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RANKS OF JACOBIANS IN TOWERS OF FUNCTION FIELDS

Douglas Ulmer and Yuri G. Zarhin

1. Introduction

Let k be a field of characteristic zero and k(t) the rational function field over k.
Several authors have considered the behavior of ranks of elliptic curves in towers
of function fields such as k(t1/n). See for example [Shi86], [Ulm02], [Sil04], [Ell06],
[Ulm07a], [Ulm07b], [Ber08], and [UlmDPCT]. In particular, it is known that there
are elliptic curves E over k(t) such that the rank of E(K) stays bounded as K varies
through the tower of function fields K = k(t1/pr

) with r ≥ 1 or the tower K = k(t1/d)
with d ≥ 1.

In this paper we combine the rank formula of [UlmDPCT] with strong upper bounds
on endomorphisms of Jacobians due to the senior author (e.g., [Zar05]) to give many
examples of higher dimensional, absolutely simple Jacobians over k(t) with bounded
rank in towers k(t1/pr

). In many cases we are able to compute the rank at every layer
of the tower.

Our methods give rise to many examples, but to fix ideas we state the following
typical result.

1.1. Theorem. Let gX be an integer ≥ 2 and let X be the smooth, proper curve of
genus gX over Q(t) with affine plane model

ty2 = x2gX+1 − x + t− 1.

Let J be the Jacobian of X. Then J is absolutely simple and the Q(t)/Q-trace of J
is zero. Moreover, for every prime number p and every integer r ≥ 0, we have

RankJ(Q(t1/pr

)) = 2gX .

2. Endomorphism algebras of superelliptic Jacobians

2.1. Notation. In this section, we collect some results on the endomorphism al-
gebras of certain superelliptic Jacobians. Throughout the paper, k will denote an
algebraic closure of k.

If X and Y are abelian varieties over k, then we write End(X) and Hom(X, Y ) for
the corresponding ring and group of homomorphisms over k.

Let f be a non-constant polynomial with coefficients in k and without multiple
roots. We write m for the degree of f , Rf for the set of roots of f in k, and k(Rf )
for the splitting field of f . As usual

Gal(f) = Aut(k(Rf )/k).
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For example, consider fm = xm − x − 1. It is known [Ser08, p. 42] that if k = Q
then Gal(fm) is the symmetric group Sm.

2.2. Superelliptic Jacobians. Given a polynomial f of degree m with distinct
roots and a positive integer d, let Cf,d be the smooth projective curve over k with
affine model

zd = f(x).

Let Jf,d be the Jacobian of Cf,d. In this paper we will only consider the case where
d = q = pr with p a prime number. To avoid trivialities, we always assume that
m > 1 and q > 1.

We have an obvious projection Cf,q → Cf,q/p and an induced homomorphism of
Jacobians Jf,q → Jf,q/p. Since Cf,q → Cf,q/p is totally ramified over the zeroes of f ,
the homomorphism Jf,q → Jf,q/p has connected kernel, which we call the new part of
Jf,q and which we denote J (f,q). It is easy to see that Jf,q is isogenous to

∏r
i=1 J (f,pi).

A simple application of the Riemann-Hurwitz formula shows that

dim(Jf,q) = (m− 1)(q − 1)/2− (gcd(q, m)− 1)/2

and

dim(J (f,q)) =

{
(m− 1)φ(q)/2 if q 6 | m
(m− 2)φ(q)/2 if q|m.

Note in particular that J (f,q) is non-zero except when m ≤ 2 and q ≤ 2.
We write ζq for a primitive q-th root in k. Over k(ζq), we have a natural action

of the q-th roots of unity on Cf,q, namely (x, z) 7→ (x, ζqz). The induced action on
Jacobians gives rise to a homomorphism Z[ζq] → End(J (f,q)) which is known to be
injective whenever J (f,q) is non-zero. (See [Zar05, 4.8], [Zar07, 5.8], and [Xue, 2.6];
see also [UlmDPCT, 7.8.1] for this result in a slightly more general context.) We will
be interested in various conditions which guarantee that this homomorphism is an
isomorphism.

2.3. The case m = 2. Suppose that m = 2, i.e., that f is quadratic. By a linear
change of variable we may take f to have the form f(x) = x2− a where a ∈ k is non-
zero. If q > 2 (so that J (f,q) is non-zero), we have dim(J (f,q)) = φ(q)/2. The inclusion
Z[ζq] ↪→ End(J (f,q)) exhibits a commutative integral domain of rank 2 dim(J (f,q)) as
a subalgebra of End(J (f,q)) and so over k, J (f,q) is an abelian variety of CM type. By
[Shi98, Prop. 3, p. 36], J (f,q) is isogenous to a power Ae of a simple abelian variety
A of CM type. It may happen (for example if q is even) that e > 1 in which case
End(J (f,q)) is strictly bigger than Z[ζq]. In any case, it follows that Jf,q is of CM
type over k.

