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NEW EXAMPLES OF p-ADICALLY RIGID AUTOMORPHIC
FORMS

JOEL BELLAICHE

ABSTRACT. In this paper, we prove two p-adic rigidity results for automorphic forms for
the quasi-split unitary group in three variables U(2, 1) attached to a quadratic imaginary
field.

We show first that the discrete automorphic forms for this group that are cohomo-
logical in degree 1 (and refined, with a non semi-ordinary refinement) are rigid, in the
sense that they can not be interpolated in a positive dimensional p-adic family, even
though the set of Hodge-Tate weights of all such forms is not p-adically discrete. This
results implies that the eigenvariety of U(2,1) in cohomological degree 1, if it exists in
the sense of [E] (or [BC2]), is not equi-dimensional. Hence the situation for the quasi-
split unitary group is in striking contrast with the one for its definite inner form U(3)
and more generally any definite reductive group.

We then show that some of the automorphic forms considered above, namely the
ones that are minimally ramified in their A-packet and attached to an Hecke character
whose L-function does not vanish at the center of its functional equation, are even rigid
in the stronger sense that they can not be put in a non trivial family interpolating
cohomological automorphic forms in any degree.
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1. Introduction

We denote by U(2,1) the quasi-split unitary group in three variables attached to
a quadratic imaginary field, and we fix a prime p at which U(2,1) splits.

The main aim of this note is to show (Theorem 1) that automorphic representations
for U(2,1) that are cohomological in degree 1, together with a suitable choice of a

Received by the editors July 16, 2009.
2000 Mathematics Subject Classification. 11F33. Secondarily: 11F80, 11F67.

781



782 J. BELLAICHE

refinement! at p are p-adically rigid, i.e. cannot be put in any non-trivial positive-
dimensional p-adic family.

This result is a little bit surprising, at least for me, since, as we shall see, the set
of weights of those automorphic representations is not p-adically discrete, and is in
fact dense in a 1-dimensional? subspace of the weight space. Furthermore, the same
automorphic representations with another choice of refinement can easily be put in
a non-trivial 1-dimensional p-adic family (see Remark 4). Hence the eigenvariety for
U(2,1) and cohomological degree 1, if it exists in any reasonable sense (e.g [E]), is not
equidimensional. Even more, different refinements (or p-stabilizations) of the same
automorphic form may lie in components of different dimensions of the eigenvariety.

A rigidity result for some examples of ordinary, non essentially self-dual cohomo-
logical automorphic forms of GLj3 has already been obtained by Ash, Pollack, and
Stevens [APS]. They also conjecture that all non essentially self-dual automorphic
forms for GL,,, n < 3 are rigid. There is no doubt that their result is much deeper,
both in significance and in difficulty, but the point of this paper is to show that a
different kind of pathologies may occur in the case of unitary groups.

Non self-dual cohomological automorphic forms for GL,, are very mysterious. If
n > 3, there is no Shimura varieties for GL,, or any of its inner form, and no one knows
how to attach a Galois representation to a non self-dual cohomological automorphic
forms for GL,. Similarly, GL,(R) has no discrete series for n > 3 and no one ever
constructed a non-trivial, positive-dimensional families for those groups except by
using functoriality from some other groups. The rigidity result of [APS] for some
automorphic forms for GLj3 fits well in this picture.

The case of U(2,1) is very different. Hida constructed nice, equidimensional (of
the expected dimension) families in the ordinary case for this group and many other
a long time ago, and we also have such families for the definite inner form U(3) of
U(2,1) (and higher rank analogs) without the ordinarity assumption, by works of
Chenevier [C] and Emerton [E]. Urban and Skinner claim in [SU] that they are able
to construct such families in the semi-ordinary case, at least for representations that
are holomorphic discrete series at infinity. This note shows that in the non-definite,
non ordinary case, pathologies may occur, and that beyond a general theorem on the
existence of eigenvarieties (like, e.g. [E]), a formula computing the dimension of their
components containing a refined automorphic representation would be very useful,
and that this formula should depend not only on the given representation, but also
on the chosen refinement.

