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CM CYCLES AND NONVANISHING OF CLASS GROUP
L–FUNCTIONS

Riad Masri

Abstract. Let K be a totally imaginary quadratic extension of a totally real number

field F , and assume that F has narrow ideal class number 1. Let χ be a character of
the ideal class group CL(K) of K, and let LK(χ, s) be its associated L–function. In this

paper we prove that for all ε > 0,

#{χ ∈ CL(K)∧ : LK(χ,
1

2
) 6= 0} �ε,F d

1
100−ε

K

as the absolute discriminant dK →∞.

1. Introduction and statement of results

It is an important problem in number theory to determine when the central value
of an automorphic L–function is nonvanishing. Because it is difficult to determine
whether an individual central value is nonvanishing, it is often useful to consider in-
stead a family F of automorphic forms and study the average of the central values
L(f, 1

2 ) as f ranges over F . One fruitful method for studying such averages com-
bines period relations of Waldspurger type with the equidistribution of special points
on varieties. For example, given an explicit enough period relation for the central
value, one can often obtain an exact formula for the average as the sum of a fixed
automorphic function evaluated as special points on the variety. If this automorphic
function has nice properties (e.g. is smooth and compactly supported, or nonnega-
tive), one can use the equidistribution of these special points to obtain an asymptotic
formula or lower bound for the average as #F → ∞. Such results can then be used
to obtain information about the nonvanishing of central values in the family (see e.g.
[C, Va1, Va2, MV, M, KMY, MY]).

In this paper, we will use a similar method to study the nonvanishing of L–functions
associated to class group characters of CM number fields. LetK be a totally imaginary
quadratic extension of a totally real number field F of degree [F : Q] = n over Q.
Such an extension K/F is called a CM extension. Let χ : CL(K) → C× be a character
of the ideal class group CL(K) of K. Then the class group L–function of χ is defined
by

LK(χ, s) =
∑′

a

χ(a)NK/Q(a)−s, Re(s) > 1

where the prime means the summation is taken over all nonzero integral ideals a of
K. There are hK such L–functions, where hK is the ideal class number of K.
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Let dK be the absolute discriminant of K. The completed L–function

ΛK(χ, s) =
( √

dK

(2π)n

)s

Γ(s)nLK(χ, s)

has an analytic continuation to C. It is entire if χ is nontrivial, and is meromorphic
with a simple pole at s = 1 if χ is trivial. The L–function ΛK(χ, s) satisfies the
functional equation

ΛK(χ, s) = ΛK(χ, 1− s),

and the number LK(χ, 1
2 ) is the central value.

The main result of this paper is the following nonvanishing theorem for the central
values LK(χ, 1

2 ) as χ ranges over CL(K)∧ and dK →∞.

Theorem 1.1. Let K be a CM extension of a totally real number field F , and assume
that F has narrow ideal class number 1. Then for all ε > 0,

#{χ ∈ CL(K)∧ : LK(χ,
1
2
) 6= 0} �ε,F d

1
100−ε

K

as dK →∞. The implied constant is ineffective.

Remark 1.2. The exponent 1
100 − ε comes from a subconvexity bound of Venkatesh

[V] for the L–function LK(χ, s). The Lindelöf hypothesis would allow one to replace
this exponent by 1

2 − ε.

When K is an imaginary quadratic field, the central values of class group L–
functions have been studied extensively. In [DFI], Duke, Friedlander, and Iwaniec
used spectral methods to obtain an asymptotic formula for the second moment of the
central values LK(χ, 1

2 ) with a power savings in the error term, and used amplifica-
tion to obtain a subconvexity bound for LK(χ, 1

2 ) which improved the exponent in
Burgess’s subconvexity bound when χ is a real character.

In [B], Blomer used mollification along with a refinement of estimates in [DFI] to
prove that for K imaginary quadratic,

#{χ ∈ CL(K)∧ : LK(χ,
1
2
) 6= 0} ≥ c · hK

∏
p|dK

(
1− 1

p

)
for some effective constant c > 0 and all sufficiently large dK . Here one does not know
how large dK must be chosen for this lower bound to be valid because of an application
of Siegel’s theorem in the proof. If we use Siegel’s lower bound for LK(χ, 1), the bound

of Blomer is (ineffectively) larger than d
1
2−ε

K .
While many methods work quite well to obtain strong nonvanishing theorems when

the base field is Q, it is often very difficult to extend these methods to more general
number fields. Here we will circumvent these difficulties by using an approach which
combines period relations with the equidistribution of special points on varieties. To
briefly describe this, fix a CM type Φ of K, and let OF be the ring of integers of F .
We will establish an exact formula for the mean square of the central values LK(χ, 1

