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FINITE BOUNDS FOR HÖLDER-BRASCAMP-LIEB MULTILINEAR
INEQUALITIES

Jonathan Bennett, Anthony Carbery, Michael Christ, and Terence
Tao

Abstract. A criterion is established for the validity of multilinear inequalities of a

class considered by Brascamp and Lieb, generalizing well-known inequalties of Rogers

and Hölder, Young, and Loomis-Whitney.

1. Formulation

Consider multilinear functionals

(1.1) Λ(f1, f2, · · · , fm) =
∫

Rn

m∏
j=1

fj(`j(y)) dy

where each `j : Rn → Rnj is a surjective linear transformation, and fj : Rnj →
[0,+∞]. Let p1, · · · , pm ∈ [1,∞]. For which m-tuples of exponents and linear trans-
formations is

(1.2) sup
f1,··· ,fm

Λ(f1, f2, · · · , fm)∏
j ‖fj‖Lpj

<∞?

The supremum is taken over all m-tuples of nonnegative Lebesgue measurable func-
tions fj having positive, finite norms. If nj = n for every index j then (1.2) is
essentially a restatement of Hölder’s inequality.1 Other well-known particular cases
include Young’s inequality for convolutions and the Loomis-Whitney inequality2 [15].

In this paper we characterize finiteness of the supremum (1.2) in linear algebraic
terms, and discuss certain variants and a generalization. The problem has a long
history, including the early work of Rogers [17] and Hölder [12]. In this level of
generality, the question was to our knowledge first posed by Brascamp and Lieb [4].
A primitive version of the problem involving Cartesian product rather than linear
algebraic structure was posed and solved by Finner [10]; see §7 below. In the case
when the dimension nj of each target space equals one, Barthe [1] characterized
(1.2). Carlen, Lieb and Loss [7] gave an alternative characterization, closely related
to ours, and an alternative proof for that case. [7] developed an inductive analysis
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closely related to that of Finner, whose argument in turn relied on a slicing and
induction argument employed earlier by Loomis and Whitney [15] and Calderón [6]
to treat special cases. [7] also introduced a version of the key concepts of critical and
subcritical subspaces, a higher-dimensional reformulation of which is essential in our
work.

An alternative line of analysis exists. Although rearrangement inequalities such
as that of Brascamp, Lieb, and Luttinger [5] do not apply when the target spaces
have dimensions greater than one, Lieb [14] nonetheless showed that the supremum
in (1.2) equals the supremum over all m-tuples of Gaussian functions,3 meaning those
of the form fj = exp(−Qj(y, y)) for some positive definite quadratic form Qj . See
[7] and references cited there for more on this approach. In a companion paper [3]
we have given other proofs of our characterization of (1.2), by using heat flow to
continuously deform arbitrary functions fj to Gaussians while increasing the ratio in
(1.2). That approach extends work of Carlen, Lieb, and Loss [7] via a method which
they introduced.

We are indebted to a referee, whose careful reading and comments have improved
the exposition.

2. Results

Denote by dim (V ) the dimension of a vector space V , and by codimW (V ) the codi-
mension of a subspace V ⊂W in W . It is convenient to reformulate the problem in a
more invariant fashion. Let H,H1, . . . ,Hm be Hilbert spaces of finite, positive dimen-
sions. Each is equipped with a canonical Lebesgue measure, by choosing orthonormal
bases, thus obtaining identifications with Rdim (H), Rdim (Hj). Let `j : H → Hj be
surjective linear mappings. Let fj : Hj → R be nonnegative. Then Λ(f1, · · · , fm)
equals

∫
H

∏m
j=1 fj ◦ `j(y) dy.

Theorem 2.1. For 1 ≤ j ≤ m let H,Hj be Hilbert spaces of finite, positive dimen-
sions. For each index j let `j : H → Hj be surjective linear transformations, and let
pj ∈ [1,∞]. Then (1.2) holds if and only if

(2.1) dim (H) =
∑

j

p−1
j dim (Hj)

and

(2.2) dim (V ) ≤
∑

j

p−1
j dim (`j(V )) for every subspace V ⊂ H.

This equivalence is established by other methods in [3], Theorem 1.15.
Given that (2.1) holds, the hypothesis (2.2) can be equivalently restated as

(2.3) codimH(V ) ≥
∑

j

p−1
j codimHj (`j(V )) for every subspace V ⊂ H;

3This situation should be contrasted with that of multilinear operators of the same general form,

mapping ⊗jLpj to Lq . When q ≥ 1, such multilinear operators are equivalent by duality to mul-

tilinear forms Λ. This is not so for q < 1, and Gaussians are then quite far from being extremal
[8].
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any two of these three conditions (2.1), (2.2), (2.3) imply the third. As will be seen
through the discussion of variants below, (2.2) expresses a necessary condition gov-
erning large-scale geometry (compare Theorem 2.5), while (2.3) expresses a necessary
condition governing small-scale geometry (compare Theorem 2.2). See also the dis-
cussion of necessary conditions for Theorem 2.3.

In the rank one case, when each target space Hj is one-dimensional, a necessary
and sufficient condition for inequality (1.2) was first obtained by Barthe [1]. Carlen,
Lieb, and Loss [7] gave a different proof of the inequality for the rank one case, and a
different characterization which is closely related to ours. Write `j(x) = 〈x, vj〉. It was
shown in [7] that (1.2) is equivalent, in the rank one case, to having

∑
j p

−1
j = dim (H)

and
∑

j∈S p
−1
j ≤ dim (span ({vj : j ∈ S})) for every subset S of {1, 2, · · · ,m}; a set

of indices S was said to be subcritical if this last inequality holds, and to be critical
if it holds with equality. In the higher-rank case, we have formulated these concepts
as properties of subspaces of H, rather than of subsets of {1, 2, · · · ,m}.

To elucidate the connection between the two formulations in the rank one case, de-
fine WS = span {vj : j ∈ S}, and say that a set of indices S is maximal if there
is no larger set S̃ of indices satisfying WS̃ = WS . All sets of indices are sub-
critical, if and only if all maximal sets of indices are subcritical. If j ∈ S then
codimHj

(`j(W⊥
S )) = 1; if j /∈ S and S is maximal then codimHj

(`j(W⊥
S )) = 0; and

codim(W⊥
S ) = dim (span ({vj : j ∈ S})). Thus if S is maximal, then the subcritical-

ity of S is equivalent to
∑n

j=1 p
−1
j codimHj (`j(W

⊥
S )) ≤ codim(W⊥

S ). As noted above,
under the condition

∑n
j=1 p

−1
j = dim (H), this is equivalent to our subcriticality con-

dition dim (V ) ≤
∑

j p
−1
j dim (`j(V )) for the subspace V = W⊥

S .
The necessity of (2.1) follows from scaling: if fλ

j (xj) = gj(λxj) for each λ ∈
R+ then Λ({fλ

j }) is proportional to λ− dim (H), while
∏

j ‖fλ
j ‖pj

is proportional to∏
j λ

− dim (Hj)/pj . That (2.2) is also necessary will be shown in §5 in the course of the
proof of the more general Theorem 2.3.