The discussion above was essentially concerned with families of automorphic forms
that are cohomological in a fixed degree — as in the works of Stevens, Chenevier,
Emerton, and others. Our second result (Theorem 2) deals with families where forms
are cohomological, but not necessarily of the same degree. Our result is that through
some very specific (but arithmetically interesting) examples of non-tempered repre-
sentations of U(2,1), even such more general families do not exist (more precisely,
have dimension 0.)

ISome authors, like [SUJ, call the choice of a refinement a p-stabilization.
2In all this introduction, we are ruling out central (that is, anticyclotomic) deformations. Other-
wise, the dimension would be 2.
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2. Preliminaries

2.1. Unitary groups. Let E be a quadratic imaginary field, and let G = U(2,1) be
the unique quasi-split unitary group in three variables over Q that splits in E.

Let p be a prime number that, we shall assume, splits in E.

Let KP = Hl;ﬁp K be a compact open subgroup of G(Afc) that we will call the tame
level. We denote by S the finite set of primes [ such that either [ = p, or [ # p and
K; is not maximal hyperspecial. For [ € S, we denote by H; the Hecke algebra (over
Z) of G(Q;) with respect to K;. We denote by K, a maximal compact hyperspecial
subgroup of G(Q,), by I, an Iwahori subgroup of K, and by A, the Atkin-Lehner
sub-algebra of the Hecke algebra of G(Q,) with respect to I, — See [BC2, §6.4.4]. We

set H = (®l€5 Hl) ® Ap. This is a commutative algebra over Z.

2.2. Automorphic refinements. We refer to [BC2, §5.4] for a complete discussion
of the notion of refinement R of an unramified representation m, of G(Q,). Let us

simply define it here as a character ¢ : A, — C appearing in the A,-module ﬂ,I,p.

2.3. Hecke characters. Set K = K, x KP. A refined representation (7, R) of level
K shall mean a discrete automorphic representation 7 for U(2, 1), such that 7% # 0,
together with a refinement R of m,. Such a refined representation defines a character

Yer = Yr @¢Yr : H — C. Here, ¢ : (®z§zs Hl) — C is the character giving the

action of (®I€S Hl) on the one-dimensional space ngzs ﬂ'lK’, and ¥ is the character

of A, defined by the refinement R.

If 7o is cohomological (for some coefficient system), the image of 1, % lies in fact in
a number field. We fix once and for all an embedding Q C C, and also an embedding
Qc @p. Hence we can see ¢, g as a character H — @p when 7., is cohomological.
Conversely, we shall say that a character vy : H — Qp is of level K and cohomological
of degree n if it is of the form ¢, g for (7w, R) a refined representation of level K such
that 7. is cohomological in degree n.

2.4. Galois representations. To a discrete automorphic representation 7 such that
Teo 1s cohomological of some degree is attached by the work of Blasius and Rogawski
([BR1, Thm 1.9.1]) and the whole book [ZFPMS] a three dimensional representation
(see [BC1, §3.2.2] for this formulation of the results of Blasius and Rogawski) pr :
I'g — GLg(@p) that depends only of the Hecke-character ¢, (here and below, I'p
denotes “the” absolute Galois group of a field F)

The representation p, satisfies the symmetry condition p, ~ pt, where for p a
representation of I'g, p*(g) = !p(cgc)~!. Here, c is an element of I'g — 'z of order 2.

We fix once and for all a place v of E above p. The decomposition group D, at
v in T'g is isomorphic to Gal(Q,/Q,). The choice of v determines an isomorphism
G(Qp) ~ GL3(Q,), well-defined up to conjugation.

If 7, is unramified, then p.|D, is crystalline. It thus has three integral Hodge-
Tate weights, that we will denote by kg < k1 < ko and three Frobenius eigenvalues
o0, 1, P2. The weak admissibility condition of crystalline representation theory im-
plies the equality v,(¢o) + vp(¢1) + vp(¢2) = ko + ki + ko, where v, is the p-adic
valuation.
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We will refer to the k;’s and the ¢;’s simply as the weights and eigenvalues of p;,
without mentioning the choice of the place v above p.