2.4. An alternative approach to the case f(x) = x2−a that works more generally for
f(x) = xm − a is to note that the curve zd = xm − a is obviously covered (over k) by
the Fermat curve of degree lcm(m, d). Since the Jacobian of the Fermat curve is an
abelian variety of CM type [Sch84, VI, 1.2 and 1.5], the same is true of Jf,d for all d.
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2.5. The case m ≥ 5. For m > 2 it is again not true in general that Z[ζq] ∼=
End(J (f,q)). However, one expects that for “sufficiently general” f , J (f,q) should
have no endomorphisms beyond the obvious ones. We make this precise in several
cases, starting with m ≥ 5.

2.5.1. Theorem. Suppose that m ≥ 5 and Gal(f) = Sm or Am. Then

End(J (f,q)) = Z[ζq].

In particular, J (f,q) is an absolutely simple abelian variety that is not of CM type over
k.

Proof. The endomorphism ring was calculated in earlier works of Zarhin and Xue:
The case when either p does not divide m or q divides m is proven in [Zar05, Th. 4.17
on p. 359]. The remaining case when p divides m but q does not divide m is proven
in [Xue]. Since the endomorphism ring is a domain, J (f,q) is absolutely simple. Since
m ≥ 5, the dimension of J (f,q) is strictly greater than φ(q)/2 and so J (f,q) is not of
CM type. �

2.6. The cases m = 4 and m = 3. These cases (which are not needed for the basic
Theorem 1.1) are more complicated and require additional hypotheses.

2.6.1. Theorem. Suppose that p is odd, m = 4, and Gal(f) = S4. Let k′ be the
unique subextension of k(Rf ) which is quadratic over k. Assume that k′ does not lie
in k(ζp). Then the Galois group of f(x) over k(ζq) is still S4 and

End(J (f,q)) = Z[ζq].

In particular, J (f,q) is an absolutely simple abelian variety that is not of CM type over
k.

Proof. In light of [Zar09, Cor. 1.5 on p. 693 and Cor. 5.3 on p. 705], it suffices to
check that the Galois group of f(x) over k(ζq) remains S4, i.e., that k(Rf ) and k(ζq)
are linearly disjoint over k. Since p is odd, Gal(k(ζq)/k) ∼= G2 × Godd where G2 is
a cyclic group of 2-power order and Godd is a cyclic group of odd order. Moreover
k(ζq)Godd ⊂ k(ζp). Since S4 is generated by transpositions, it has no non-trivial
quotients of odd order. Thus k(Rf ) and k(ζq) are linearly disjoint if and only if k′

and k(ζp) are linearly disjoint (which in turn occurs if and only if k′ and k(ζq)Godd

are linearly disjoint). �

Ramification conditions give a convenient criterion for linear disjointness:

2.6.2. Lemma. Let L/Q be a finite extension. Suppose that a prime p is unramified
in L. Then L and Q(ζq) are linearly disjoint over Q.

Proof. This follows immediately from the fact that Q(ζq)/Q is totally ramified over
p. �

2.6.3. Theorem. Suppose that k = Q, m = 4 and Gal(f) = S4. If p is an odd prime
that is unramified in Q(Rf ) then

End(J (f,q)) = Z[ζq].

In particular, J (f,q) is an absolutely simple abelian variety that is not of CM type over
k.
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Proof. It follows from Lemma 2.6.2 that Q(Rf ) and Q(ζp) are linearly disjoint over
Q. Theorem 2.6.1 then implies that the endomorphism ring is Z[ζq]. Since this is
a domain, J (f,q) is absolutely simple and since dim J (f,q) > φ(q)/2, it is not of CM
type. �

2.6.4. Examples. Let k = Q and f(x) = f4(x) = x4 − x− 1. Then the discriminant
of f4(x) is −283 (see [Zar09, p. 693]). Since 283 is a prime, it follows that Q(Rf4)/Q
is unramified outside 283. So, if p is odd and 6= 283 then for all q = pr

End(J (f4,q)) = Z[ζq].