Remark 2.1. Λ can be alternatively expressed as a constant multiple of the integral∫
Σ

∏
j fj dσ, where Σ is a linear subspace of ⊕jHj and σ is Lebesgue measure on

Σ. More exactly, Σ is the range of the map H 3 x 7→ ⊕j`j(x). Denote by πj the
restriction to Σ of the natural projection πj : ⊕iHi → Hj . Then condition (2.2) can
be restated as

(2.4) dim (Σ̃) ≤
∑

j

p−1
j dim (πj(Σ̃)) for every linear subspace Σ̃ ⊂ Σ.

A local variant is also natural. Consider

(2.5) Λloc(f1, · · · , fm) =
∫
{y∈H:|y|≤1}

∏
j

fj ◦ `j(y) dy.

Theorem 2.2. Let H,Hj , `j, and fj : Hj → [0,∞) be as in Theorem 2.1. Let
pj ∈ [1,∞] for 1 ≤ j ≤ m. A necessary and sufficient condition for there to exist
C <∞ such that

(2.6) Λloc(f1, · · · , fm) ≤ C
∏
j

‖f‖Lpj
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for all nonnegative measurable functions fj is that every subspace V of H satisfies
(2.3): codimH(V ) ≥

∑
j p

−1
j codimHj

(`j(V )).

This is equivalent to Theorem 8.17 of [3], proved there by a different method.
Certain cases of Theorem 2.2 follow from Theorem 2.1; if there exist exponents rj

satisfying the hypotheses (2.1) and (2.2) of Theorem 2.1, such that rj ≤ pj for all
j, then the conclusion of Theorem 2.2 follows directly from that of Theorem 2.1 by
Hölder’s inequality, since ‖fj‖Lrj ≤ C ′ ‖fj‖Lpj . But not all cases of Theorem 2.2 are
subsumed in Theorem 2.1 in this way. See Remark 7.1 for examples.

The next theorem, in which some but not necessarily all coordinates of y are
constrained to a bounded set, unifies Theorems 2.1 and 2.2.

Theorem 2.3. Let H,H0, · · · ,Hm be finite-dimensional Hilbert spaces and assume
that dim (Hj) > 0 for all j ≥ 1. Let `j : H → Hj be linear transformations for
0 ≤ j ≤ m, which are surjective for all j ≥ 1. Let pj ∈ [1,∞] for 1 ≤ j ≤ m. Then
there exists C <∞ such that

(2.7)
∫
{y∈H:|`0(y)|≤1}

m∏
j=1

fj ◦ `j(y) dy ≤ C
m∏

j=1

‖fj‖Lpj

for all nonnegative Lebesgue measurable functions fj if and only if

dim (V ) ≤
m∑

j=1

p−1
j dim (`j(V )) for all subspaces V ⊂ kernel (`0)(2.8)

and

codimH(V ) ≥
m∑

j=1

p−1
j codimHj

(`j(V )) for all subspaces V ⊂ H.(2.9)

This subsumes Theorem 2.2, by taking H0 = H and `0 : H → H to be the identity;
(2.8) then only applies to {0}, for which it holds automatically, so that the only
hypothesis is then (2.9). On the other hand, Theorem 2.1 is the special case `0 ≡ 0
of Theorem 2.3. In that case kernel (`0) = H, so (2.8) becomes (2.2). In addition,
the case V = {0} of (2.9) yields the reverse inequality dim (H) ≥

∑
j p

−1
j dim (Hj).

Thus the hypotheses of Theorem 2.3 imply those of Theorem 2.1 when `0 ≡ 0. The
converse implication also holds, as was pointed out in the discussion of Theorem 2.2.

Our next result is one of several possible discrete analogues. Recall [13] that any
finitely generated Abelian group G is isomorphic to Zr × H for some integer r and
some finite Abelian group H; r is uniquely determined and is called the rank of G.

Theorem 2.4. Let G and {Gj : 1 ≤ j ≤ m} be finitely generated Abelian groups. Let
ϕj : G→ Gj be homomorphisms. Let pj ∈ [1,∞]. Then

(2.10) rank (H) ≤
∑

j

p−1
j rank (ϕj(H)) for every subgroup H of G

if and only if there exists C <∞ such that

(2.11)
∑
y∈G

m∏
j=1

(fj ◦ ϕj)(y) ≤ C
∏
j

‖fj‖`pj (Gj) for all fj : Gj → [0,∞).
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Here the `pj norms are defined with respect to counting measure.
A special case arises when G is isomorphic to Zd, Gj is isomorphic to Zdj for all

j, and each ϕj is represented by a matrix with integer entries. The general case of
Theorem 2.4 can be deduced directly from this special case, using the isomorphisms
between e.g. G and Zd ×H for some finite group H, and the fact that all `p norms
are mutually equivalent on finite sets.

A related variant is as follows. In Rd, for each n ∈ Zd define Qn = {x ∈ Rd :
|x − n| ≤

√
d}. The space `p(L∞)(Rd) is the space of all f ∈ L∞(Rd) for which

(
∑

n∈Zd ‖f‖p
L∞(Qn))

1/p is finite.

Theorem 2.5. Let m ≥ 1 be a positive integer, and for each j ∈ {1, 2, · · · ,m} let
`j : Rd → Rdj be a surjective linear transformation. Let pj ∈ [1,∞]. Then

(2.12) dim (V ) ≤
∑

j

p−1
j dim (`j(V )) for every subspace V ⊂ Rd

if and only if there exists C <∞ such that

(2.13)
∫

Rd

m∏
j=1

(fj ◦ `j)(y) dy ≤ C
∏
j

‖fj‖`pj (L∞)(Rdj )

for all measurable fj : Rdj → [0,∞).

A related result is Corollary 8.11 of [3].
Yet another variant of our results, based on Cartesian product rather than lin-

ear algebraic or group theoretic structure, has been obtained earlier by Finner [10];
see also [11] for a discussion of some special cases from another point of view. Let
{(Xi, µi)i∈I} be a finite collection of measure spaces, and let (X,µ) =

∏
i∈I(Xi, µi)

be their product. Let J be another finite index set. For each j ∈ J , let Sj be some
nonempty subset of I. Let Yj =

∏
i∈Sj

Xi, equipped with the associated product
measure, and let πj : X → Yj be the natural projection map. Let fj : Yj → [0,∞] be
measurable. To avoid trivialities, we assume throughout the discussion that I, J are
nonempty and that µ(X) is strictly positive. Define

(2.14) Λ(fj)j∈J =
∫

X

∏
j∈J

fj ◦ πj dµ.

Denote by | · | the cardinality of a finite set.
Let pj ∈ [1,∞] for each j ∈ J . Finner’s theorem then asserts that if

(2.15) 1 =
∑

j:i∈Sj

p−1
j for all i ∈ I

then

(2.16) Λ(fj)j∈J ≤
∏
j∈J

‖fj‖Lpj (Yj)
.

A modest generalization of Finner’s theorem is discussed in §7.
The hypothesis (2.15) can be equivalently restated as

(2.17) |K| =
∑
j∈J

p−1
j |Sj ∩K| for every subset K ⊂ I,
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or again as the conjunction of |I| =
∑

j∈J p
−1
j |Sj | and |K| ≤

∑
j∈J p

−1
j |Sj ∩K| for

every K ⊂ I. When each space Xi is some Euclidean space equipped with Lebesgue
measure, the hypotheses in this last form are precisely those of Theorem 2.1, special-
ized to this limited class of linear mappings. The analogue of a subspace is now a
subset K ⊂ I, and the analogue of criticality is (2.17); thus (2.16) holds if and only
if every subset K is critical. This contrasts with the situations treated by Barthe [1],
by Carlen, Lieb, and Loss [7], and in Theorem 2.1, where generic subspaces will be
subcritical even if critical subspaces exist.