2 )
of the form

1
hK

∑
χ∈CL(K)∧

|LK(χ,
1
2
)|2 = cK,F

∑
z∈CM(K,Φ,OF )

|E ′(z, 1
2
)|2(1.1)
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where cK,F > 0 is an explicit constant, E ′(z, 1
2 ) is the central derivative of the weight

zero, real-analytic Hilbert modular Eisenstein series for SL2(OF ), and CM(K,Φ,OF )
is the zero cycle of CM points on the open Hilbert modular varietyXF = SL2(OF )\Hn

(see section 3). By work of Zhang [Z], which was made unconditional by subconvexity
bounds of Venkatesh [V], it is known that the CM points CM(K,Φ,OF ) are equidis-
tributed on XF as dK →∞. Because the function

f(z) := |E ′(z, 1
2
)|2 : Hn → R≥0

does not have rapid decay in the cusp of XF , we cannot apply equidistribution di-
rectly to (1.1) to obtain an asymptotic formula for the mean square as dK → ∞.
However, because f(z) is nonnegative, we can multiply by a suitable smooth, com-
pactly supported cutoff function and use equidistribution to obtain a lower bound of
the form ∑

χ∈CL(K)∧

|LK(χ,
1
2
)|2 �F,ε d

1
2−ε

K(1.2)

for any ε > 0 and all sufficiently large dK . The implied constant is ineffective due to
an application of the Brauer-Siegel theorem. Finally, to obtain Theorem 1.1 we will
combine (1.2) with the following subconvexity bound due to Venkatesh [V],

LK(χ,
1
2
) �F d

1
4−

1
200

K .

2. Hilbert modular Eisenstein series

Let F be a totally real number field of degree n with ring of integers OF and
real embeddings {σ1, . . . , σn}. We assume that F has ideal class number 1. Let H
be the complex upper half-plane, and let z = x + iy = (z1, . . . , zn) ∈ Hn. Then

γ =
(
a b
c d

)
∈ SL2(OF ) acts on Hn by linear fractional transformation in each

component,

γ · z = (σ1(γ)z1, . . . , σn(γ)zn) ∈ Hn.

For notational convenience, we let

N(y(z)) =
n∏

j=1

Im(zj) =
n∏

j=1

yj

be the product of the imaginary products of the components of z ∈ Hn. Define the
real-analytic Hilbert modular Eisenstein series by

E(z, s) =
∑

γ∈Γ∞\SL2(OF )

N(y(γz))s, z ∈ Hn, Re(s) > 1

where

Γ∞ =
{(

∗ ∗
0 ∗

)
∈ SL2(OF )

}
.
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Furthermore, we let

N(a+ bz) =
n∏

j=1

(σj(a) + σj(b)zj)

for (a, b) ∈ OF × OF . Define the (related) real-analytic Hilbert modular Eisenstein
series by

E(z, s) =
∑′

(a,b)∈OF×OF /O×F

N(y(z))s

|N(a+ bz)|2s , z ∈ Hn, Re(s) > 1

where the sum is over a complete set of nonzero, nonassociated representatives of
OF × OF . Here we recall that (a, b) and (a′, b′) are associated if there exists a unit
ε ∈ O×F such that (a, b) = (εa′, εb′). The two Eisenstein series are related by

E(z, s) = ζF (2s)E(z, s)(2.1)

where ζF (s) is the Dedekind zeta function of F .
The Eisenstein series E(z, s) has the Fourier expansion

E(z, s) = N(y(z))s +
1√
dF

[√
π

Γ(s− 1
2 )

Γ(s)

]n
ζF (2s− 1)
ζF (2s)

N(y(z))1−s

+
2n

√
dF

[
πs

Γ(s)

]n √
N(y(z))
ζF (2s)

×

∑′

ã∈O∗F

∑
ã=ab
a∈O∗F

b∈OF /O×F

(
NF/Q((a))
NF/Q((b))

)s− 1
2 n∏

j=1

Ks− 1
2
(2π |σj(ab)| yj)e2πiT (abx)

where O∗F is the dual lattice,

T (ax) =
n∑

j=1

σj(a)xj

is the trace, and Ks(v) is the K-Bessel function.
From the Fourier expansion we see that E(z, s) has a meromorphic continuation to

C with a simple pole at s = 1 with residue

Ress=1E(z, s) =
2n−1πnRF

ζF (2)wF dF

where RF is the regulator and wF is the number of roots of unity.
Define the gamma factor

G(s) = d
s/2
F

[
π−s/2Γ(

s

2
)
]n

and the completed Eisenstein series

E∗(z, s) = G(2s)ζF (2s)E(z, s).

