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COUNTING CUSPS ON COMPLETE

MANIFOLDS OF FINITE VOLUME

Peter Li and Jiaping Wang

§0 Introduction

In this article, we consider complete, n-dimensional, Riemannian manifolds of finite
volume. We assume that the Ricci curvature is bounded from below and normalized
to have the lower bound given by

RicM ≥ −(n− 1).

Since M has finite volume, the constant functions are L2 harmonic functions, implying
that 0 is an eigenvalue for the L2-spectrum of the Laplacian. We define the quantity
µ1(M) by the Rayleigh quotient

µ1(M) = inf
φ∈H1(M),

∫
M

φ=0

∫
M
|∇φ|2∫

M
φ2

,

where the infimum is taken over all functions φ in the Sobolev space H1(M) satisfying∫
M

φ = 0. This plays the role of a generalized first non-zero Neumann eigenvalue,
although µ1(M) might not necessarily be an eigenvalue. Note that

µ1(M) ≤ max{λ1(Ω1), λ1(Ω2)},

for any two disjoint domains Ω1 and Ω2 of M, where λ1(Ω1) and λ1(Ω2) are their
first Dirichlet eigenvalues respectively. In particular, we have µ1(M) ≤ λess(M), the
smallest essential spectrum of M. Therefore, according to a result of Cheng [C], one
always has

µ1(M) ≤ (n− 1)2

4
.

The main purpose of this paper is to prove the following theorem.

Theorem 0.1. Let Mn be a complete Riemannian manifold with Ricci curvature
bounded from below by

RicM ≥ −(n− 1).
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Assume that M has finite volume given by V, and

µ1(M) ≥ (n− 1)2

4
.

Let us denote N(M) to be the number of ends (cusps) of M . Then there exists a
constant C(n) > 0 depending only on n, such that,

N(M) ≤ C(n)
(

V

Vp(1)

)2

ln
(

V

Vp(1)

)
,

where Vp(1) denotes the volume of the unit ball centered at any point p ∈ M.

The assumption µ1(M) ≥ (n−1)2

4 implies that 0 is the only eigenvalue below (n−1)2

4 .

So the spectrum of M satisfies σ(M) ⊂ {0} ∪ [ (n−1)2

4 ,∞).
In the special case when n = 2, our estimate is less effective than using the Cohn-

Vossen-Hartman formula (see [LT]). Indeed, the assumption that the sectional curva-
ture K ≥ −1 implies that the negative part of the curvature defined by

K− =
{ 0 if K > 0
−K if K ≤ 0,

is at most 1. In particular, ∫
M

K− ≤ V (M)

and M has finite total curvature. Hartman’s theorem then implies that M must
be conformally equivalent to a compact Riemann surface of genus g with N(M)
punctures. Moreover, since M has finite volume, the Cohn-Vossen-Hartman formula
(see [LT]) asserts that

−V (M) ≤
∫

M

K

= 2πχ(M).

In particular, since the Euler characteristic is given by

χ(M) = 2− 2g −N(M),

we conclude that
N(M) ≤ 2− 2g + (2π)−1V (M).

This indicates that the dependency in V (M) is better than the one provided by
Theorem 0.1, and the value of the theorem lies in the cases when n ≥ 3.

Note that if M = Hn/Γ is a hyperbolic manifold, with its universal covering given
by the hyperbolic n-space Hn. The L2-spectrum of the Laplacian on Hn is the in-
terval [ (n−1)2

4 ,∞). In this special case, the assumption that µ1(M) ≥ (n−1)2

4 can
be expressed as µ1(M) = λ1(Hn), where λ1(Hn) is the greatest lower bound of the
spectrum of ∆ on Hn. With this point of view, it is also possible to prove a theorem
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analogous to Theorem 0.1 for locally symmetric spaces of finite volume. Moreover, af-
ter applying Margulis lemma, one concludes that the number of ends can be estimated
from above by a quantity depending on the volume of the manifold and its dimension
alone. However, stronger results are available by using the thick-thin decomposition.
For any finite volume locally symmetric space M = X/Γ, where X is a symmetric
space and Γ a discrete subgroup of the isometry group of X, the number of ends of
M is always bounded by N(M) ≤ C(X) V, where the constant C depends on X and
V is the volume of M. Indeed, in general, the total topology of M is also controlled
by the volume of M alone (see [G]).