A special case treated by Calderón [6] is as follows: Let 1 ≤ k < n. Let x =
(x1, · · · , xn) be coordinates for Rn. For each subset S ⊂ {1, 2, 3, · · · , n} of cardinality
k let Rk

S be a copy of Rk, with coordinates (xi)i∈S . Let πS : Rn → Rk be the natural
projections. Then for arbitrary nonnegative measurable functions,

(2.18)
∫

Rn

∏
S

fS(πS(x)) dx ≤
∏
S

‖fS‖Lp(Rk
S)

where p =
(
n−1
k−1

)
. A particular instance of Calderón’s theorem is the Loomis-Whitney

inequality

(2.19)
∫

Rn

n∏
j=1

fj ◦ πj(x) dx ≤
n∏

j=1

‖fj‖Ln−1 ,

where πj : Rn → Rn−1 is the mapping that forgets the j-th coordinate.

Two quite distinct investigations motivated our interest in these problems. One
derives from work [2] of three of us on multilinear versions of the Kakeya-Nikodym
maximal functions. A second motivator was work [9] on multilinear operators with
additional oscillatory factors; see Proposition 3.1 and Corollary 3.2 below.

3. An application to oscillatory integrals

Proposition 3.1. Let m > 1. For 1 ≤ j ≤ m let `j : Rn → Rnj be surjective
linear mappings. Let P : Rn → R be a polynomial. Let ϕ ∈ C1

0 (Rn) be a compactly
supported, continuously differentiable cutoff function. For λ ∈ R and fj ∈ Lpj (Rnj )
define Λλ(f1, · · · , fm) =

∫
Rn e

iλP (x)
∏m

j=1 fj(`j(x))ϕ(x) dx. Suppose that there exist
δ > 0 and C <∞ such that for all functions fj ∈ L∞ and all λ ∈ R

(3.1) |Λλ(f1, · · · , fm)| ≤ C|λ|−δ
m∏

j=1

‖fj‖L∞ .

Let (p1, · · · , pm) ∈ [1,∞]m, and suppose that for every proper subspace V ⊂ Rn,

(3.2) codimRn(V ) >
∑

j

p−1
j codimRnj (`j(V )).

Then there exist δ > 0 and C <∞, depending on (p1, · · · , pm), such that

(3.3) |Λλ(f1, · · · , fm)| ≤ C|λ|−δ
m∏

j=1

‖fj‖Lpj

for all parameters λ ∈ R and functions fj ∈ Lpj (Rnj ).
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By Theorem 2.2, the condition that codimRn(V ) ≥
∑

j p
−1
j codimRnj (`j(V )) for

every subspace V ⊂ Rn guarantees that the integral defining Λλ(f1, · · · , fm) converges
absolutely for all functions fj ∈ Lpj , and is bounded by C

∏
j ‖fj‖Lpj . The conclusion

of Proposition 3.1 then follows directly from this inequality and the hypothesis by
complex interpolation.

A polynomial P is said [9] to be nondegenerate, relative to the collection {`j} of
mappings, if P cannot be expressed as P =

∑
j Pj◦`j for any collection of polynomials

Pj : Rnj → R.

Corollary 3.2. Let {`j}, P, ϕ be as in Proposition 3.1. Suppose that P is nonde-
generate relative to {`j}. Suppose that either (i) nj = 1 for all j, m < 2n, and
the family {`j} of mappings is in general position, or (ii) nj = n − 1 for all j.
Let (p1, · · · , pm) ∈ [1,∞]m and suppose that for every proper subspace V ⊂ Rn,
codimRn(V ) >

∑
j p

−1
j codimRnj (`j(V )). Then there exists δ > 0 such that for any

ϕ ∈ C1
0 there exists C <∞ such that for all functions fj ∈ Lpj (Rnj ),

|Λλ(f1, · · · , fm)| ≤ C|λ|−δ
m∏

j=1

‖fj‖Lpj .

Here general position means that for any subset S ⊂ {1, 2, · · · ,m} of cardinality
|S| ≤ n, ∩j∈S kernel (`j) has dimension n− |S|.

By Theorems 2.1 and 2.2 of [9], the hypotheses imply (3.1). Proposition 3.1 then
implies the Corollary.

4. Proof of sufficiency in Theorem 2.1

We begin with the proof of sufficiency of the hypotheses (2.1), (2.2) for the finiteness
of the supremum in (1.2). Necessity will be established in the next section.

The next definition is made for the purposes of the discussion of Theorem 2.1;
alternative notions of criticality are appropriate for the other theorems.

Definition 4.1. Relative to a set of exponents {pj}, a subspace V ⊂ H is said to be
critical if

(4.1) dim (V ) =
∑

j

p−1
j dim (`j(V )),

to be supercritical if the right-hand side is less than dim (V ), and to be subcritical if
the right-hand side is greater than dim (V ).

In this language, the hypothesis (2.1) states that V = H is critical relative to {pj},
while (2.2) states that no subspace of H is supercritical.

Proof of sufficiency in Theorem 2.1. The proof proceeds by induction on the dimen-
sion of H. When dim (H) = 1, necessarily dim (Hj) = 1 for all j. The hypothesis of
the theorem in this case is that

∑
j p

−1
j = 1, and the conclusion is simply a restatement

of Hölder’s inequality for functions in Lpj (R1).
Suppose now that dim (H) > 1. There are two cases. Case 1 arises when there

exists some proper nonzero critical subspace W ⊂ H. The analysis then relies on a
factorization procedure visible in the work of Calderón [6], Finner [10], and Carlen,
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Lieb, and Loss [7]. Express H = W⊥ ⊕W where W⊥ is the orthocomplement of W ,
with coordinates y = (y′, y′′) ∈ W⊥ ⊕W ; we will identify (y′, 0) with y′ and (0, y′′)
with y′′. Define Uj ⊂ Hj to be

(4.2) Uj = `j(W ).

Define ˜̀
j = `j |W : W → Uj , which is surjective. For y′ ∈W⊥ and xj ∈ Uj define

(4.3) gj,y′(xj) = fj(xj + `j(y′)).

Then

(4.4) fj(`j(y′, y′′)) = fj(`j(y′) + ˜̀
j(y′′)) = gj,y′(˜̀j(y′′)).

Now

Λ(f1, · · · , fm) =
∫

W⊥

∫
W

∏
j

fj(`j(y′, y′′)) dy′′ dy′

=
∫

W⊥

∫
W

∏
j

gj,y′(˜̀j(y′′)) dy′′ dy′,

so

(4.5) Λ(f1, · · · , fm) =
∫

W⊥
Λ̃(g1,y′ , · · · , gm,y′) dy′

where

(4.6) Λ̃(g1, · · · , gm) =
∫

W

∏
j

gj(˜̀j(y′′)) dy′′.