Then E∗(z, s) satisfies the functional equation

E∗(z, s) = E∗(z, 1− s).
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In particular, we have that

E(z, s) =
G(2(1− s))ζF (2(1− s))

G(2s)ζF (2s)
E(z, 1− s).

One can show by a calculation with Laurent expansions that

lim
s→ 1

2

ζF (2(1− s))
ζF (2s)

= −1.

Since G(s) is holomorphic at s = 1, this implies that

E(z,
1
2
) = −E(z,

1
2
),

and hence

E(z,
1
2
) = 0

for all z ∈ Hn. That is, E(z, 1
2 ) is identically zero.

It is important to observe that from the Fourier expansion for E(z, s), it is clear
that the function

E ′(z, 1
2
) =

∂

∂s
E(z, s)|

s= 1
2

does not have rapid decay in the cusp of XF as N(y(z)) →∞.

3. CM zero cycles on Hilbert modular varieties

In this section we review some facts concerning CM points on Hilbert modular
varieties. We follow closely the discussion in [BY, section 3]. Let F be a totally real
number field of degree n. For S ⊂ F , let S+ be the subset of S consisting of totally
positive elements. For a fractional ideal f0 of F , let

Γ(f0) = SL(OF ⊕ f0) = {γ =
(
a b
c d

)
∈ SL2(F ) : a, d ∈ OF , b ∈ f0, c ∈ f−1

0 }.

Recall that Γ(f0) acts on Hn by

γ · z = (σ1(γ)z1, . . . , σn(γ)zn).

The quotient space

X(f0) = Γ(f0)\Hn

is the (open) Hilbert modular variety associated to f0. The variety X(f0) parameter-
izes isomorphism classes of triples (A, i,m) where (A, i) is an abelian variety with real
multiplication i : OF ↪→ End(A) and

m :
(
MA,M

+
A

)
→

(
(∂F f0)−1, (∂F f0)−1,+

)
is an OF -isomorphism from MA to (∂F f0)−1 which maps M+

A to (∂F f0)−1,+. Here
MA is the polarization module of A and M+

A is its positive cone.
Let K be a CM extension of F and let Φ = (σ1, . . . , σn) be a CM type of K.

A point z = (A, i,m) ∈ X(f0) is a CM point of type (K,Φ) if one of the following
equivalent definitions holds:
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(1) As a point z ∈ Hn, there is a point τ ∈ K such that

Φ(τ) = (σ1(τ), . . . , σn(τ)) = z

and
Λτ = f0 +OF τ

is a fractional ideal of K.
(2) (A, i′) is a CM abelian variety of type (K,Φ) with complex multiplication

i : OK ↪→ End(A) such that i = i′|OF
.

Fix ε0 ∈ K× such that ε0 = −ε0 and Φ(ε0) = (σ1(ε0), . . . , σn(ε0)) ∈ Hn. Let
a be a fractional ideal of K and fa = ε0∂K/F aa ∩ F. By [BY, Lemma 3.1], the CM
abelian variety (Aa = Cn/Φ(a), i) defines a CM point on X(f0) if there exists an
r ∈ F× such that fa = rf0. Thus any pair (a, r) with a a fractional ideal of K and
r ∈ F× with fa = rf0 defines a CM point (Aa, i,m) ∈ X(f0) (we refer the reader to
[BY] for a discussion of how the OF -isomorphism m depends on r). Two such pairs
(a1, r1) and (a2, r2) are equivalent if there exists an α ∈ K× such that a2 = αa1 and
r2 = r1αᾱ. Write [a, r] for the class of (a, r) and identify it with its associated CM
point (Aa, i,m) ∈ X(f0).

By [BY, Lemma 3.2], given a CM point [a, r] ∈ X(f0), there is a decomposition

a = OFα+ f0β

with z = α/β ∈ K× ∩Hn = {z ∈ K× : Φ(z) ∈ Hn}. Moreover, z represents the CM
point [a, r] ∈ X(f0).