2.5. Refinement on the Galois side. For our purposes, a refinement of p; is
simply an ordering of the eigenvalues ¢, ¢1, ¢2. In a generic situation, there is thus
6 refinements, and less if two eigenvalues are equal. The important fact for us (see
[BC1, §6]) is that each automorphic refinement at p of 7 defines canonically a Galois
refinement of p.. Refinements of p, that can be obtained this way are called accessible.

2.6. The weight space. We define a weight space Wy, := Homrig(Z;,Gm)2 of
dimension 2, and embed Z? as a Zariski-dense subspace in Wo, (Qp) in a natural way.

2.7. Representations that are cohomological in degree 1. Let x( be a Grossen-
character of F such that for all z € Ag, xo(22) = 1 and such that for 2 € EQR =C,
(X0)oo(2) = 2¥/(22)*/2, where k is an odd integer different from £1. (The oddness
of k is equivalent to the property that xo does not come from a Hecke-character of
U(1).)

The complete L-function L(xo, s) satisfies a functional equation (see [Ta, 3.6.8 and
3.6.1])

L(x0,1 — s) = €(xo0, ) L(x0,5), €(xo0,1/2) = *1.

For every place v of Q, we can define (following Rogawski) an irreducible admissible
representation 7" (xo), of G(Q,) which is non tempered (and unramified if v is finite,
unramified in E, and (o), is unramified) as follows (see [BC1, §4.2 and §4.3] for more
details):

If v is split in F, the choice of a place w above v determines an isomorphism
G(Q,) ~ GL3(Q,), well defined up to conjugacy, and if P = M N is the standard par-
abolic of type (2, 1) of GL3(Q,) (so M = GL2(Q,) x GL1(Qy)), 7" (X0)s is the normal-
ized parabolic induction of the character M — C*, (z,y) —xo,»(det(z))| det(z) 2

If v is a inert or ramified in E (including the infinite place), and w the unique place
of E above v then in a suitable basis the maximal torus of G(Q,) is

{diag(, 8, c(@) ™), .8 € By, fe(B) =1},

and 7™ (x0)» is the normalized parabolic induction of the character

diag(a, B, c(a) 1) > xo.uw(@)|ali/?).

In addition, for v inert or ramified, Rogawski constructs by difficult trace formula
considerations a square-integrable (even supercuspidal when v is finite) representa-
tion 7°(x0), of G(Q,). Rogawaki has also defined local and global A-packets for
the group G in accordance of Arthur’s formalism. The representations 7™ (o), be-
longs to only one local A-packet; it is a singleton when v is split in F, and the pair
{7™(x0)v; ™ (X0)v} When v is ramified or inert in E (including the non-archimedean
place of Q). A representation of the global corresponding A-packet II(yg) is an irre-
ducible admissible representation of G(Ag) of the form 7 = ®,7,, where m, = 7" (X0)s
for almost all v, and 7, = 7°(x0)., otherwise. Let n(m) be the number of places v of
Q such that m, = 7 (x0)s-



NEW EXAMPLES OF p-ADICALLY RIGID AUTOMORPHIC FORMS 785

Fact 1 (Rogawski). (i) Assume that xo, ™ are as above, that Too = T"(X0)oo;
and that (—=1)™™) = €(x0,1/2). Then 7 is discrete, and cohomological in
degree 1 (and 3). Moreover 7 is cuspidal, except in the case where n(w) =0
and L(1/2,x0) # 0, where 7 is residual (that is, discrete non cuspidal)

(ii) Conwersely, any discrete automorphic representation of G that is cohomolog-
ical in degree 1 is of the form described in (i).

Reference for this fact are: [Rog2] for the definition of 7™, 7* and the existence
assertion; [Rog3] for the cuspidality assertion, and [Rogl, 4.4] for the cohomological
assertions of (i), and (ii). (For (ii), see also [MR, Prop 3] together with the classifica-
tion recalled in [BC1, §3]).

The character x(z) = xo(z)(22)'/? is algebraic. We still denote by y its p-adic

realization as a character 'y — Q,. We have y* = x(1).