We claim that

(4.7) Λ̃(g1, · · · , gm) ≤ C
∏
j

‖gj‖pj
.

Since W has dimension strictly less than dim (H), this follows from the induction
hypothesis provided that W is critical and no subspace V ⊂ W is supercritical,
relative to the mappings ˜̀

j and exponents pj . But since ˜̀
j is the restriction of `j to

W , this condition is simply the specialization of the original hypothesis from arbitrary
subspaces of H to those subspaces contained in W , together with the criticality of W
hypothesized in Case 1. Thus

(4.8) Λ(f1, · · · , fm) =
∫

W⊥
Λ̃(g1,y′ , · · · , gm,y′) dy′ ≤ C

∫
W⊥

∏
j

‖gj,y′‖Lpj (Uj) dy
′.

We will next show how this last integral is another instance of the original problem,
with H replaced by the lower-dimensional vector space W⊥. For zj ∈ U⊥

j define

(4.9) Fj(zj) =
( ∫

Uj

fj(xj + zj)pj dxj

)1/pj
,

recalling that fj ≥ 0, with Fj(zj) = ess sup xj∈Uj
fj(xj + zj) if pj = ∞. Thus4

(4.10) ‖Fj‖Lpj (U⊥j ) = ‖fj‖Lpj (Hj).

4If Uj = {0} then the domain of Fj is Hj , and Fj ≡ fj . If Uj = Hj then the domain of Fj is

{0}, and ‖Fj‖pj is by definition Fj(0) = ‖fj‖pj .
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Denote by πU⊥j
: Hj → U⊥

j and πUj : Hj → Uj the orthogonal projections. Define
Lj : W⊥ → U⊥

j by

(4.11) Lj = πU⊥j
◦ `j .

Decomposing `j(y′) = Lj(y′) + uj where uj = πUj (`j(y
′)), and making the change of

variables x̃j = xj + uj in Uj , gives (if pj <∞)

(4.12) ‖gj,y′‖
pj

Lpj (Uj)
=

∫
Uj

|gj,y′(xj)|pj dxj =
∫

Uj

|fj(xj + `j(y′))|pj dxj

=
∫

Uj

|fj(xj + uj + Lj(y′))|pj dxj =
∫

Uj

|fj(x̃j + Lj(y′))|pj dx̃j = Fj(Lj(y′))pj .

Consequently we have shown thus far that

(4.13) Λ(f1, · · · , fm) ≤ C

∫
W⊥

∏
j

Fj ◦ Lj

where ‖Fj‖Lpj (U⊥j ) = ‖fj‖Lpj (Hj). Since `j : H → Hj is surjective, Hj is spanned by
`j(W ) = Uj together with `j(W⊥); thus the orthogonal projection of `j(W⊥) onto
U⊥

j is all of U⊥
j ; thus each Lj : W⊥ → U⊥

j is surjective.
To complete the argument for Case 1 we need only show that

(4.14)
∫

W⊥

∏
j

Fj ◦ Lj ≤ C
∏
j

‖Fj‖Lpj (U⊥j ).

By induction on the ambient dimension, this follows from the next lemma, which
appears in [7] in the special case when dim (Hj) = 1 for all j. Although there are
no additional complications in the general case, we include a proof for the sake of
completeness.

Lemma 4.1. Fix an m-tuple (p1, · · · , pm) of exponents in [1,∞]. Suppose that with
respect to these exponents, H is critical with respect to these exponents, H has no
supercritical subspaces, and W ⊂ H is a nonzero proper critical subspace. Define
surjective linear transformations Lj = π`j(W )⊥ ◦ `j : W⊥ → `j(W )⊥. Then for any
subspace V ⊂W⊥, dim (V ) ≤

∑
j p

−1
j dim (Lj(V )).

Proof. Let V be any subspace of H contained in W⊥. Associate to V the subspace
V +W ⊂ H. Since V ⊂W⊥, dim (V +W ) = dim (V ) + dim (W ). Moreover, for any
j,

(4.15) dim (`j(V +W )) = dim (Lj(V )) + dim (`j(W )),

since Lj = π`j(W )⊥ ◦ `j .
Therefore∑

j

p−1
j dim (Lj(V )) =

∑
j

p−1
j dim (`j(V +W ))−

∑
j

p−1
j dim (`j(W ))

=
∑

j

p−1
j dim (`j(V +W ))− dim (W )

≥ dim (V +W )− dim (W ) = dim (V ),
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by the criticality of W and subcriticality of V +W . Thus V is not supercritical.
When V = W⊥, one has V +W = H, whence

∑
j p

−1
j dim (`j(V +W )) = dim (V +

W ) since H is assumed to be critical. With this information the final inequality of
the preceding display becomes an equality, demonstrating that W⊥ is critical. �

The proof of Case 1 of Theorem 2.1 is complete. Turn next to Case 2, in which
every nonzero proper subspace of H is subcritical. ∞−1 is to be interpreted as zero
throughout the discussion.

Consider the set K of all m-tuples t = (t1, · · · , tm) ∈ [0, 1]m such that relative
to the exponents pj = t−1

j , H is critical and has no supercritical subspace. Thus
K equals the intersection of [0, 1]m with the hyperplane defined by the equation
dim (H) =

∑
j tj dim (Hj), and with all of the closed half-spaces defined by the in-

equalities dim (V ) ≤
∑

j tj dim (`j(V )), as V ranges over all subspaces ofH. Therefore
K is comvex and compact.

While the number of such subspaces V is infinite, the number of m + 1-tuples
(dim (V ),dim (`1(V )), · · · ,dim (`m(V ))) is finite. The set of all distinct inequalities
induced by subspaces of H is in one-to-one corresondence with the set of all such
m+1-tuples. Thus K is the intersection of [0, 1]m with a hyperplane and with finitely
many closed half-spaces. Therefore K has finitely many extreme points. Since K is
compact and convex, K consequently equals the convex hull of its extreme points.

We will show that for any extreme point t of K, there exists a finite constant C
such that Λ(f1, · · · , fm) ≤ C

∏
j ‖fj‖L1/tj for all nonnegative measurable functions fj .

Granting such inequalities, let {t(i)}i be the set of all extreme points of K, and let Ci

be constants for which the corresponding inequalities hold. Any t = (t1, · · · , tm) ∈ K
can be expressed as t =

∑
i λit

(i) for some scalars λi ∈ [0, 1] satisfying
∑

i λi = 1.
Write t(i) = (t(i)1 , · · · , t(i)m ). A direct application of complex interpolation shows that

Λ(f1, · · · , fm) ≤
∏

i

Cλi
i

∏
j

‖fj‖λi

L1/tj
= C

∏
j

‖fj‖L1/tj

for all nonnegative measurable functions fj , where C =
∏

i C
λi
i .

At an arbitrary extreme point t of K, at least one of the inequalities defining K
must become an equality. Therefore some nonzero proper subspace of H must be
critical relative to t, or ti ∈ {0, 1} for at least one index i.

Consider the set K̃ of all t ∈ [0,∞)m for which dim (H) =
∑

j tj dim (Hj) and
dim (V ) ≤

∑
j tj dim (`j(V )) for all subspaces V of H. Thus K = K̃ ∩ [0, 1]m ⊂ K̃.