Let CM(K,Φ, f0) be the set of CM points [a, r] ∈ X(f0) which we view as a CM
0-cycle in X(f0). Let

CM(K,Φ) =
∑

[f0]∈CL(F )+

CM(K,Φ, f0)

where CL(F )+ is the narrow ideal class group of F . The forgetful map

CM(K,Φ) → CL(K),

[a, r] 7→ [a]

is surjective. Each fiber is indexed by ε ∈ O×,+
F /NK/FO×K . Here #(O×,+

F /NK/FO×K)
equals 1 or 2. In particular, it equals 1 if ε ∈ NK/FO×K .

Assume now that F has narrow ideal class number 1. Then

CM(K,Φ) = CM(K,Φ,OF ),

and the forgetful map

CM(K,Φ) → CL(K)

is injective (hence bijective) since NK/FO×K = O×F . We will repeatedly use this
bijection to identify the 0-cycle of CM points CM(K,Φ,OF ) ⊂ XF with

{za ∈ K× ∩Hn : [a] ∈ CL(K)}

where za represents [a, r] ∈ XF as above. The reader should keep in mind that this
latter set depends on Φ.
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4. Periods of Eisenstein series

In the following proposition we express the class group L–function LK(χ, s) as
a twisted period of the Eisenstein series E(z, s) with respect to the CM 0-cycle
CM(K,Φ,OF ).

Proposition 4.1. Let K be a CM extension of a totally real number field F of degree
n, and assume that F has narrow ideal class number 1. Let Φ be a CM type of K.
Then

LK(χ, s) =
(

2ndF√
dK

)s
ζF (2s)∣∣O×K : O×F

∣∣ ∑
z∈CM(K,Φ,OF )

χ(z)E(z, s).

Here χ(z) means χ([a]), where [a] is the ideal class of CL(K) corresponding to z via
the bijection CM(K,Φ,OF ) → CL(K).

Proof. Let C ∈ CL(K) and fix an integral ideal a ∈ C−1. As b runs over integral
ideals in C, ab = (ω) runs over principal ideals (ω) with (ω) ≡ 0 mod a. Then the
partial Dedekind zeta function equals

ζK(s, C) =
∑′

b∈C

NK/Q(b)−s

=
∑′

(ω)⊂a

NK/Q(a−1(ω))−s

= NK/Q(a)s
∑′

ω∈a/O×K

NK/Q((ω))−s.

Notice that ∑′

ω∈a/O×K

NK/Q((ω))−s =
1∣∣O×K : O×F

∣∣ ∑′

ω∈a/O×F

NK/Q((ω))−s.

Thus we have

ζK(s, C) =
NK/Q(a)s∣∣O×K : O×F

∣∣ ∑′

ω∈a/O×F

NK/Q((ω))−s.

In section 3 we showed there exists a decomposition

a = OFα+OFβ

where za = β/α ∈ K×∩Hn and za represents the CM point [a, r] ∈ XF (here f0 = OF

since #CL(F )+ = 1). Then∑′

ω∈a/O×F

NK/Q((ω))−s =
∑′

(a,b)∈OF×OF /O×F

NK/Q((aα+ bβ))−s

= NK/Q((α))−s
∑′

(a,b)∈OF×OF /O×F

NK/Q((a+ bza)).

By a calculation with the CM type Φ we obtain

NK/Q((a+ bza)) = |N (a+ bza)|2
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where we have identified za with Φ(za) ∈ Hn.
Furthermore, a calculation with determinants yields

NK/Q(a/(α)) = N(y(za))
2ndF√
dK

.

By combining the preceding calculations we obtain

ζK(s, C) =
(

2ndF√
dK

)s 1∣∣O×K : O×F
∣∣ ∑′

(a,b)∈OF×OF /O×F

N(y(za))s

|N(a+ bza)|2s

=
(

2ndF√
dK

)s 1∣∣O×K : O×F
∣∣E(za, s)

=
(

2ndF√
dK

)s
ζF (2s)∣∣O×K : O×F

∣∣E(za, s)

where we have used the definition of E(z, s) and the identity (2.1).
Finally, using that

LK(χ, s) =
∑

C∈CL(K)

χ(C)ζK(s, C)

we obtain

LK(χ, s) =
(

2ndF√
dK

)s
ζF (2s)∣∣O×K : O×F

∣∣ ∑
[a]∈CL(K)

χ([a])E(za, s).