§1 Preliminaries

Let us first recall an estimate first proved by the authors in [LW1] and improved
in [LW4]. For our purpose, it is important to know the precise dependency of the
constant in the final estimate. For the sake of completeness, we will outline the proof
and keep track of the dependency of all the constants. Throughout this article, we
denote the quantity

λ1(E) = inf
φ∈H1(M),φ|∂E=0

∫
E
|∇φ|2∫
E

φ2

to be the greatest lower bound of the L2-spectrum of the Dirichlet Laplacian on the
manifold E.

Theorem 1.1. Let M be a complete Riemannian manifold. Suppose E is an end of
M such that λ1(E) > µ, for some constant µ. Let f be a nonnegative function defined
on E satisfying the differential inequality

∆f ≥ −µ f.

If f satisfies the growth condition∫
E(R)

f2 e−2ar = o(R)

as R →∞, with a =
√

λ1(E)− µ, then it must satisfy the decay estimate∫
E(R+1)\E(R)

f2 ≤ C(a)(1 + (R−R0)−1) e−2aR

∫
E(R0+1)\E(R0)

e2ar f2

for some constant C(a) > 0 depending only on a and for all R ≥ 2(R0 + 1), where
E(R) = Bp(R) ∩ E.

Proof. We will first prove that for any 0 < δ < 1, there exists a constant 0 < C < ∞
such that, ∫

E

e2δar f2 ≤ C.
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Indeed, let φ(r(x)) be a non-negative cut-off function where support on E with r(x) is
the geodesic distance to the fixed point p. Then for any function, h(r(x)), integration
by parts yields

∫
E

|∇(φ eh f)|2

=
∫

E

|∇(φ eh)|2 f2 +
∫

E

(φ eh)2 |∇f |2 + 2
∫

E

φ eh f 〈∇(φ eh),∇f〉

=
∫

E

|∇(φ eh)|2 f2 +
∫

E

φ2 e2h |∇f |2 +
1
2

∫
E

〈∇(φ2 e2h),∇(f2)〉

=
∫

E

|∇(φ eh)|2 f2 +
∫

E

φ2 e2h |∇f |2 − 1
2

∫
E

φ2 e2h ∆(f2)

≤
∫

E

|∇(φ eh)|2 f2 + µ

∫
E

φ2 e2h f2

=
∫

E

|∇φ|2 e2h f2 + 2
∫

E

φ e2h 〈∇φ,∇h〉f2

+
∫

E

φ2 |∇h|2 e2h f2 + µ

∫
E

φ2 e2h f2.

(1.1)

On the other hand, using the variational principle for λ1(E), we have

λ1(E)
∫

E

φ2 e2h f2 ≤
∫

E

|∇(φ eh f)|2,

hence (1.1) becomes

a2

∫
E

φ2 e2h f2

≤
∫

E

|∇φ|2 e2h f2 + 2
∫

E

φ e2h 〈∇φ,∇h〉f2 +
∫

E

φ2 |∇h|2 e2h f2.

(1.2)

Let us now choose

φ(r(x)) =


r(x)−R0 on E(R0 + 1) \ E(R0)

1 on E(R) \ E(R0 + 1),

R−1(2R−r(x)) on E(2R) \ E(R)

0 on E \ E(2R),

and

h(r) =


δar for r ≤ K

(1 + δ)a

K − ar for r ≥ K

(1 + δ)a
,
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for some fixed K > (R0 + 1)(1 + δ)a. When R ≥ K
(1+δ)a , we see that

|∇h|2 =


δ2a2 for r ≤ K

(1 + δ)a

a2 for r ≥ K

(1 + δ)a

and

〈∇φ,∇h〉 =


δa on E(R0 + 1) \ E(R0)

R−1a on E(2R) \ E(R)
0 otherwise.

Substituting into (1.2), we obtain

a2

∫
E

φ2 e2h f2

≤
∫

E(R0+1)\E(R0)

e2h f2 + R−2

∫
E(2R)\E(R)

e2h f2

+ 2δa

∫
E(R0+1)\E(R0)

e2h f2 + 2R−1a

∫
E(2R)\E(R)

e2h f2

+ δ2a2

∫
E(K((1+δ)a)−1)\E(R0))

φ2 e2h f2 + a2

∫
E(2R)\E(K((1+δ)a)−1)

φ2 e2h f2.