We claim that K̃ = K. Indeed, for any t ∈ K̃, the homogeneity and subcriticality
conditions imply that codimH(V ) ≥

∑
j tj codimHj

(`j(V )) for all subspaces V ⊂ H.
Consider any index i and let V be the nullspace of `i. Then

(4.16) dim (Hi) = codimH(V ) ≥
∑

j

tj codimHj (`j(V ))

≥ ti codimHi{0} = ti dim (Hi).

Therefore ti ≤ 1 for all i, so t ∈ K. Thus K̃ ⊂ K, as claimed.
Since K̃ = K, if t is any extreme point of K, then either equality must hold in

at least one of the inequalities defining K̃, or the number m of indices j must be 1
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(so that the hypothesis dim (H) =
∑

j p
−1
j dim (Hj) specifies the single exponent p−1

1 ,
reducing K to a single point). Thus some nonzero proper subspace of H must be
critical relative to t, or at least one coordinate ti must equal 0, or m = 1. In the first
subcase we are in Case 1, which has already been treated above. For the case m = 1,
see the second paragraph below.

In the second subcase, we may proceed by induction on m, for an inequality
Λ(f1, · · · , fm) ≤ C ‖fi‖L∞

∏
j 6=i ‖fj‖Lpj is equivalent to

(4.17) Λ(f1, · · · , fi−1, 1, fi+1, · · · , fm) ≤ C
∏
j 6=i

‖fj‖Lpj .

The hypotheses of Theorem 2.1 are inherited by this multilinear operator of one lower
degree, acting on {fj : j 6= i}, whence the desired inequality follows by induction.

This induction is founded by the subcase in which m = 1. In this case the hypothe-
sis dim (H) =

∑
j p

−1
j dim (Hj) becomes dim (H) = p−1

1 dim (H1). Since `1 : H → H1

is assumed to be surjective, dim (H1) ≤ dim (H), so this forces both p1 = 1 and
dim (H1) = dim (H). Since `1 : H → H1 is surjective, it must be invertible. There-
fore Λ(f1) =

∫
H
f1◦`1 = c

∫
H1
f1 = c‖f1‖L1 for some finite constant c, which certainly

implies the desired inequality Λ(f1) ≤ C‖f1‖L1 . �

Remark 4.1. When dim (Hj) = 1 for all j, every extreme point (p−1
1 , · · · , p−1

m ) of K
has each p−1

j ∈ {0, 1} [1],[7]. This is not the case in general; in the Loomis-Whitney
inequality (2.19) for Rn, K consists of a single point, with pj = n− 1 for all j.

5. Proof of Theorem 2.3

Consider
∫
{y∈H:|`0(y)|≤1}

∏m
j=1 fj ◦ `j dy where the linear transformation `0 has

domainH and rangeH0, with dim (H0) possibly equal to zero. Thus some components
of y are constrained to a bounded set, while the rest are free. Set

(5.1) V = kernel (`0);

the component of y lying in V is completely unconstrained, while the component in
V⊥ is constrained to a bounded set.

Proof of necessity of (2.8) and (2.9). For any subspace V ⊂ H define Vbig = V ∩ V
and Vsmall = V 	 Vbig = V ∩ (Vbig)⊥, so that V = Vsmall ⊕ Vbig. Denote by πV the
orthogonal projection of either H or some Hj onto a subspace V .

Let r ≤ 1 ≤ R be arbitrary. Define fj = fj(xj) to be the characteristic function of
the set Sj of all xj ∈ Hj such that

|π`j(Vbig)(xj)| ≤ R, |π`j(V )∩(`j(Vbig))⊥(xj)| ≤ 1, and |π(`j(V ))⊥(xj)| ≤ r.

Let c0 > 0 be a small constant independent of r,R, and define S ⊂ H to be the set
of all y such that |πV ⊥(y)| ≤ c0r, |πVsmall(y)| ≤ c0, and |πVbig(y)| ≤ c0R.

Fix a constant C <∞ such that |`j(y)| ≤ C|y| for all y, j. Provided that c0 < 1/3C,
y ∈ S ⇒ fj(`j(y)) = 1 for all indices j. Indeed, for any y ∈ S ∩ V ⊥, |`j(y)| ≤
C|y| ≤ Cc0r < r/3, so `j(y) ∈ 1

3Sj . If on the other hand y ∈ S ∩ Vsmall, then
|`j(y)| ≤ C|y| ≤ Cc0 <

1
3 , so since `j(y) ∈ `j(V ), `j(y) ∈ 1

3Sj . Finally if y ∈ S ∩ Vbig

then |`j(y)| ≤ Cc0R, which implies that `j(y) ∈ 1
3Sj since `j(y) ∈ `j(Vbig). Any y ∈ S

admits an orthogonal decomposition y = u+ v+w where u ∈ S ∩V ⊥, v ∈ S ∩Vsmall,
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and w ∈ S ∩ Vbig. These components satisfy |u| ≤ c0r, |v| ≤ c0, and |w| ≤ c0R, by
definition of S. `j(y) is thus a sum of three terms in 1

3Sj , so `j(y) ∈ Sj .
Moreover y ∈ S ⇒ |`0(y)| ≤ 1. Therefore

(5.2) Λ̃loc({fj}) ≥ |S| ∼ Rdim (Vbig) · rcodimH(V )

while

(5.3) ‖fj‖pj
∼ Rp−1

j dim (`j(Vbig))rp−1
j codimHj

(`j(V )).

Suppose that the ratio Λ̃loc

(
{fj}

)
/

∏
j ‖fj‖pj

is bounded uniformly as a function of
r,R. By letting R→∞ while r remains fixed, we conclude that

dim (Vbig) ≤
∑

j

p−1
j dim (`j(Vbig)).

Letting r → 0 with R fixed gives

codimH(V ) ≥
∑

j

p−1
j codimHj (`j(V )).

�

The following lemma will be used in the proof of Theorem 2.3.

Lemma 5.1. Suppose that codimH(V ) ≥
∑

j p
−1
j codimHj (`j(V )) for every subspace

V ⊂ H, and that W ⊂ H is a subspace satisfying codimH(W ) =∑
j p

−1
j codimHj

(`j(W )). Then for any subspace V ⊂W ,

codimW (V ) ≥
∑

j

p−1
j codim`j(W )(`j(V )).

Likewise for any subspace V ⊂W⊥,

codimW⊥(V ) ≥
∑

j

p−1
j codim`j(W )⊥(Lj(V )).

Proof. For the first conclusion,

(5.4) codimW (V ) = dim (W )− dim (V ) = codimH(V )− codimH(W )

≥
∑

j

p−1
j codimHj

(`j(V ))−
∑

j

p−1
j codimHj

(`j(W ))

=
∑

j

p−1
j (dim (`j(W ))− dim (`j(V ))) =

∑
j

p−1
j codim`j(W )(`j(V )).
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For the second conclusion,

codimW⊥(V ) = dim (H)− dim (W )− dim (V )

= codimH(V +W )

≥
∑

j

p−1
j codimHj

(V +W )

=
∑

j

p−1
j

(
dim (Hj)− dim (`j(W ))− dim (Lj(V ))

)
=

∑
j

p−1
j

(
dim (Lj(W⊥))− dim (Lj(V ))

)
.

=
∑

j

p−1
j codimLj(W⊥)(Lj(V )).