Fact 2 (Rogawski). If 7 is as in the above fact, then p, is the sum of three characters
X®L1®x*, and the weights kg < k1 < ko of pr satisfy either ki —kg =1 or kg —k; = 1

Indeed, the description of p, follows directly form the description of 7™ in [Rog2]
(see also [BC1, §3.2.3]), and it follows that (if v is well chosen) the weights of p, are
in some order 0,(k — 1)/2, (k + 1)/2, which implies that ko — k; = 1 if £ > 1, and
ki —ko=1if k< —1.

Remark 1. It is easy to see that if the level K? is small enough, then for all triples
of integers (ko, k1, k2) that satisfies either k1 — kg = 1, or ko — kg = 1, there are exists
representations 7 as in Fact 1 with weights (ko, k1, k2). The Zariski closure of those
weights in the three dimensional weight space obviously has dimension 2, or if we fix
one of the weight, for example the first one kg to 0, has dimension 1. So it is natural
to expect that there exist one-dimensional non-trivial p-adic families interpolating
forms that are cohomological in degree 1. Theorem 1 shows that actually it is not
always the case.

Let 7 be as in Fact 1. Assume in addition that 7, is unramified. By Fact 2, p, is
the sum of three characters, so the weak admissibility conditions applied to each of
them gives that the set of weights {ko, k1, k2} is equal to the set of slopes {sq, s1, $1}
of pr. Thus, a refinement of p, is an ordering of the weight {ko, k1, k2}.

Fact 3. If 7, is unramified, then ﬁZI,p = 7"(xp)* has dimension 3, and m has three
possible refinements. Assume to fix ideas that ko — ki = 1 (the other case being
symmetric). The corresponding accessible refinements of pr are (a) (ko, ko, k1); (b)
(kg,ko,kl), and (C) (k’g,kl,ko)

This follows from [BC1, Remark 5.2.4].

Remark 2. e The ordinary refinement would be (kg, k1, k2). It is not accessible
in the present situation. In other words, we are not in a case where Hida’s
work allows us to construct p-adic families through 7.
e The refinement (b), that is, (ka, ko, k1) is anti-ordinary in the sense of [BC2,
§2.4]. It is the refinement used in the paper [BCI].
e The refinement (a) is what Urban and Skinner call semi-ordinary. It is analog
to the one they use in their paper [SU2].
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3. Rigidity of cohomological in degree 1 forms.

3.1. Definition of a p-adic family of forms that are cohomological in degree
n. For our purpose, we will adopt the following, rather weak, notion of p-adic family.
Let K be as in §2.3

Definition 1. Let n be an integer. By a p-adic family interpolating discrete auto-
morphic representations of level K and cohomological of degree n for U(2,1), or for
short a p-adic family, we mean the data of

o A rigid analytic space X over Q, that is reduced and separated.
e An analytic map x = (k1,K2) : X — Wo, over Q,.
e A ring homomorphism v : H — O(X)*is.
e A subset Z € X(Q,) that is Zariski-dense and accumulates at every of its
points.
such that

(a) For every z € Z, the character 1, : H — O(X)"® ovalpt & Q, is of the form
Y r Where 7 is of level K and cohomological of degree n.

(b) If z € Z, and 9, = ¢r r, then the Hodge-Tate weights of p, are the natural
integers 0, k1(z), k2(2), and we have 0 < k1(z) < Kka(z2).

(c) The map Z — Hom(H,Q,), z +— 1, is injective.

It is expected that eigenvarieties, if they exist, satisfy those properties, and many
more: see [BC1, Definition 7.2.5 and Theorem 7.3.1] or [E, Theorem 0.7].

Remark 3. The condition (¢) is a condition of non-triviality, though very weak. It
ensures that the family is not the constant family, for example.

3.2. Rigidity. We shall say that a given refined automorphic representation belongs
to the family X if there is a z € Z such that ¢, = ¥ ».

Theorem 1. Let X be an irreducible p-adic family as in definition 1 of cohomological
degree n = 1. Suppose that a refined discrete representation m with a refinement R of
type (b) or (c) of Fact 3 belongs to X. Then X is a point.