The result follows from the bijection CM(K,Φ,OF ) → CL(K). �

5. The mean square of LK(χ, 1
2 )

In this section we use Proposition 4.1 to establish an exact formula for the mean
square of the central values LK(χ, 1

2 ).
Let rF denote the residue of the Dedekind zeta function ζF (s) at s = 1.

Proposition 5.1. Let K be a CM extension of a totally real number field F of degree
n, and assume that F has narrow ideal class number 1. Then

1
hK

∑
χ∈CL(K)∧

|LK(χ,
1
2
)|2 =

2ndF

4
√
dK

r2F∣∣O×K : O×F
∣∣2 ∑

[a]∈CL(K)

|E ′(za,
1
2
)|2.

Proof. By the Laurent expansion of ζF (s) at s = 1,

ζF (2s) =
rF

2(s− 1
2 )

+ a0 +O(s− 1
2
),

and because E(z, s) vanishes identically at s = 1/2 (see section 2),

E(z, s) = E ′(z, 1
2
)(s− 1

2
) +O(s− 1

2
)2.

Thus we have

ζF (2s)E(z, s) =
rF
2
E ′(z, 1

2
) +O(s− 1

2
).
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From Proposition 4.1 with s = 1/2 it follows that

LK(χ,
1
2
) =

2n/2
√
dF

2d1/4
K

rF∣∣O×K : O×F
∣∣ ∑

[a]∈CL(K)

χ([a])E ′(za,
1
2
),

from which we obtain

∑
χ∈CL(K)∧

|LK(χ,
1
2
)|2 =

2ndF

4
√
dK

r2F∣∣O×K : O×F
∣∣2 ∑

χ∈CL(K)∧

∣∣∣∣∣∣
∑

[a]∈CL(K)

χ([a])E ′(za,
1
2
)

∣∣∣∣∣∣
2

.

By orthogonality, we have the relations∑
χ∈CL(K)∧

χ([a])χ([b]) =

{
hK , [a] = [b]
0, [a] 6= [b].

Thus we obtain the identity

∑
χ∈CL(K)∧

∣∣∣∣∣∣
∑

[a]∈CL(K)

χ([a])E ′(za,
1
2
)

∣∣∣∣∣∣
2

= hK

∑
[a]∈CL(K)

|E ′(za,
1
2
)|2.

�

6. Proof of Theorem 1.1

We can express Proposition 5.1 in the equivalent form∑
χ∈CL(K)∧

|LK(χ,
1
2
)|2 =

2ndF

4
r2F∣∣O×K : O×F

∣∣2 h2
K√
dK

1
hK

∑
[a]∈CL(K)

|E ′(za,
1
2
)|2.

Define the function

f(z) = |E ′(z, 1
2
)|2.

Then f ∈ C∞(XF ,R≥0). Let µX be the invariant probability measure on XF .

Lemma 6.1. There exists a smooth, compactly supported function g : XF → [0, 1]
such that µX(supp(g) ∩ supp(f)) > 0.

Proof. Let ψ : R+ → R be a smooth, compactly supported function. Define the
Poincaré series

P(z) =
∑

γ∈Γ∞\SL2(OF )

ψ(N(y(γz))), z ∈ Hn.

Then P ∈ C∞c (XF ,R). Let φ : R → [0, 1] be a smooth function supported on [1, B]
for some B > 1. Then

φ(P(z)) : XF → [0, 1]

is smooth, and supp(φ(P)) ⊂ supp(P). Hence g := φ(P) is compactly supported.
Finally, it is clear that g can be constructed so that µX(supp(g) ∩ supp(f)) > 0. �
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Let g ∈ C∞c (XF , [0, 1]) be as in Lemma 6.1, and define h := fg. Because f ≥ 0,
we know that f(z) ≥ h(z) for all z ∈ XF . From this we obtain the lower bound∑

χ∈CL(K)∧

|LK(χ,
1
2
)|2 ≥ 2ndF

4
r2F∣∣O×K : O×F

∣∣2 h2
K√
dK

1
hK

∑
[a]∈CL(K)

h(za).

From the bijection

CM(K,Φ,OF ) → CL(K)

we see that the set

CM(K,Φ,OF ) = {za : [a] ∈ CL(K)}

is an adelic toric orbit of CM points on XF under the action of the adelic torus

CL(K) = K×\K̂×/Ô×K .