(5.5)

The identity dim (Hj) = dim (`j(W )) + dim (Lj(W⊥)) used to obtain the final line is
(4.15) specialized to V = W⊥. �

Proof of sufficiency in Theorem 2.3. The proof follows the inductive scheme of the
proof of Theorem 2.1. To simplify notation set tj = p−1

j ∈ [0, 1]. Case 1 now
breaks down into two subcases. Case 1A arises when there exists a nonzero proper
subspace W of H that is contained in V and is critical in the sense of (2.8), that is,5∑

j tj dim (`j(W )) = dim (W ).
With coordinates (y′, y′′) for W⊥⊕W , `0 is independent of y′′, and for every sub-

space V ⊂W ,
∑

j tj dim (`j(V )) ≥ dim (V ) by (2.8). Thus the collection of mappings
{`j |W } satisfies the hypothesis of Theorem 2.1, whence

∫
W

∏
j fj ◦ `j(y′, y′′) dy′′ ≤

C
∏

j Fj(y′) where ‖Fj‖Lpj (W⊥) ≤ C‖fj‖Lpj (Hj).
It remains to bound

∫
W⊥ χB ◦ `0(y′, 0)

∏
j Fj ◦ Lj(y′) dy′, where B denotes the

characteristic function of a ball of finite radius. Theorem 2.3 can be invoked by in-
duction on the ambient dimension, provided that (2.8) and (2.9) hold for the data
W⊥,V ∩ W⊥, {U⊥

j , Lj , pj}. We will write (2.8)H , (2.8)W , and (2.8)W⊥ to distin-
guish between this hypothesis for the three different data that arise in the discussion;
likewise for (2.9).

(2.9)W is the condition that codimW⊥(V ) ≥
∑

j tj codimLj(W⊥)(Lj(V )) for every
subspace V ⊂ W⊥, which is the second conclusion of Lemma 5.1. (2.8)W is the
condition

(5.6) dim (V ) ≤
∑

j

tj dim (Lj(V )) for all subspaces V ⊂ V ∩W⊥.

Since V,W are both contained in V so is V +W , so
∑

j tj dim (`j(V +W )) ≥ dim (V +
W ) = dim (V ) + dim (W ) by (2.8)H . This together with the previously established
identity dim (`j(V +W )) = dim (`j(W )) + dim (Lj(V )) and the criticality condition∑

j tj dim (`j(W )) = dim (W ) yields (5.6). Thus Case 1A is treated by applying
Theorem 2.1 for W and the induction hypothesis for W⊥.

Case 1B arises when there exists a nonzero proper subspace W ⊂ H that is critical
in the sense of (2.9), that is, codimH(W ) =

∑
j tj codimHj

(`j(W )). The analysis

5All summations with respect to j are taken over 1 ≤ j ≤ m.
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follows the same inductive scheme. Lemma 5.1 guarantees that (2.9)W holds, while
(2.8)W is simply the specialization of (2.8)H to subspaces V ⊂ W ∩ V. Thus Theo-
rem 2.3 may be applied by induction to W, {`j(W )}, {`j |W }, {pj}.

This reduces matters to
∫

W⊥∩{|L0(y′)|≤1}
∏

j Fj ◦ Lj dy
′, where the nullspace Ṽ of

L0 is the set of all y′ ∈ W⊥ for which there exists y′′ ∈ W such that `0(y′, y′′) = 0;
thus the subspace V ⊂ H is now replaced by πW⊥V ⊂W⊥.

Now it is natural to expect to use (2.8)H to establish (2.8)W⊥ , but the latter
pertains to certain subspaces not contained in V, about which the former says nothing.
Luckily the inequality in (5.6) holds for arbitrary subspaces V ⊂W⊥, not merely those
contained in πW⊥V. Indeed,∑

j

tj dim (Lj(V )) =
∑

j

tj dim (`j(V +W ))−
∑

j

tj dim (`j(W ))

=
∑

j

tj codimHj
(`j(W ))−

∑
j

tj codimHj
(`j(V +W ))

= codimH(W )−
∑

j

tj codimHj (`j(V +W ))

≥ codimH(W )− codimH(V +W )

= dim (V ).

The assumption that W is critical in the sense that equality holds in (2.9)H implies
(2.9)⊥W , by the second conclusion of Lemma 5.1. Thus by induction on the dimension,
Theorem 2.3 may be applied to the integral over W⊥, concluding the proof for Case
1B.

Case 2 arises when no subspace W is critical in either sense. Consider the set
K ⊂ [0, 1]m of all (t1, · · · , tm) such that

∑
j tj dim (`j(V )) ≥ dim (V ) for all subspaces

V ⊂ V = kernel (`0), and codimH(V ) ≥
∑

j tj codimHj (`j(V )) for all subspaces
V ⊂ H. As in the proof of Theorem 2.1, K is a compact convex set with finitely
many extreme points, and consequently equals the convex hull of the set of all of
those extreme points. It suffices to prove that

∫
H
χB ◦ `0

∏
j≥1 fj ◦ `j ≤ C

∏
j ‖fj‖qj

for every extreme point (t1, · · · , tm) of K, where qj = t−1
j . Consider such an extreme

point. If there exists a nonzero proper subspace V ⊂ V that is critical in the sense that∑
j tj dim (`j(V )) = dim (V ), or a nonzero proper subspace V ⊂ H that is critical in

the sense that codimH(V ) =
∑

j tj codimHj
(`j(V )), then Case 1A or Case 1B apply.

There are other cases in which equality might hold in (2.8) or (2.9), besides those
subsumed under Case 1. If equality holds for V = {0} in (2.9) with p−1

j = tj ,
then dim (H) =

∑
j tj dim (Hj), which is the first hypothesis of Theorem 2.1. In

conjunction with (2.9) this implies that (2.8) holds for every subspace V ⊂ H, which is
the second hypothesis of Theorem 2.1. Therefore the conclusion (2.7) of Theorem 2.3
holds without the restriction |`0(y)| ≤ 1 in the integral, by Theorem 2.1.

If on the other hand H = V = kernel (`0) and equality holds for V = H in (2.8)
with p−1

j = tj , then dim (H) =
∑

j tj dim (Hj), so Theorem 2.1 applies once more.
Therefore matters reduce to the case where equality holds in (2.8) for no subspace

of V except V = {0}, and where furthermore equality holds in (2.9) for no subspace
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of H except for V = H itself. Equality always holds in both of those cases, so they
play no part in defining K.
t satisfies codimH(V ) ≥

∑
j tj codimHj

(V )) for every subspace V ⊂ H. Therefore
as in Case 2 of the proof of Theorem 2.1, every remaining extreme point (t1, · · · , tm)
of K must have ti = 0 for at least one index i.

By induction on m, it therefore suffices to treat the case m = 1, with p1 = ∞.
By (2.8) applied to V = kernel (`0), dim (kernel (`0)) ≤ 0 dim (H1) = 0, so `1 has no
kernel. Therefore the restriction |`0(y)| ≤ 1 constrains y to a bounded region, whence∫
|`0(y)|≤1

f1 ◦ `1(y) dy ≤ C‖f1‖L∞ for some finite constant C. �

6. Proof of Theorem 2.4

This proof contains no significant new elements. We denote the identity element
of a group by 0. × will denote the Abelian direct product, that is, the Cartesian
product of two Abelian groups, equipped with the Abelian group structure associated
naturally to its factors. A subgroup H of G is said to be of finite index if the quotient
group G/H is finite. If H,H ′ are subgroups of G, then H +H ′ denotes the subgroup
of G generated by H ∪H ′.