Proposition 1. Let X be a family as in the definition 1. There exists a pseudochar-
acter T : ' — (’)(X)”g and three invertible analytic functions Fy, F1, Fs on X
such that for every z € Z, such that if v, = Y., and p, is the semi-simple rep-
resentation of trace T, := eval, o T, then p, ~ pr, and the eigenvalues or p, are
Fo(2), F1(2)p™ ()| Fy(2)p™2(3) | given in the order defined by the refinement R.

Proof — See [BCL, §7]. The functions Fy, Fy, F» are defined as the images by ¢ of
three suitable elements in the Atkin-Lehner algebra A,,. O

Let us now assume, by contradiction, that dim(X) > 0. By hypothesis, every z
in Z corresponds to a 7 that is cohomological in degree 1, so the weights of m, that
is (by (b) of the definition of a family) 0 < k1(z) < ka(z) satisfy, by Fact 2, either
k1(z) = 1 or ka(z) — k1(2) = 1. Since X is irreducible, and Z Zariski-dense, one of
those two equalities has to hold for all z € Z (and even over X). By symmetry, we
may and do assume that we have for all z € Z,

ko(z) — k1(z) = 1.
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Now, by hypothesis, there exists a zg in Z such that the refinement is not the
refinement (a). That is to say, the refinement at zg is either (k2(20),#1(20),0) or
(k2(20),0, K1(20)). Using Prop. 1 we see that in both cases v, (Fo(20)) = K2(z0).

Let U be an affinoid neighborhood of zy on which the function v, (Fp) is constant.
By hypothesis Z N U is infinite. Since there is only a finite number of automorphic
representations with a fixed level and fixed weight, there exists z € Z N U such
that k(z) # k(z0). This implies ka(z) # ka(zg), since k1 = ko — 1 everywhere.
But by Prop. 1 applied to z, we have k2(2) = vp(Fo(2)) = vp(Fa(20)) = k2(20), a
contradiction. This proves Theorem 1.

Remark 4. Starting with a 1-dimensional deformation x, (for x a parameter in
a rigid analytic space X) of the Hecke character x, it is very easy to construct a
one dimensional family as above of representation that are cohomological of degree 1,
refined with a refinement of type (a). This may be done “by hand”, defining explicitly
the function v(h), h € H, with the guidance that p, = 1 ® x, ® x+. We leave the
details to the reader.

Remark 5. For higher rank unitary groups over Q (of signature (n—1, 1) at infinity),
it should be possible to exhibit similar examples of rigidity in cohomological dimension
1, using instead of Fact 2 the main theorem of [MR], but we have not written down
the details.

4. Another rigidity result

In this section, we give another rigidity result, which holds for a much smaller class
of representations, but for a more general notion of family, where we do not assume
the classical representations to have a fixed cohomological degree.

4.1. A special non-tempered refined representation. Let x( be Hecke charac-
ter of E as in §2.7, and assume that

In particular, €(xo,1/2) = 1, and by Fact 1 there exists a discrete automorphic
representation 7" (xo) = ®,7"(X0)» for G = U(2,1). Let R be the refinement (b) of
©(Xo)p (see Fact 3).

4.2. Definition of a family. We fix a subgroup K of U(2,1)(Ag) and a set S of
bad primes as in 2.3. We set S? =5 — {p}.

Since the argument we shall give is arithmetic, we shall need to control the ram-
ification at every places so we must have a condition at primes of SP. This can be
done by imposing some types (in the sense of Bushnell and Kutzko) at those primes
as in [BC1] or more conveniently, by using the notion of Non Monodromic Principal
Series as in [BC2, §6.6]. We choose the second way. Morally, a Non Monodromic
Principal Series is a principal series whose base change to GL,, corresponds by local
Langlands to a representation of the Weil-Deligne group without monodromy, that is
with N = 0. For the precise definition, we refer the reader to [BC2, Def. 6.6.5].

Definition 2. By a strong p-adic family interpolating discrete cohomological auto-
morphic representations of level K for U(2,1), or for short a strong p-adic family, we
mean the data of
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A rigid analytic space X over Q, that is reduced and separated.

An analytic map x = (1, k2) : X — W, over Q.