This can be rewritten as

a2

∫
E(K((1+δ)a)−1)\E(R0+1)

e2h f2

≤ a2

∫
E(K((1+δ)a)−1)

φ2 e2h f2

≤
∫

E(R0+1)\E(R0)

e2h f2 + R−2

∫
E(2R)\E(R)

e2h f2

+ 2δa

∫
E(R0+1)\E(R0)

e2h f2 + R−1δa

∫
E(2R)\E(R)

e2h f2

+ δ2a2

∫
E(K((1+δ)a)−1)\E(R0))

φ2 e2h f2,

hence

(1− δ2)a2

∫
E(K((1+δ)a)−1)\E(R0+1))

e2h f2

≤ (δ2a2 + 2δa + 1)
∫

E(R0+1)\E(R0))

e2h f2

+ R−2

∫
E(2R)\E(R)

e2h f2 + 2R−1a

∫
E(2R)\E(R)

e2h f2.
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The definition of h and the assumption on the growth estimate on f imply that the
last two terms on the right hand side tends to 0 as R → ∞. Hence we obtain the
estimate

(1−δ2)a2

∫
E(K((1+δ)a)−1)\E(R0+1))

e2δar f2 ≤ (δ2 a2+2δa+1)
∫

E(R0+1)\E(R0))

e2δar f2.

Since the right hand side is independent of K, by letting K →∞ we conclude that

(1.3)
∫

E\E(R0+1)

e2δar f2 ≤ C1,

with

C1 =
(δ2 a2 + 2δa + 1)

(1− δ2)a2

∫
E(R0+1)\E(R0))

e2δar f2.

Our next step is to improve this estimate by setting h = ar in the preceding
argument. Note that (1.2) asserts that

−2a

∫
E

φ e2ar 〈∇φ,∇r〉 f2

≤
∫

E

|∇φ|2 e2ar f2.

For R0 < R1 < R, let us choose φ to be

φ(x) =


r(x)−R0

R1 −R0
on E(R1) \ E(R0)

R− r(x)
R−R1

on E(R) \ E(R1).

We conclude that

2a

(R−R1)2

∫
E(R)\E(R1)

(R− r(x)) e2ar f2

≤ 1
(R1 −R0)2

∫
E(R1)\E(R0)

e2ar f2 +
1

(R−R1)2

∫
E(R)\E(R1)

e2ar f2

+
2a

(R1 −R0)2

∫
E(R1)\E(R0)

(r −R0) e2ar f2.

On the other hand, for any 0 < t < R−R1, since

2at

(R−R1)2

∫
E(R−t)\E(R1)

e2ar f2

≤ 2a

(R−R1)2

∫
E(R)\E(R1)

(R− r(x)) e2ar f2,
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we deduce that

2at

(R−R1)2

∫
E(R−t)\E(R1)

e2ar f2

≤
(

2a

R1 −R0
+

1
(R1 −R0)2

)∫
E(R1)\E(R0)

e2ar f2

+
1

(R−R1)2

∫
E(R)\E(R1)

e2ar f2.

(1.4)

Observe that if we take R1 = R0 + 1, t = a−1, and set

g(R) =
∫

E(R)\E(R0+1)

e2ar f2,

then inequality (1.4) can be written as

g(R− a−1) ≤ C2 R2 +
1
2

g(R),

where
C2 =

2a + 1
2

∫
E(R0+1)\E(R0)

e2ar f2

is independent of R. Iterating this inequality, we obtain for any positive integer k and
R ≥ 1

g(R) ≤ C2

k∑
i=1

(R + ia−1)2

2i−1
+ 2−k g(R + ka−1)

≤ C2 R2
∞∑

i=1

(1 + ia−1)2

2i−1
+ 2−k g(R + ka−1)

≤ C3 R2 + 2−k g(R + ka−1),

where

C3 = C2

∞∑
i=1

(1 + ia−1)2

2i−1
.

However, our previous estimate (1.3)∫
E

e2δar f2 ≤ C1

implies that

g(R + ka−1) =
∫

E(R+ka−1)\E(R0+1)

e2ar f2

≤ e2(R+ka−1)(1−δ)

∫
E(R+ka−1)\E(R0+1)

e2δar f2

≤ C1 e2 (R+ka−1)(1−δ).
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Hence,
2−k g(R + ka−1) → 0

as k →∞ by choosing 2(1− δ)a−1 < ln 2. This proves the estimate

(1.5)
∫

E(R)\E(R0+1)

e2ar f2 ≤ C3 R2.