A very few properties of finitely generated Abelian groups will be used in the proof.
See for instance [13] pp. 76-80, especially Theorem 2.6. Let G be any finitely generated
Abelian group. G is isomorphic to Zr ×H for some integer r and some finite Abelian
group H for a unique nonnegative integer r, called the rank of G. H is uniquely
determined up to isomorphism, and is isomorphic to the subgroup of G consisting of
all elements of finite order, which is called the torsion subgroup of G. Thus G is finite
if and only if rank (G) = 0. Any subgroup H of G is finitely generated, and satisfies
rank (H) ≤ rank (G). If H1,H2 are subgroups of G, and if H1 ∩ H2 = {0}, then
rank (H1 +H2) = rank (H1) + rank (H2). For any homomorphism ϕ, rank (ϕ(G)) ≤
rank (G). Any subgroup H is of course normal, so G/H is also a finitely generated
Abelian group; however, in contrast to the theory of vector spaces, G is not in general
isomorphic to the direct product of H × (G/H). However, the following weaker
property does hold, and will serve as a substitute in our analysis: If π : G → G/H
denotes the natural projection then for any subgroup H ′ of G/H, rank (π−1(H ′)) =
rank (H) + rank (H ′). In particular, rank (G) = rank (H) + rank (G/H).

Let groups G,Gj , homomorphisms ϕj , and exponents pj satisfy the hypotheses of
Theorem 2.4. Consider first the case where there exists a subgroup G′ ⊂ G, satisfying
0 < rank (G′) < rank (G), which is critical in the sense that

∑
j p

−1
j rank (ϕj(G′)) =

rank (G′). Define G′
j = ϕj(G′) ⊂ Gj . Since every subgroup of G inherits the hypoth-

esis of the theorem, we may conclude by induction on the rank that

(6.1)
∑
y∈G′

∏
j

(fj ◦ ϕj)(y) ≤ C
∏
j

‖fj‖`pj (G′j)
.

Define Fj ∈ `pj (Gj/G
′
j) by

Fj(x+G′
j) = (

∑
z∈G′j

|fj(x+ z)|pj )1/pj .
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Then ‖Fj‖`pj (Gj/G′j)
= ‖fj‖`pj (Gj). Define homomorphisms ψj : G/G′ → Gj/G

′
j by

composing each ϕj with the quotient map from Gj to G′
j . Then∑

y∈G

∏
j

(fj ◦ ϕj)(y) =
∑

x∈G/G′

∑
z∈G′

∏
j

(fj ◦ ϕj)(x+ z)

≤ C
∑

x∈G/G′

∏
j

(Fj ◦ ψj)(x);
(6.2)

the inequality follows from an invocation of (6.1). It suffices to show that the ho-
momorphisms ψj inherit the hypothesis of Theorem 2.4, which may then be applied
by induction on the rank to yield the desired bound O(

∏
j ‖Fj‖`pj ). This hypoth-

esis is verified using the criticality of G′ and the additivity of ranks, just as addi-
tivity of dimensions was used in the proof of Theorem 2.1. Thus Theorem 2.4 is
proved in the special case where there exists a critical subgroup G′ ⊂ G satisfying
0 < rank (G′) < rank (G).

In the general case of Theorem 2.4, consider the compact convex set K of all
(t1, · · · , tm) ∈ [0, 1]m for which rank (H) ≤

∑
j tj rank (ϕj(H)) for all subgroups H ⊂

G. As in the proof of Theorem 2.1, the set of all extreme points of K is finite, and K is
equal to its convex hull.6 It suffices to prove that

∑
y∈G

∏
j(fj◦ϕj)(y) ≤ C

∏
j ‖fj‖1/tj

for all extreme points (t1, · · · , tm) of K.
If (t1, · · · , tm) is an extreme point then either

∑
j tj rank (ϕj(G′)) = rank (G′) for

some subgroup G′ satisfying 0 < rank (G′) < rank (G), or tj ∈ {0, 1} for all indices j,
or the total number m of indices j equals one. The first case has already been treated
above.

Suppose that (t1, · · · , tm) ∈ K and tj ∈ {0, 1} for all j. Let S = {j : tj = 1},
and consider the subgroup G′ = ∩j:tj=1 kernel (ϕj). The hypothesis (2.10) states that
0 =

∑
j∈S rank (ϕj(G′)) ≥ rank (G′), so G′ has rank 0, hence is finite. For any point

z = (zj)j∈S ∈
∏

j∈S Gj , the cardinality of {y ∈ G : φj(y) = zj ∀j ∈ S} is ≤ |G′|.
Therefore∑

y∈G

∏
j

(fj ◦ ϕj)(y) ≤
∏
j /∈S

‖fj‖`∞

∑
y∈G

∏
j∈S

(fj ◦ ϕj)(y)

=
∏
j /∈S

‖fj‖`∞

∑
z∈

Q
j∈S Gj

|{y : ϕj(y) = zj ∀j ∈ S}|
∏
j∈S

fj(zj)

≤ |G′|
∏
j /∈S

‖fj‖`∞

∏
j∈S

‖fj‖`1 ,

which is the desired inequality.
If m = 1 then the hypothesis rank (G) = p−1

1 rank (ϕ1(G)) forces p1 = 1 and
rank (ϕ1(G)) = rank (G). Therefore the kernel of ϕ1 has rank 0, that is, it is a finite
group. The required inequality

∑
y∈G(f1 ◦ ϕ1)(y) ≤ C ‖f1‖`1 is then immediate. �

6There is a subtlety here. The set of all subspaces of fixed dimension of a finite-dimensional

vector space naturally carries the structure of a compact topological space. The set of
all subgroups of a finitely generated Abelian group lacks such structure. However, the in-

equalities which define K here are in one-to-one corresondence with the set of all m-tuples

(rank (H), rank (ϕ1(H)), · · · , rank (ϕm(H))), as H varies over all subgroups of G. Since all ranks
belong to the finite set [0, rank (G)] ∩ Z, only finitely many such inequalities arise.
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Conversely, necessity of the hypothesis that rank (H) ≤
∑

j p
−1
j rank (ϕj(H)) for all

subgroups H of G is routine. Observe first that if the conclusion of Theorem 2.4 holds,
then it holds with G replaced by any subgroupH; this follows simply by restricting the
sum over all y ∈ G on the left-hand side of (2.11) to y ∈ H. Therefore in order to prove
necessity of the hypothesis, it suffices to prove that rank (G) ≤

∑
j p

−1
j rank (ϕj(G)).