It follows from work of Zhang [Z] and Venkatesh [V] that the CM points CM(K,Φ,OF )
are equidistributed on XF as dK →∞. In fact, this is proved in a quantitative form,
which means that given a test function φ ∈ C∞c (XF ), there exists an absolute constant
η > 0 such that

1
hK

∑
[a]∈CL(K)

φ(za) =
∫

XF

φ(z)dµX +O(d−η
K )

as dK →∞.
Since h ∈ C∞c (XF ), we find that∑

χ∈CL(K)∧

|LK(χ,
1
2
)|2 ≥ 2ndF

4
r2F∣∣O×K : O×F

∣∣2 h2
K√
dK

(∫
XF

h(z)dµX + o(1)
)

as dK →∞. Note that because h = fg ≥ 0 is continuous and µX(supp(g)∩supp(f)) >
0, we have ∫

XF

h(z)dµX ≥
∫

supp(g)∩supp(f)

h(z)dµX > 0.

The residue of ζK(s) at s = 1 equals

rK =
(2π)nhKRK

wK

√
dK

.

Write K = F (
√

∆) for ∆ ∈ F×. Since F has narrow ideal class number 1, we can
choose ∆ such that the relative discriminant dK/F = ∆OF . Thus

dK = d2
FNF/QdK/F = d2

F

∣∣NF/Q(∆)
∣∣ .

By [W, Proposition 4.16], one has

RK

RF
=

2n−1∣∣O×K : UKO×F
∣∣
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where UK is the group of roots of unity in K. Furthermore, by [W, Theorem 4.12],
one has

∣∣O×K : UKO×F
∣∣ = 1 or 2. Thus

hK =
wK

√
dKrK

(2π)n(RK/RF )RF

=
wK

(2π)nRF

dF

∣∣NF/Q(∆)
∣∣1/2

2n−1

∣∣O×K : UKO×F
∣∣ rK

≥ dF

(2π)nRF 2n−1
rK

∣∣NF/Q(∆)
∣∣1/2

.

By the Brauer-Siegel theorem (see e.g. [S]), for all ε > 0 one has

rK ≥ c(ε)d−ε
K

where c(ε) > 0 is ineffective. Thus

rK ≥ c(ε)d−ε
K = c(ε)d−2ε

F

∣∣NF/Q(∆)
∣∣−ε

,

which implies that

hK ≥ c(ε)
d1−2ε

F

(2π)nRF 2n−1

∣∣NF/Q(∆)
∣∣ 1
2−ε

.

Because
√
dK = dF

∣∣NF/Q(∆)
∣∣1/2 it follows that

h2
K√
dK

≥
c(ε)2d1−4ε

F

(2π)2n22n−2R2
F

∣∣NF/Q(∆)
∣∣ 1
2−2ε

.

Since wK is bounded, one has ∣∣O×K : O×F
∣∣ �F 1.

We now obtain the lower bound∑
χ∈CL(K)∧

|LK(χ,
1
2
)|2

≥
c(ε)2d2−4ε

F r2F
4(2π)2n2n−2R2

F

1∣∣O×K : O×F
∣∣2 ∣∣NF/Q(∆)

∣∣ 1
2−2ε

(∫
XF

h(z)dµX + o(1)
)

�F,ε

∣∣NF/Q(∆)
∣∣ 1
2−2ε

as
∣∣NF/Q(∆)

∣∣ → ∞. In particular, this shows that there exists at least one χ ∈
CL(K)∧ such that

LK(χ,
1
2
) 6= 0

as
∣∣NF/Q(∆)

∣∣ →∞.
By work of Venkatesh [V, Theorem 6.1], one has the subconvexity bound

LK(χ,
1
2
) �F (NK/Q(cond(χ))dK)

1
4−

1
200 .

Since cond(χ) = OK and dK = d2
F

∣∣NF/Q(∆)
∣∣, one obtains

LK(χ,
1
2
) �F

∣∣NF/Q(∆)
∣∣ 1
4−

1
200 .
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It follows that∑
χ∈CL(K)∧

|LK(χ,
1
2
)|2 �F

∣∣NF/Q(∆)
∣∣ 1
2−

1
100 #{χ ∈ CL(K)∧ : LK(χ,

1
2
) 6= 0}.

Finally, by combining inequalities, we find that for all ε > 0,

#{χ ∈ CL(K)∧ : LK(χ,
1
2
) 6= 0} �F,ε

∣∣NF/Q(∆)
∣∣ 1
100−ε

as
∣∣NF/Q(∆)

∣∣ →∞.
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