A ring homomorphism v : H — O(X)"e.

A subset Z € X(Q,) that is Zariski-dense and accumulates at every of its
points.

such that

(a) For every z € Z, the character v, : H — O(X)"8 cval._at 2 Q, is of the form
Yr r, Where 7 is of level K, cohomological of some degree, and m; is a Non
Monodromic Principal Series (see [BC2, Def 6.6.5]) for all [ € SP.

(b) If z € Z, and 9, = ¢» », then the Hodge-Tate weights of p, are the natural
integers 0, k1(z), k2(2), and we have 0 < k1(2) < Kka(2).

(c) The map Z — Hom(H,Q,), z +— 1, is injective.

4.3. The Kisin property. The proof of Prop. 1 works without any change for a
family X as above. We keep its notations. For z € Z, we denote by O, the rigid
analytic local field of X at z.

Definition 3. A realization of T over O, is any torsion-free finite module M over
O, with a continuous action of I'g, such that for all g € T'g, tr (9|M ® Frac(0,)) is
in O, and is equal to the germ of T'(g) at z.

Definition 4. We shall say that the family X satisfies the Kisin property at z € Z
if for any realization M of T over O, we have, if dim Dcrys(Mjs)¢:F0(z) < 1, then
dim Depys (M,)?=F002) = 1.

We say that the dual Kisin property holds if the same implication holds with T’
replaced by the dual character T(g~1) and Fy(z) by p~*2(*) Fy(z).

We say that the strong Kisin property holds if both the Kisin and the dual Kisin
properties hold.

It is expected that eigenvarieties, and most of the naturally constructed families
satisfies these properties. For the case of the eigencurve, this is essentially proved in
[Ki], and for the eigenvarieties on unitary groups, and more generally families with a
sufficiently dense set of ”classical” points, in [BC2, §3.4].

Remark 6. The reason for which I state the Kisin property as a definition rather
than as a theorem is that I do not want to presume what are the minimal conditions
on a family that implies it. As I have just said, this property has been proved in
[BC2] under some assumptions on the set Z, and a similar property is stated under
a different assertion on Z in [SU, Prop. 4.2.2(i)], without proof — the reference given
there to [Ki] must be a joke. Anyway, since we want to prove the most general possible
rigidity result in its line of reasoning, it is better to assume directly the Kisin property
we need rather than any property on the family that implies it.

Another remark is that the formulation of the Kisin property given above, for
general torsion free (as opposite to free, or locally free) realizations, may seem weird
and complicated. Indeed, this formulation has been chosen merely for convenience.
Let me explain the issue at stake. In general, it is not possible to choose in the
neighborhood of a reducible point zy a realization of the pseudo-character T that is
free (see the discussion in [BC2, Chapter 1] and [B, Remark 9]). However, as far as
we only want a Kisin’s property on the representation at a closed point, we may in
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practice perform some surgery on X to get a free module. One way to do so, simple
though unestehtic, is to replace X by the normalization on a suitable curve in X
through zg. (This is the way used in [BC1], and later in [SU2]). Another way is to
replace X by a suitable blow-up (a normalization may not be enough, as shown by
the example developed in [B], since the normalization of the family defined in [B, §5]
still satisfies the properties (i) to (ix) loc. cit.), idea which is used in [BC2, Chapter 3]
(and before, though for a different purpose, in [Ki]). Now, those surgical operations
work for real-world families, but in an abstract setting like ours (or the one of [SUJ),
one would need a definition of family which is stable by those operations. This would
lead to unnecessarily restrictive and unesthetic assumptions in the definition of a
family. So we have chosen another way, namely a formulation of the Kisin property
for general torsion-free modules, which is not much harder to prove in practice.

4.4. Rigidity.

Theorem 2. Let X be an irreducible family as in Definition 2, and assume that
(m™(x0), R) (defined in 4.1) belongs to X, and that X satisfies the strong Kisin prop-
erty at the corresponding point zg. Then X is a point.

Proof — Let Z; be the set of points of Z which are cohomological of degree 1. If
7 is Zariski-dense, then replacing Z by Z; we see that X is a family in the sense of
Definition 1, and X is a point by Theorem 1. Therefore we can assume that Z; is not
Zariski-dense.