It is no loss of generality to replace Gj by ϕj(G), so we may assume that each
homomorphism ϕj is surjective. Each group Gj is isomorphic to Zrj × Tj where
rj = rank (Gj), and Tj is some finite group. Write (xj , tj) for coordinates on Zrj ×Tj ,
and define ‖(xj , tj)‖ = |xj |. Define a similar function G 3 y 7→ ‖y‖. Let R be an
arbitrary large positive real number, and set fj(xj , tj) = 1 if |xj | ≤ R, and = 0
otherwise. Then ‖fj‖pj

∼ Rrj/pj for large R. On the other hand, there exists c > 0
independent of R such that

∏
j(fj ◦ϕj)(y) = 1 for all y ∈ G satisfying ‖y‖ ≤ cR. The

number of such points y ∈ G is ≥ c′Rrank (G). By letting R→∞ we conclude that if
(2.11) holds, then rank (G) ≤

∑
j p

−1
j rank (Gj). �

Outline of proof of Theorem 2.5. This argument requires no essentially new ideas.
Necessity of the hypothesis for a subspace V is proved by defining each fj to be
the intersection of {xj : |xj | ≤ R} with {xj : distance (xj , `j(V )) ≤ C0}, and letting
R→∞ while C0 remains fixed.

The proof of sufficiency is based on an inductive argument for the critical case,
in which there exists a proper subspace of positive dimension satisfying dim (V ) =∑

j p
−1
j dim (`j(V )), and a direct verification for the case in which all pj ∈ {0, 1}. The

latter is straightforward.
The former is more awkward than the corresponding step in our other proofs,

because the intersection of Zd with a subspace of Rd is rarely a cocompact lattice.
Let V be a nonzero critical subspace of Rd. For each index j, define Wj to be the
orthocomplement in Rdj of `j(V ). Choose a sublattice Lj of Wj of rank dim (Wj),
and a sublattice L′j of `j(V ) of rank equal to dim (`j(V )). Let A,A′ < ∞ be large
constants. For y ∈Wj define

Fj(y) =
( ∑

n∈L′
sup

|y−n|≤A

|fj(y + n)|pj
)1/pj

.

Define ‖Fj‖`pj (L∞) by first taking the L∞ norm over {y : |y − n| < A′} for each
n ∈ L, then taking an `pj norm with respect to n. Such a norm, associated to
any sublattice of full rank, is comparable to such a norm associated to any other
sublattice of full rank, provided that the constants A′ are chosen to be sufficiently
large, depending on the sublattices in question. For any A,A′ < ∞ there exists
C <∞ such that

‖Fj‖`pj (L∞)(`j(V )) ≤ C ‖fj‖`pj (L∞)(Rdj ) .

If A is sufficiently large then uniformly for all y ∈ V ⊥,∫
V

∏
j

(fj ◦ `j)(y + z) dz ≤ CA′

∏
j

(Fj ◦ Lj)(y)
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where Lj : V ⊥ →Wj is `j |V ⊥ followed by orthogonal projection onto Wj . Thus

Λ(f1, · · · , fm) ≤ CAΛ̃(F1, · · · , Fm) =
∫

V ⊥

∏
j

(Fj ◦ Lj).

If the constant A′ appearing in the definition of the `pj (L∞) norms of the functions
Fj is chosen to be sufficiently large, then there exists C <∞ such that

Λ̃(F1, · · · , Fm) ≤ C
∏
j

‖Fj‖`pj (L∞) .

The rest of the argument is as in our other proofs. �

7. Variants based on product structure

Our next result is analogous to a unification of Theorems 2.3 and 2.5. We say that
a measure space (X,µ) is atomic if there exists δ > 0 such that µ(E) ≥ δ for every
measurable set E having strictly positive measure.

Proposition 7.1. Suppose that the index set I is a disjoint union I = I0 ∪ I∞ ∪ I?,
where Xi is a finite measure space for each i ∈ I0, is atomic for each i ∈ I∞, and
is an arbitrary measure space for each i ∈ I?. Then a sufficient condition for the
inequality (2.16) is that

1 ≥
∑

j:i∈Sj

p−1
j for all i ∈ I0(7.1)

1 ≤
∑

j:i∈Sj

p−1
j for all i ∈ I∞(7.2)

1 =
∑

j:i∈Sj

p−1
j for all i ∈ I?.(7.3)

That these sufficient conditions are also necessary, in general, is a consequence of the
necessity of the hypotheses of Theorem 2.3.

Remark 7.1. Consider the case where each Xi is a finite measure space. If (pj)j∈J

satisfies the hypothesis (2.15), and if qj ≥ pj for all j ∈ J , then Λ(fj)j∈J ≤
C

∏
j ‖fj‖pj

≤ C ′ ∏
j ‖fj‖qj

by Finner’s theorem and Hölder’s inequality. However,
there are situations7 in which (qj)j∈J satisfies (7.1) yet there exists no (pj)j∈J satis-
fying (2.15) with qj ≥ pj for all j ∈ J .

To construct an example, begin with any situation where there is an extreme point
(q−1

j )j∈J of K = {(tj)j∈J ∈ [0, 1]J : 1 =
∑

j:i∈Sj
tj for all i ∈ I}, such that q−1

j < 1
for all j; for instance, the Loomis-Whitney example. Augment I by adding a single
new index i′, choose one index j′ already in J , and replace Sj′ by Sj ∪ {i′}, while
keeping Sj unchanged for all j 6= j′. Thus

∑
j:i′∈Sj

q−1
j = q−1

j′ < 1; (qj)j∈S satisfies
(7.1). However no (pj)j∈J . For if pj ≥ q−1

j for all j with strict inquality for some
index k, choose some i ∈ Sk. Then

∑
j:i∈Sj

p−1
j >

∑
j : i ∈ Sjq

−1
j = 1, so that (7.1)

fails for (pj)j∈S .

7The special case of Proposition 7.1 in which all Xi are finite measure spaces is stated in [10], p.
1898, but no proof is given.
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Proposition 7.1 can be proved by repeating Case 1 of the proofs of Theorems 2.1 and
2.3, arguing by induction on |I|, and integrating with respect to the m-th coordinate
in

∏
i∈I Xi while all other coordinates are held constant. The basis case m = 1 is

Hölder’s inequality. Indeed, this is the argument given in [10] for the special case
when I = I?.

Alternatively, when I0 is empty,8 Proposition 7.1 can be reduced to the case where
each Xi is R1 equipped with Lebesgue measure, by approximating general functions
by finite linear combinations of characteristic functions of product sets, and then
embedding any particular situation measure-theoretically into a (product of copies
of) R1. The inequality (2.16) then follows from an application of Theorem 2.1.

8. A final remark

We have assumed throughout the discussion that all exponents satisfy pj ≥ 1. In
Theorems 2.1, 2.2, and 2.3, the inequalities in question are false if some pj < 1. To
see this, fix one index j. Take fi to be the characteristic function of a fixed ball
centered at the origin for each i 6= j, take fj to be the characteristic function of a ball
of measure δ centered at the origin, and let δ → 0. Then Λ̃(f1, · · · , fm) has order of
magnitude δ, while

∏
i ‖fi‖Lpi has order of magnitude δ1/pj � δ.

Valid inequalities can hold in Theorems 2.4 and 2.5 with some exponents strictly
less than one, but they are always implied by stronger inequalities already contained in
those theorems. More precisely, if the inequality holds for some m-tuple (p1, · · · , pm),
then it also holds with each pi replaced by max(pi, 1). In the case of Theorem 2.4,
that pj can be replaced by 1 if pj < 1 can be shown by considering the case when the
support of fi is a single point, then exploiting linearity and symmetry.
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