(The case of q = p = 3 is Example 1.6 of [Zar09].)
For another example, again take k = Q and let f = x4 − x + 2. The discriminant

of f is −27 · (−1)4 + 256 · 23 = 2021 = 43 · 47. Reducing mod 3, one checks that f
has no roots in F3 nor in F9 and so is irreducible over F3 and, a fortiori , irreducible
over Q. Moreover, the Galois group Gal(f) is isomorphic to S4. (Indeed, looking
at the Frobenius at p for p = 2, 3, 5 shows that Gal(f) contains a transposition, a
4-cycle, and a 3-cycle. Since the only subgroups of S4 generated by a 4-cycle and a
transposition are all of S4 or a group of order 8, we see that Gal(f) must be S4.) The
argument of the first example applies when p is odd and 6= 43, 47. But since p = 43
and p = 47 are congruent to 3 mod 4, the quadratic subfield of Q(ζp) is imaginary for
these p. On the other hand, since 2021 > 0, the unique quadratic subfield of Q(Rf )
is real. Thus we have linear disjointness for all p. It follows that

End(J (f4,q)) = Z[ζq]

for all odd p.

2.6.5. Theorem (Theorem 5.17 of [Zar07]). Suppose that m = 3, p = 2, and q = 4.
Then End(J (f,q)) is an order in the matrix algebra of size two over the imaginary
quadratic field Q(ζ4) = Q(

√
−1).

2.6.6. Theorem (Theorem 5.18 of [Zar07]). Suppose that k0 is an algebraically closed
field of characteristic zero and k = k0(z) is the field of rational functions in the
variable z. Suppose that m = 3 or 4 and Gal(f) = Sm. If (m, q) 6= (3, 4) then

End(J (f,q)) = Z[ζq].

2.6.7. Example. Let k0 = Q̄ ⊂ C and f(x) = x3 − x − z. One may view Q̄(z) as a
subfield of C, sending z to any transcendental complex number β. Then we get the
complex polynomial f3,β(x) = x3−x−β ∈ C[x] and conclude that for each q 6= 4 the
complex abelian variety J (f3,β ,q) satisfies

End(J (f3,β ,q)) = Z[ζq].

3. Homomorphisms between superelliptic Jacobians

We can apply the results of the previous section to obtain pairs of superelliptic
Jacobians with no homomorphisms between them.
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3.1. The case g = yn − a. In this section, we assume that n ≥ 2 and g(y) = yn − a
for some non-zero a in k. By Section 2.4, for all powers q of a prime p with q > 2,
Jg,q is an abelian variety of CM type.

3.1.1. Theorem. Let q = pr for a prime number p. Suppose that m ≥ 4, f is an
irreducible polynomial over k of degree m, and the Galois group Gal(f) = Sm or Am.
If m = 4 then we also assume that p is odd, Gal(f) = S4, and at least one of the
following two conditions holds:

(i) the unique quadratic subextension of k(Rf ) does not lie in k(ζp).
(ii) k = Q and p is unramified in Q(Rf ).

Then Hom(J(Cf,q), J(Cg,q)) = {0}.

Proof. It suffices to check that Hom(J (f,pi), J(Cg,q)) = {0} for all positive i ≤ r. By
Theorems 2.5.1, 2.6.1 and 2.6.3, J (f,pi) is absolutely simple and not of CM type over
k̄. But J(Cg,q) is of CM type over k̄. �

3.2. The case m > n ≥ 4.

3.2.1. Theorem. Suppose that m > n ≥ 4, the Galois groups Gal(f) = Sm or Am

and Gal(g) = Sn or An. If n = 4 then we also assume that p is odd, Gal(g) = S4,
and at least one of the following two conditions holds:

(i) the unique quadratic subextension of k(Rg) does not lie in k(ζp).
(ii) k = Q and p is unramified in Q(Rg).

Then RankHom(Jf,q, Jg,q) is bounded by a constant independent of p and q.

Proof. It will suffice to show that

Hom(J (f,q1), J (g,q2)) = {0}

for all divisors q1 and q2 of q except possibly when q1 = q2 and q1|m. Under the
hypotheses of the theorem, Theorems 2.5.1, 2.6.1 and 2.6.3 imply that J (f,q1) and
J (g,q2) are absolutely simple with endomorphism algebras Q(ζq1) and Q(ζq2) respec-
tively. Thus either

Hom(J (f,q1), J (g,q2)) = {0}
or J (f,q1) and J (g,q2) are isogenous. But if they were isogenous, comparing endo-
morphism algebras we would have φ(q1) = φ(q2) and therefore q1 = q2. Comparing
dimensions (cf. Section 2.2), we would also have n = m− 1 and q1|m. Thus

Hom(J (f,q1), J (g,q2)) = {0}

unless q1 = q2 and q1|m. �

4. Berger curves

4.1. Notation. Let K = k(t) be the rational function field over k. Recall that given
two rational functions f and g on P1 over k, under mild hypotheses Lisa Berger’s
construction [Ber08] gives a smooth proper curve Xf,g over K which is a model of
the curve

{f − tg = 0} ⊂ P1
K × P1

K
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Again under mild hypotheses, Berger computes the genus of Xf,g, shows that Xf,g

is absolutely irreducible, and that in a suitable sense it is associated to a tower of
surfaces that are dominated by a product of curves.