Using inequality (1.4) again and by choosing R1 = R0 + 1 and t = R
2 this time, we

conclude that

aR

∫
E( R

2 )\E(R0+1)

e2ar f2

≤ (2a + 1)(R−R0 − 1)2
∫

E(R0+1)\E(R0)

e2ar f2 +
∫

E(R)\E(R0+1)

e2ar f2.

Applying the estimate (1.5) to the second term on the right hand side, we have∫
E( R

2 )\E(R0+1)

e2ar f2 ≤ C4 R

where

C4 = (2a + 1)a−1

(
(R−R0 − 1)2

R2
+

∞∑
i=1

(1 + ia−1)2

2i

)∫
E(R0+1)\E(R0)

e2ar f2.

Therefore, for R ≥ 2(R0 + 1),

(1.6)
∫

E(R)

e2ar f2 ≤ C5 R

with
C5 = C(a)

∫
E(R0+1)\E(R0)

e2ar f2,

where C(a) denotes a constant depending only on a. We are now ready to prove the
lemma by using (1.6). Setting t = 2a−1 and R1 = R− 4 in (1.4), we obtain

∫
E(R−2)\E(R−4)

e2ar f2

≤
(

8a

R−R0 − 4
+

4
(R−R0 − 4)2

) ∫
E(R−4)\E(R0)

e2ar f2

+
1
4

∫
E(R)\E(R−4)

e2ar f2.
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According to (1.6), the first term of the right hand side is bounded by

C5(C(a) + (R−R0 − 4)−1)

for R− 4 ≥ 2(R0 + 1). Hence, by renaming R, the above inequality can be rewritten
as ∫

E(R−2)\E(R−4)

e2ar f2 ≤ C5(C(a) + (R−R0)−1) +
1
3

∫
E(R+4)\E(R+2)

e2ar f2.

Iterating this inequality k times, we arrive at∫
E(R+2)\E(R)

e2ar f2

≤ C5(C(a) + (R−R0)−1)
k−1∑
i=0

3−i + 3−k

∫
E(R+2(k+1))\E(R+2k)

e2ar f2.

However, using (1.6) again, we conclude that the second term is bounded by

3−k

∫
E(R+2(k+1))\E(R+2k)

e2ar f2 ≤ C5 3−k(R + 2(k + 1))

which tends to 0 as k →∞. Hence∫
E(R+2)\E(R)

e2ar f2 ≤ C5(C(a) + (R−R0)−1)

for r ≥ 2(R0 + 1), and the theorem follows. �

Recall that an end E is said to be parabolic if it does not admit any positive
Green’s function satisfying the Neumann boundary conditions on its boundary ∂E.
In [LW1], it was pointed out that in the case λ1(E) > 0, the end E is parabolic if and
only if its volume is finite.

Corollary 1.2. Let E be an end of complete manifold M with λ1(E) > 0. If E is a
parabolic end, then E must have exponential volume decay given by

VE(R + 1)− VE(R)

≤ C(λ1(E)) (1 + (R−R0)−1) exp(2
√

λ1(E)(R0 −R)) (VE(R0 + 1)− VE(R0))

for some constant C(λ1(E)) > 0 depending on λ1(E).

Proof. The corollary follows from Theorem 1.1 by setting the function f to be the
constant function 1. �

Note that the corollary can be applied in particular to the case E = M \ Bp(R0),
where Bp(R0) is the geodesic ball of radius R0 centered at a fixed point p in M. This
will give a volume decay estimate for the annulus Bp(R + 1) \Bp(R) for all R > R0.
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§2 Proof of Theorem 0.1

We now apply the estimate from the previous section to prove the following result.

Theorem 2.1. Let Mn be a complete Riemannian manifold with Ricci curvature
bounded from below by

RicM ≥ −(n− 1).

Assume that M has finite volume given by V, and

λ1(M \Bp(R0)) ≥
(n− 1)2

4
.

Then there exists a constant C(n) > 0 depending only on n, such that, the number of
ends of M satisfies

N(M) ≤ C(n) V V −1
p (1) exp((n− 1)R0),

where Vp(1) denotes the volume of the unit ball centered at a point p ∈ M.