Let Zy be the set of points such that ¢, = ¢, g for m a one dimensional repre-
sentation. We have at those points p, = 1 @® e ® ps, with the three characters p;
satisfying p; = ui-. If Zy was Zariski-dense, the same property would hold for any
0=, 2 € Z. But this is false for p,, ~ x ® 1@ x*, since x # x* = x(1). Therefore, Z,
is not Zariski-dense.

Hence we see that there is a Zariski-dense set of z corresponding to points that are
neither cohomological of degree 1, nor 1-dimensional. By Rogawski’s classification
(see [BC1, §3.2.3]), those points have a p, that are either irreducible, or the sum
of a character and a two-dimensional representation. Thus the dimension 3 pseu-
docharacter T : Ty — O(X)"8 (see Prop 1) either is irreducible (that is not the
sum of pseudocharacters of smaller dimension), or is the sum of a pseudocharacter of
dimension 2 and a character.

For any pseudocharacter T : 'y — A where A is a commutative ring, let us denote
by T+ the pseudocharacter T+(g) = T(cg~'c) where c is an element of order 2 in
g — I'g. It is clear that the trace T = trp for a representation p, then T+ =
tr p-. The application T — T is an involution preserving dimension on the set of
pseudocharacters of ' over A. Going back to our pseudocharacter T': Ty — O(X)"8
defined in Prop 1, we see at once that T = T, since T, = T;* for all z € Z.

This being secured, we treat the two cases (T irreducible, or the sum of a pseu-
docharacter of dimension 2 and 1) separately, leading in both cases to a contradiction
(if dim X > 0).

If T is the sum of a pseudocharacter T of dimension 2 and of a character
(the simplest case), then by dimensions we have 7' = T’ and in particular T, =

1 . . 1
T;O . On the other hand, T;O being a sub-pseudochatacter of T,, = x 1 & x—,
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is the sum of two among the three characters x, x,1. The only possibility is that
T, =x®x"

From this, by an application of the generalized Ribet’s lemma of [BC2|, we can
construct a non trivial extension U of x by x* (which appears as a sub-quotient of
some realization M of T" over O,,, such that DcryS(M§§)¢:F°(ZO) of dimension 1 —
see [BC2, Theorem 1.5.6] for the proof) that moreover satisfies U ~ U~ (see [BC2,
§1.9]). From the Kisin properties at zp, U is crystalline at v. Since U ~ U+ it is also
crystalline at 9. The twist Uy ™! is an extension of 1 by @,(1) which is crystalline
at v and v, and unramified everywhere else by the Non Monodromic Principal Series
assumption (see [BC2, Prop 8.2.10]). As is well known, there is no such extension
in the category of I'g-representation, E a quadratic imaginary field (see e.g. [BC2,
Prop. 5.2.2]). This is a contradiction.

If T is irreducible then we can proceed exactly as in [BC2, Chapter VIII] or
in [BC1, §9] to construct a non-trivial element element in H}(E,X). But since
L(x0,1/2) # 0 by assumption, that is L(x,0) = L(x*(1),0) # 0, Bloch-Kato’s con-
jecture predicts that H} (E, x) = 0. This prediction is a consequence of a theorem of
Rubin ([Ru2]) and also follows from Kato ([Ka]). Indeed, H}(E, X) = H}c (Q,Ind%x)

by Shapiro’s lemma, and since Ind%x is up to a Tate twist the Galois representa-
tion attached to a (CM) modular form, the upper bound on the dimension of Selmer
group of Ind% x predicted by the Bloch-Kato conjecture is precisely the main theorem
of [Kal]. This is the contradiction we were looking for.

For the commodity of the reader, we sketch the argument leading to the construc-
tion of an element of H}(E, X)- The long technical details are given twice, in slightly
different settings in [BC2, Chapter VIII] or in [BC1, §9], and I do not think that it
might be useful to give them a third time here.