More precisely, applying [Ber08, Thm. 3.1] we have:

4.2. Theorem. Let k be a field of characteristic zero and let K = k(t). Let f(x)
and g(y) be polynomials over k of degrees m and n respectively with simple roots. Let
Xf,g be the smooth proper model of

{f − tg = 0} ⊂ P1
K × P1

K

over K. Then Xf,g is absolutely irreducible and has genus

gX =
(m− 1)(n− 1)− gcd(m,n) + 1

2
.

Let J be the Jacobian of Xf,g, an abelian variety of dimension gX over K. For each
positive integer d, let Kd = k(t1/d). Building on [Ber08], Ulmer gives a formula in
[UlmDPCT] for the rank of the Mordell-Weil group J(Kd) in terms of homomorphisms
between Jf,d and Jg,d.

More precisely, we have:

4.3. Theorem. With notation as above, for all d the Kd/k-trace of J is zero. More-
over, we have

RankJ(Kd) = RankHom(Jf,d, Jg,d)µd − c1d + c2(d).

Here the exponent signifies those homomorphisms commuting with the natural action
of µd on both factors, c1 is a non-negative integer, and c2 is a periodic function. We
have

c2(d) = (m− 1)(n− 1) + gcd(m,n, d)− 1.

If for some d strictly larger than c2(d) we have Hom(Jf,d, Jg,d)µd = 0, then c1 = 0.

Proof. The vanishing of the Kd/k trace follows from [UlmDPCT, 5.6]. The formula for
the rank is [UlmDPCT, 6.2] and the definition of c2 in [UlmDPCT, 6.1.1] immediately
gives the expression above. Since c1 is non-negative and the right hand side of the
rank formula is also non-negative, if the Hom group is zero for a large value of d, we
must have c1 = 0. �

5. Bounded ranks

We now assemble the pieces to give several examples of Jacobians over k(t) with
bounded ranks in the tower k(t1/pr

). We treat only the most straightforward examples
and the reader will have no trouble seeing that there are several other ways to apply
the basic results of Sections 2 and 4.

5.1. Proof of Theorem 1.1. For an integer gX ≥ 2, let m = 2gX + 1, f(x) =
fm(x) = xm−x− 1, n = 2, and g(y) = y2− 1. Then Berger’s curve Xf,g is a smooth,
proper model of the hyperelliptic curve

ty2 = x2gX+1 − x− 1 + t

of genus gX . Let J be the Jacobian of Xf,g. Taking the ground field k to be Q, we
know (see Section 2.1) that f has Galois group Sm. Let p be a prime number and q a
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power of p. Applying Theorem 3.1.1, we have that Hom(Jf,q, Jg,q) = 0 and therefore
by Theorem 4.3, the Q(t1/q)/Q-trace of J is zero and

RankJ(Q(t1/q)) = (m− 1)(n− 1) = 2gX .

Note that Xf,g is a quadratic twist of the hyperelliptic curve

X ′ : y2 = x2gX+1 − x− 1 + t

and therefore J is isomorphic over Q(t) to the Jacobian J ′ of X ′; in particular,
End(J ′) = End(J). Clearly, the Galois group of x2gX+1−x−1+ t over Q(t) coincides
with the Galois group of x2gX+1−x− t over Q(t) and therefore equals Sm (even over
Q̄(t)) [Ser08, Thm. 4.4.1 on p. 39]. The case q = 2 and k = Q(t) of Theorem 2.5.1
implies End(J ′) = Z and therefore End(J) = Z. This shows in particular that J is
absolutely simple.

It follows from Theorem 5.18(i) on p. 384 of [Zar07] that in fact the Q(t)/Q̄-trace
of J is zero.

This completes the proof of Theorem 1.1. �

5.2. Essentially identical arguments apply with f(x) = x2gX+2−x−1 and g = y2−1
and show that the Jacobian J of the hyperelliptic curve

ty2 = x2gX+2 − x− 1 + t

is absolutely simple, has trivial Q(t1/q)/Q-trace, and has rank

RankJ(Q(t1/q)) = 2gX + gcd(q, 2)− 1.