Proof. According to Corollary 1.2, if we denote Vp(R) to be the volume of the geodesic
ball Bp(R), then for all R ≥ 2(R0 + 1) we have
(2.1)
Vp(R +2)−Vp(R) ≤ C (1+ (R−R0)−1) exp((n− 1)(R0−R)) (Vp(R0 +1)−Vp(R0)).

On the other hand, the standard volume comparison asserts that if y ∈ ∂Bp(R + 1)
then

(2.2) Vy(1) ≥ C−1
1 exp(−(n− 1)R) Vp(1).

Obviously, if N(R) denotes the number of ends with respect to Bp(R), namely M \
Bp(R) has N(R) unbounded components, then there exist N(R) number of points
{yi ∈ ∂Bp(R)} such that Byi

(1) ∩ Byj
(1) = ∅ for i 6= j. In particular applying (2.2)

to each of the yi and combining with (2.1), we conclude that

N(R) C−1
1 exp(−(n− 1)R) Vp(1)

≤
N(R)∑
i=1

Vyi(1)

≤ Vp(R + 2)− Vp(R)

≤ C (1 + (R−R0)−1) exp((n− 1)(R0 −R)) (Vp(R0 + 1)− Vp(R0)).

This implies that

N(R) ≤ C C1 (1 + (R−R0)−1) exp((n− 1)R0) (Vp(R0 + 1)− Vp(R0))V −1
p (1).

Letting R →∞, we conclude that the number of ends N(M) of M is bounded by

(2.3) N(M) ≤ C C1 exp((n− 1)R0) (Vp(R0 + 1)− Vp(R0))V −1
p (1),
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and the result follows. �

We remark that if M has finitely many eigenvalues 0 = λ1 < λ2 ≤ · · · ≤ λk below
(n−1)2

4 , then it is easy to see there exists R0 > 0 such that

λ1(M \Bp(R0)) ≥
(n− 1)2

4
.

In particular, Theorem 2.1 implies that M must have finitely many ends. However,
the estimate on the number of ends is not effective as it is unclear to us at this moment
how to control the size of R0 in terms of the eigenvalues below (n−1)2

4 . On the other
hand, we will demonstrate below that R0 can be effectively controlled if k = 1.

We also remark that the proof of Theorem 2.1 can be applied to any finite volume
locally symmetric space M = X/Γ. Indeed, it is known in this case that there exists
R0 > 0 such that λ1(M \Bp(R0)) = λ1(X) and an appropriate version of the volume
comparison theorem (in terms of the balls defined by the Busemann functions) holds
on M. So such M must have finitely many ends. Of course, as pointed out in the
introduction, stronger result holds true. In passing, we mention for such M, whether
µ1(M) = λ1(X) is an important question. The famous Selberg conjecture says this
is the case if M is an arithmetic surface.

The following lemma allows us to estimate λ1(Bp(R)) of a geodesic ball centered
at p with radius R in terms of the volume of the ball. Note that we do not need to
impose any curvature assumptions on M.

Lemma 2.2. Let M be a complete Riemannian manifold. Then for any 0 < δ < 1,
R > 2 and p ∈ M , we have

λ1(Bp(R)) ≤ 1
4δ2 (R− 1)2

(
ln
(

Vp(R)
Vp(1)

)
+ ln

(
81

1− δ

))2

.

Proof. We use λ1 to denote λ1(Bp(R)) to ease the notations. We may assume

λ1 ≥
4

R2

as otherwise the conclusion automatically holds true. Let r(x) denote the distance
function to a fixed point p ∈ M . The variational characteristic of λ1(Bp(R)) implies
that

λ1(Bp(R))
∫

M

φ2 exp(−2δ
√

λ1 r)

≤
∫

M

|∇(φ exp(−δ
√

λ1 r)|2

=
∫

M

|∇φ|2 exp(−2δ
√

λ1 r)− 2δ
√

λ1

∫
M

φ exp(−2δ
√

λ1 r)〈∇φ,∇r〉

+ δ2λ1

∫
M

φ2 exp(−2δ
√

λ1 r)
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for any nonnegative Lipschitz function φ with support in Bp(R). In particular, for
R > 2, if we choose

φ =


1 on Bp(R− λ

− 1
2

1 )√
λ1 (R− r) on Bp(R) \Bp(R− λ

− 1
2

1 )

0 on M \Bp(R)

,

then we have

(1− δ2) λ1 exp(−2δ
√

λ1)Vp(1)

≤ (1− δ2) λ1

∫
M

φ2 exp(−2δ
√

λ1 r)

=
∫

M

|∇φ|2 exp(−2δ
√

λ1 r)− 2δ
√

λ1

∫
M

φ exp(−2δ
√

λ1 r)〈∇φ,∇r〉

≤ (1 + 2δ) λ1 exp(−2δ (
√

λ1 R− 1))Vp(R).

