusion of the lemma holds for this choice of r and for c = cj

and m = mj . �

Proof of Theorem A. That the maximal entropy measure of a semi-hyperbolic ratio-
nal map is doubling on the Julia set was shown by Häıssinsky and Pilgrim in [6,
Proposition 4.2.9].

To prove the converse statement, let f be a complex rational map of degree at least
two, whose maximal entropy measure ρf is doubling on J(f), with constants r∗ > 0
and C∗ > 0. By [27, Theorem 1.1], to prove that f is semi-hyperbolic we just need
to show that f has neither parabolic periodic points nor recurrent critical points in
the Julia set. In view of Lemma 1 and Theorem B, f satisfies the TCE condition. In
particular, f does not have parabolic periodic points. So we just need to show that f
does not have recurrent critical points in the Julia set.

Suppose by contradiction that f has a recurrent critical point c0 in the Julia set.
Since the Julia set J(f) is uniformly perfect [7, 13], it follows that the measure ρf

satisfies the hypothesis of Lemma 2. Let η1 > 1 and r1 > 0 be given by part 2 of
Lemma 2. Let M > 0 and δ > 0 be the constants given by Lemma 3.

Since C is endowed with the spherical metric, for small r′ > r > 0 and x ∈ C the
modulus of the annulus B(x, r′) \B(x, r) is equal to ln(r′/r) plus an error term that
goes to zero as r′ → 0. So, reducing r∗ > 0 if necessary, we assume that r∗ < δ and
that for each r ∈ (0, r∗], ε ∈ (0, 1) and x ∈ C we have

(1)
∣∣∣mod

(
B(x, r) \B(x, εr)

)
+ ln ε

∣∣∣ ≤ 1
10
.

Let k, `,N ≥ 0 be integers such that 2k ≥M , 2` > Ck
∗ and

2N/2 ≤ η`
1 < 2(N+1)/2.

Taking η1 larger if necessary we assume N ≥ 2.
Since f satisfies the TCE condition, by [19, Proposition 4.2] f has arbitrarily small

nice couples of arbitrarily large modulus. So f satisfies the hypothesis of Lemma 5.
Let Û , U,A,m, r, c be given by Lemma 5 for N and c0 as above and with

r∗ = δ and κ = η
−(1+10 ̂`max(f))`
1 .

Put r0 := κr. By definition A = Û \ U and Û (resp. U) is the connected component
of f−m(B(c, r)) (resp. f−m(B(c, r0))) containing c0.
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1. Since the degree of fm on U and the degree of fm on Û are the same, there is a
unique connected component of

f−m

(
B

(
c, η

(1+5 ̂`max(f))`
1 r0

))
and of f−m

(
B

(
c, η

5 ̂`max(f)`
1 r0

))
contained in Û . We will denote it by B̂ and B, respectively. It follows that the degree
of fm on each of the sets U, Û , B, B̂ is the same. Thus, by Fact 2 we have

ρf (B̂)
ρf (B)

=
ρf (fm(B̂))
ρf (fm(B))

.

Using part 2 of Lemma 2 inductively we obtain,

(2) ρf (fm(B̂)) = ρf

(
B

(
c, η

(1+5 ̂`max(f))`
1 r0

))
≥ 2`ρf

(
B

(
c, η

5 ̂`max(f)`
1 r0

))
= 2`ρf (fm(B)) > Ck

∗ρf (fm(B)).

2. Let ϕ0 be a Moebius transformation such that ϕ0(0) = c and

ϕ0({z ∈ C : |z| < 1}) = B

(
c, η

5 ̂`max(f)`
1 r0

)
.

Using the inequalities η`
1 exp(1/10) ≤ 2(N+1)/2 exp(1/10) < 2N we obtain using (1)

B

(
c, η

(1+5 ̂`max(f))`
1 r0

)
⊂ ϕ0

({
z ∈ C : |z| < η`

1 exp(1/10)
})

⊂ ϕ0({z ∈ C : |z| < 2N}).

On the other hand, using the inequalities η`
1 ≥ 2N/2 and η

` d`max(f)
1 ≥ exp(1/10) we

obtain using (1)

B(c, r0) ⊂ ϕ0

({
z ∈ C : |z| < η

−5 ̂`max(f)`
1 exp(1/10)

})
⊂ ϕ0

({
z ∈ C : |z| < 2−N d`max(f)

})
and

B(c, r) ⊃ ϕ0

({
z ∈ C : |z| < η

(1+5 ̂`max(f))`
1 exp(−1/10)

})
⊃ ϕ0

({
z ∈ C : |z| < 4N d`max(f)

})
.

We have shown that fm(B̂ \B) ⊂ ϕ0(A(1, 2N )) and that

ϕ0

(
A

(
2−N d`max(f), 4N d`max(f)

))
⊂ B(c, r) \B(c, r0) = fm(A).