The vanishing of the Q(t)/Q̄-trace of J follows from Theorem 1.2 of [Zar03] com-
bined with Lemma 3.4 on p. 369 of [Zar07].

5.3. A superelliptic generalization. Consider the case n ≥ 2, g = yn− 1, m ≥ 5,
f = xm − x− 1, and k = Q. Berger’s curve Xf,g is the superelliptic curve

tyn = xm − x− 1 + t

of genus

gX =
(m− 1)(n− 1)− gcd(m,n) + 1

2
.

Let J be the Jacobian of Xf,g and let q be a power of a prime number p. Applying
Theorem 4.3 and Theorem 3.1.1, we have that

RankJ(Q(t1/q)) = (m− 1)(n− 1) + gcd(m,n, q)− 1.

Note that this differs from 2gX by an amount bounded independently of q.

5.4. More examples. Now consider the case where m and n satisfy m > n > 4 and
f , g and p satisfy the hypotheses of Theorem 3.2.1. Berger’s curve Xf,g is as usual
the smooth proper model of f − tg = 0. It has genus

gX =
(m− 1)(n− 1)− gcd(m,n) + 1

2
.

Let J be the Jacobian of Xf,g. For every power q of p, we have

RankJ(k(t1/q)) ≤ (m− 1)(n− 1) + gcd(m,n, d)− 1 + ε

where ε is a constant which is independent of p and q.
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5.5. Infinitely many non-isogenous examples over a Hilbertian field. Let us
discuss a generalization of previous examples that is based on the notion of Morse
polynomial [Ser08, p. 39]. (Notice that xm − x is a Morse polynomial and fm(x) =
(xm−x)− 1.) Namely, let h(x) ∈ k[x] be a Morse polynomial of degree m ≥ 5. Then
the Galois group of the polynomial of h(x) − t over k(t) is Sm [Ser08, Thm. 4.4.1
on p. 39]. Let us consider the subset A(h) ⊂ k consisting of all c ∈ k such that the
Galois group of h(x) − c over k is Sm. Assuming c ∈ A(h), let f(x) = h(x) − c and
g(y) = y2 − 1. The hyperelliptic curve

Xh−c,g : h(x)− c− t(y2 − 1) = 0

which is a k(
√

t)/k(t)-twist of

X ′
c : y2 = h(x)− c + t = h(x)− (−t + c)

has genus [n−1
2 ]. Clearly, the Galois group of h(x) − (−t + c) over k(t) is also Sm;

in particular, by Theorem 2.5.1, the Jacobian Jc of Xh−c,g has zero k(t)/k-trace and
End(J) = Z. Arguing as in the proof of Theorem 1.1, we have that the rank of
Jc(k(t1/pr

)) is bounded independently of p and r. Let J ′
c be the Jacobian of X ′

c and
note that J ′

c and Jc become isomorphic over k(t1/2).
Now suppose that d is a different element of A(h); assume in addition that the

splitting field kc of h(x)− c and the splitting field kd of h(x)− d are linearly disjoint
over k. Let us consider the Jacobians J ′

c and J ′
d as abelian varieties over the complete

discrete valuation field k((t)). Clearly, they both have good reduction at t = 0; their
reductions are the Jacobians of y2 = h(x) − c and y2 = h(x) − d respectively. In
addition, the field of definition of points of order 2 on J ′

c (resp. on J ′
d) coincides with

kc((t)) (resp. with kd((t)); in particular, those splitting fields are linearly disjoint over
k((t)). Now it follows from Theorem 1.2 of [Zar03] that J ′

c and J ′
d are not isogenous

over k((t))! Therefore Jc and Jd are not isogenous over k(t).
Notice that if k is Hilbertian (e.g., a number field) then Hilbert’s irreducibility

theorem guarantees the existence of plenty of such c and d.

5.6. One more elliptic example. As in Example 2.6.7, let k = C and let β be a
transcendental complex number. If we put g(x) = f(x) = x3 − x − β then Berger’s
construction gives us an an elliptic curve Xf,g : (x3 − x− β)− t(y3 − y − β) over the
function field C(t) that appears (in slightly disguised form) in [UlmDPCT, Sect. 9].
Applying Theorem 2.6.6 and the rank formula in [UlmDPCT, Section 9.3] we have
that the rank of Xf,g(C(t1/pr

)) is bounded for all primes p and all r ≥ 1.
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