Since T is irreducible, while T, is reducible (the sum of three characters), we are
in position to apply a suitable generalization of Ribet’s lemma. We have two possible
paths, essentially equivalent but technically different (and both relatively perilous).
We first can choose a suitable line through 2y in X, normalize it, and reduce to a
case where T is the trace of a true representation over a d.v.r, generically irreducible
but residually isomorphic (up to semi-simplification) to 1 @ x @ x*. We can then
apply Ribet’s generalized lemma for representations (cf. [BG]). Or better, we can use
the theory of reducibility ideal and the Ribet’s Lemma for pseudocharacter of [BC2,
Chapter I]: the assumption that T is irreducible precisely says that the reducibility
ideal is non zero, which in the context of [BC2] is a difficult result [BC2, Lemma 8.3.3].
In both cases, the variant of Ribet’s lemma implies the existence of either a non-trivial
extension of x* by 1, or of a non-trivial extension of xy by x*. Moreover, it can be
proved (that the most technical point, for which the arguments of [BC2, Chapter VIII]
work with the only changes that [BC2, Lemma 8.3.3] is true by assumption in our
context (so one can disregard its proof), and that we need to replace the references to
Kisin’s lemma there by our assumption that T satisfies the strong Kisin properties)
that those extensions satisfies after twisting by x ' the Bloch-Kato condition at every
places of F (see [BC2, Chapter VIII] for details). We have already seen that such an
extension of y by x* does not exist. Therefore, a non-trivial, Bloch-Kato, extension
of x* by 1, that is (by twisting or applying L), a non-trivial, Bloch-Kato, extension
of 1 by x has to exist, and defines a non trivial element in H }(E, X)-
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Remark 7. It might be interesting to compare the proof of the theorem above with
the family-theoretic proof of the non-overconvergence of the p-adic modular form FEs.
This proof, which seems to have been discovered independently by several authors can
be found in the appendix of [C1] and goes roughly as follows: if E was overconvergent,
then choosing a refinement of it, one could put it by Coleman theory into a non-trivial
family. If we pick the non-ordinary refinement, we see that this family has to be
generically irreducible and leads by Ribet’s lemma to a non-trivial extension from
Qp by Qp(1) in the category of I'g-representations, which actually defines a non-zero
element of Hjlc (T'g, Q@p(1)). But the latter group is 0, a contradiction.

The argument of the proof of the above theorem is similar in that it uses the same
kind (though much harder) of Ribet-like constructions to finally get a non-existing
element in some H}c However, the conclusion is different. In the case of Es, we know
that if Fy existed as an overconvergent modular form, the family through it would
exist (by Coleman’s work), so the only escape from the contradiction is the non
overconvergence of Es. In the case of m,(xo), we know the existence of 7, (xo) (even
as a classical automorphic form) by Rogawski’s work, so the only possible conclusion
is the non existence of the family.

Remark 8. Tt is also interesting to confront the above rigidity result with [SU, The-
orem 3.2.1], which states the existence of two-dimensional families for unitary groups
in some cases. As it stands, the rough sketch of proof of [SU, Theorem 3.2.1] which
produces families of automorphic form through a given automorphic representation
7 applies smoothly to our representation 7" (o), leading to a contradiction with the
rigidity theorem 2. Unfortunately, three years ® after the appearance in print of [SUJ,
the authors have not released their proof yet, so one can only try to guess what spe-
cific difference between our situation and theirs will solve the contradiction. Since
our notions of family are essentially the same (both are families with a dense set of
cohomological points, see [SU, Def. 2.3.1]), this difference is certainly an assumption
on the automorphic representation needed to make work their proof of the existence
of a non-trivial family, assumption that is satisfied in their case but not for 7" (xo).
This assumption might be the p-adic cuspidality of 7, but I am not sure what part it
would play in the proof (this notion in not mentioned in their sketch of proof, though
it is elsewhere in [SU]). It might also be a condition on 7. needed to apply the
Kisin-Lai method to 7, such has being holomorphic, but since 7™ (x0)c has cohomol-
ogy in degree 1, this form may also be represented by a section of some holomorphic
automorphic bundle on the Shimura variety, and we would need the details on their
generalization of the Kisin-Lai method for U(2,1) to see what actually happens.
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