Since the degree of fm : A→ B(c, r)\B(c, r0) is at least N and at most `̂max(f)N , we
conclude that there is a univalent map ϕ : A(1, 8) → A such that B̂ \B ⊂ ϕ(A(2, 4)).
So there is r′ > 0 such that

B(c0, r′) ⊂ B ⊂ B̂ ⊂ B(c0,Mr′) ⊂ B(c0, 2kr′).
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Using (2) we obtain

ρf (B(c0, r′)) ≤ ρf (B) < C−k
∗ ρf (B̂) ≤ C−k

∗ ρf (B(c0, 2kr′)).

This contradicts the doubling property of ρf on J(f) and completes the proof of the
theorem. �

5. John domains as Fatou components

This section is devoted to the proof of Theorem C. We also prove Fact 1 at the
end of this section.

We will show the following slightly stronger version of Theorem C. We will say
that a subset J of C is porous at a point x in J , if there is ξ ∈ (0, 1) such that for
each small r > 0 there is y ∈ B(x, r) such that B(y, ξr) ∩ J = ∅.
Theorem C’. Let f be a rational map of degree at least two having a completely
invariant attracting basin A. Then the following properties are equivalent.

1. The map f is semi-hyperbolic.
2. The attracting basin A is a John domain.
3. The attracting basin A is a Hölder domain whose boundary is porous at each

critical point of f .

The implication 1⇒2 is given by [16, Theorem 1], see also [27, Theorem 1.2] for
the case of connected Julia sets. Since every John domain is a Hölder domain, see for
example [17, §5.2], the implication 2⇒3 follows from the straightforward fact that the
boundary of a John domain is porous. Recall that an open and connected subset D of
the Riemann sphere C is a John domain, if there is z0 ∈ D and a constant C > 0 such
that the following property holds: for each z ∈ ∂D there is a path γ in C joining z0
and z, such that γ \ {z} ⊂ D and such that for each w ∈ γ we have

dist(w, ∂D) ≥ C dist(w, z).

So to prove Theorem C’ we just need to prove the implication 3⇒1. The following
lemma is the key step.

Lemma 6. Let f be a rational map of degree at least two having arbitrarily small nice
couples of arbitrarily large modulus. Then for each recurrent critical point c0 in J(f),
the Julia set J(f) is not porous at c0.

In the proof of this lemma we use Lemma 5. This last result implies that for
each N ≥ 1 there are integers M ∈ {N, . . . , N`̂max(f)} and m ≥ 1 such that fm is in
local coordinates close to the map z 7→ zM on a small think annulus around c0. The
fact that J(f) is uniformly perfect allows us estimate the “non-porosity” of J(f) at c0
on this thick annulus. Taking N arbitrarily large will allow us to conclude that J(f)
is not porous at c0.

We will introduce some notation to prove Lemma 6. For τ ∈ C we denote by Tτ :
C → C the translation Tτ (z) = z+ τ and for λ ∈ C \ {0} the homothecy Mλ(z) = λz.
For s, s′ ∈ R with s < s′ we put

S(s, s′) := {z ∈ C : s < =(z) < s′}.
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Recall that C is endowed with the spherical metric. We identify C with C ∪ {∞}.
For a point x ∈ C we denote by x̂ ∈ C the antipodal point of x and we let ψx be an
isometry of C mapping 0 to x. Furthermore we put

Ex : C → C \ {x, x̂}
z 7→ ψx(exp(−2πiz)).

It is a 1-periodic covering map.

Proof of Lemma 6. We will show that for each s0 ∈ R, h0 > 0 and ε0 > 0, there is
s < s0 such that E−1

c0
(J(f)) is ε0-dense in the strip S(s− h0, s). This clearly implies

that J(f) is not porous at c0.
Let h′0 > 0 be a sufficiently large constant such that for every univalent map ϕ̃ :

S(0, h′0) → C that commutes with the translation T1, there is s ∈ R such that the
image of ϕ̃ contains the strip S(s − h0, s), see [14, Proposition 2.1]. Taking h′0 > 0
larger if necessary we assume h′0 ≥ ε0. It follows from Koebe distortion theorem
that there is a constant D > 1 such that for each h ≥ ε0 and each univalent map
ϕ̃ : S(−2h, 3h) → C that commutes with T1 the distortion of ϕ̃ on S(−h, 2h) is
bounded by D.

Since the Julia set J(f) is uniformly perfect [7, 13], it follows that there are con-
stants s1 ∈ R and h1 > 0 such that for each x ∈ J(f) and s ≤ s1, the set E−1

x (J(f))
intersects the strip S(s, s+ h1). Since the set E−1

x (J(f)) is 1-periodic, it follows that
the set E−1

x (J(f)) is (h1 +1)-dense in {z ∈ C : =(z) ≤ s1}. Decreasing s0 if necessary
we assume s0 ≤ s1.