Therefore,

exp(2δ (
√

λ1 (R− 1))) ≤ 27
1− δ

Vp(R)
Vp(1)

and

2δ
√

λ1 (R− 1) ≤ ln
(

27
1− δ

)
+ ln

(
Vp(R)
Vp(1)

)
.

The lemma follows by rewriting this inequality. �

As a corollary of this lemma, the bottom spectrum of any complete manifold M
can be estimated in terms of its volume entropy. This result was proved in [LW1]
with a different argument.

Corollary 2.3. Let M be a complete manifold and λ1(M) its bottom spectrum. Then

λ1(M) ≤ 1
4

(
lim inf
R→∞

lnVp(R)
R

)2

.

Proof. Note that λ1(M) = limR→∞ λ1(Bp(R)). Now the result follows by first letting
R go to infinity and then δ go to 1 in the estimate of Lemma 2.2. �

We now prove Theorem 0.1.

Proof of Theorem 0.1. Let p ∈ M be a fixed point. For any 0 < δ < 1, let

R0 =
1

(n− 1)δ

(
ln
(

81
1− δ

)
+ ln

(
V

Vp(1)

))
+ 3.

Then according to Lemma 2.2,
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(2.4) λ1(Bp(R0)) ≤
(n− 1)2

4
.

We now observe that

λ1(M \Bp(R0)) ≥
(n− 1)2

4
.

Indeed, if (2.4) is valid and also λ1(M \ Bp(R0)) < (n−1)2

4 , then the variational

principle will imply that µ1(M) < (n−1)2

4 ), contradicting our assumption.
By Theorem 2.1, we have

N(M) ≤ C(n)V V −1
p (1) exp((n− 1)R0).

The claimed estimate then follows by plugging in the value of R0 and setting

δ = 1− 1
ln(V V −1

p (1))
.

�

As pointed out earlier, the key ingredients in the proof of Theorem 0.1 relied on
the decay estimate of the volume (2.2) given by the upper bound of the greatest lower
bound of the spectrum of the model manifold hyperbolic space Hn. The following two
theorems follow similarly by using the corresponding comparison results from [LW3]
and [KLZ], respectively.

Theorem 2.4. Let Mm be a complete Kähler manifold of complex dimension m.
Assume that M has finite volume and its holomorphic bisectional curvature satisfies
the bound

Rij̄īj̄ ≥ −(1 + δij)

for all unitary frame {ei, . . . , dm}. Suppose that µ1(M) ≥ m2, then there exists a
constant C(m) > 0 depending only on m, such that, the number of ends of M is
bounded above by

N(M) ≤ C(m)
(

V

Vp(1)

)2

ln
(

V

Vp(1)

)
.

Theorem 2.5. Let Mm be a complete quarternionic Kähler manifold of real dimen-
sion 4m. Assume that M has finite volume and its scalar curvature of satisfies the
bound

SM ≥ −16m(m + 2),

Suppose that µ1(M) ≥ (2m + 1)2, then there exists a constant C(m) > 0 depending
only on m, such that, the number of ends of M is bounded above by

N(M) ≤ C(m)
(

V

Vp(1)

)2

ln
(

V

Vp(1)

)
.
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We would like to point out that in Theorem 2.4, it is reasonable to ask if the
assumption on the holomorphic bisectional curvarture can be replace with the weaker
assumption that the Ricci curvature is bounded from below by

RicM ≥ −2(m + 1).

A theorem of Munteanu [M] asserted that λ1(M) ≤ m2. However, in this case, the
required volume estimate of the form

Vy(1) ≥ C−1
1 exp(−2mR) Vp(1)

is not known since a volume comparison theorem has not been proven with the weaker
curvature assumption.
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