Let N ≥ ε−1
0 D(h1 + 1) be an integer, put h2 := 5N`̂max(f)h′0 and let r∗ > 0

and κ ∈ (0, 1) be sufficiently small so that for each r ∈ (0, r∗) and x ∈ J(f) the
set E−1

x (B(x, r)) is contained in {z ∈ C : =(z) ≤ s0} and there is s ≤ s0 such that
the set E−1

x (B(x, r) \B(x, κr)) contains the strip S(s− h2, s).
Let m, c, r and A be given by Lemma 5 for the choices of N , r∗ and κ as above,

and let d be the degree of fm : A→ B(c, r) \B(c, κr). We have N ≤ d ≤ `̂max(f)N .
Let s ≤ s0 be such that E−1

c (B(c, r) \B(c, κr)) contains the strip S(s− h2, s). If we
denote by A′ the pull-back of the annulus A0 := Ec(S(s − h2, s)) by fm contained
in A and put Ã′ := E−1

c0
(A′), then

fm ◦ Ec0 : Ã′ → A0 and Ec : S(s− h2, s) → A0,

are both universal covering maps. Thus there is a biholomorphic map

ϕ̃ : S (s− h2, s) → Ã′,

satisfying fm ◦ Ec0 ◦ ϕ̃ = Ec and therefore ϕ̃ ◦ Td = T1 ◦ ϕ̃. In particular, the map
ϕ̂ : S

(
s−h2

d , s
d

)
→ Ã′ defined by ϕ̂ := ϕ̃ ◦Md commutes with T1.

Since d ≤ N`̂max(f), we have h2/d ≥ 5h′0. So, if we put s′ = s/d−3h′0, then S(s′−
2h′0, s + 3h′0) ⊂ S

(
s−h2

d , s
d

)
and therefore the distortion of ϕ̂ on the strip S(s′ −

h′0, s
′ + 2h′0) is bounded by D. By our choice of h′0 there is s′′ ∈ R such that the

set ϕ̂(S(s′, s′ + h′0)) contains the strip S(s′′ − h0, s
′′). Since

Ec0(ϕ̂(S(s′ − h′0, s
′ + 2h′0))) ⊂ A ⊂ B(c0, r∗),

by our choice of r∗ we have s′′ ≤ s0. On the other hand, since the set E−1
c (J(f))

is (h1 + 1)-dense in S(s − h2, s) and (h1 + 1)/d ≤ ε0D
−1 ≤ ε0 ≤ h′0, it follows that
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the set

M−1
d (E−1

c (J(f)) ∩ S(s− h2, s)),

is (ε0D−1)-dense in the strip S(s′, s′ + h′0). Thus the set

ϕ̂ ◦M−1
d

(
E−1

c (J(f)) ∩ S(s− h2, s))
)
⊂ E−1

c0
(J(f)),

is ε0-dense in ϕ̂(S(s′, s′ + h′0)) and hence in S(s′′ − h0, s
′′). This completes the proof

of the lemma. �

Proof of Theorem C’. In view of the remarks above we just need to show the impli-
cation 3⇒1. By [27, Theorem 1.1], to show that f is semi-hyperbolic it is enough to
show that f has neither parabolic periodic points nor recurrent critical points in its
Julia set. Combining [5, Theorem 1, (iii)] and [20, Main Theorem] we obtain that f
satisfies the TCE condition. Therefore f does not have parabolic periodic points and
by [19, Proposition 4.2] it satisfies the hypothesis of Lemma 6. Since by hypothe-
sis ∂A = J(f) is porous at each critical point of f , Lemma 6 implies that f does
not have recurrent critical points in J(f). This shows that f is semi-hyperbolic and
completes the proof of the theorem. �

Proof of Fact 1. The rational map N has four critical points, three of which are fixed.
Denote the corresponding immediate attracting basins by B0, B1 and B2. If there is
another attracting cycle, then N is hyperbolic and the result is well known. We thus
assume that there is no other attracting cycle besides the three fixed critical points.
Since by hypothesis N has no parabolic periodic point or Siegel disk it follows that
every point in the Fatou set is eventually mapped into B0 ∪ B1 ∪ B2 under forward
iteration. So we just need to show that for each i ∈ {0, 1, 2} the Fatou components
of N that are eventually mapped to Bi are quasi-disks with a uniform constant.

Let P the closure of the forward orbit of the fourth critical point. Since N is
twice renormalizable, the boundary of Bi is disjoint from P , see the proof of [24,
Proposition 8.3, 4)]. We will prove first that the boundary of Bi is a quasi-disk. It
is a Jordan curve by [24, Theorem 6] and f is uniformly expanding on it by [12].
Thus N has a quadratic-like restriction having Bi as a fixed attracting basin. An
argument as in the proof of [2, Theorem VI.2.1] applied to this quadratic-like map
shows that Bi is a quasi-disk. It is also possible to prove that ∂Bi satisfies the “three
point property” of quasi-circles using that each small ball centered at ∂Bi is mapped
by some iterate of f to unit scale with bounded distortion.

To prove that the Fatou components of N that are eventually mapped to Bi are
quasi-disks with a uniform constant, fix a simply-connected neighborhood Vi of Bi

that is disjoint from P and from the fixed critical points of N that are not in Bi.
Let U be a Fatou component of N different from Bi that is eventually mapped to Bi

and denote by n ≥ 1 the least integer such that fn(U) = Bi. Then fn maps a
neighborhood of U univalently onto Vi and Koebe distortion theorem implies that U
is a quasi-disk whose constant depends on Bi and Vi only. �
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