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LOG MINIMAL MODEL PROGRAM FOR THE MODULI SPACE
OF STABLE CURVES OF GENUS THREE

Donghoon Hyeon and Yongnam Lee

Abstract. We completely carry out the log minimal model program for the moduli

space of stable curves of genus three with respect to the total boundary δ: We give a

modular interpretation of the log canonical model for the pair (M3, αδ) for each α ∈
[0, 7/10) and of the birational maps between them. By using the modular description,

we are able to identify all but one log canonical models Mg(α), α ∈ [0, 1], with existing
compactifications of M3, some new and others classical, while the exception gives a new

modular compactification of M3.

1. Introduction and Preliminaries

In this paper, we shall carry out the log Mori program for M3 with respect to
the total boundary δ of singular curves. That is, we shall consider the log canonical
models

M3(α) := Proj ⊕m≥0 Γ(M3,m(KM3
+ αδ))

as we decrease α from 1 to 0 and describe these spaces and the relation between them
in a concrete manner. The basic principle, credited to Brendan Hassett and Sean
Keel, is that these log canonical models themselves admit modular interpretation and
parametrize curves with increasingly worse singularities as α decreases. This principle
has been demonstrated in a series of work by Hassett and the authors [6, 8, 7, 9]. It
will be in full display again in our work for the genus three case.

By a theorem of Cornalba and Harris, KMg
+ αδ is ample for 9/11 < α ≤ 1 and

Mg(α) is isomorphic to Mg for α in that range. At α = 9/11, it is shown in [8] that
the locus of elliptic tails gets contracted, resulting the moduli space M

ps

g of pseudo-
stable curves of Schubert [17]. In [7], Hassett and the first named author described
what happens near the second critical value α = 7/10 for the case g ≥ 4. Since we
shall need the statements for proving and presenting our main theorem, we reproduce
them here:
Theorem. [7]

(1) There is a small contraction Ψ : M
ps

g → Mg(7/10) and Mg(7/10) is isomor-
phic to the GIT quotient Chowg,2//SL3g−3 of the Chow variety of bicanonical
curves. Ψ contracts the locus Z of elliptic bridges;

(2) There exists a flip Ψ+ : (M
ps

g )+ → Mg(7/10) and (M
ps

g )+ is isomorphic
to Mg(α) for 7/10 − ε < α < 7/10. Moreover, Mg(α) for α in that range
is isomorphic to the GIT quotient Hilbg,2//SL3g−3 of the Hilbert scheme of
bicanonical curves, and Ψ+ contracts the locus Z+ of tacnodal curves.
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Here, Hilbg,2 denotes the closure of locus of smooth curves in the Hilbert scheme of
subschemes of P3g−4 with Hilbert polynomial P (t) = (g−1)(4t−1). Chowg,2 denotes
the corresponding Chow variety. An elliptic bridge is a subcurve of genus one meeting
the rest of the curve in two nodes. Abusing terminology, as in the theorem above,
an elliptic bridge sometimes means a curve with such a subcurve of genus one. The
proof of the above theorem in [7] for g ≥ 4 goes through for the genus three case when
combined with the input of the necessary GIT of bicanonical curves of genus three
worked out in [10]. The main theorem of GIT of bicanonical curves of genus three is:

Theorem. [10] The (semi)stable points of Hilb3,2 (resp. Chow3,2) correspond to h-
(semi)stable (resp. c-(semi)stable) curves. Moreover, all strictly c-semistable points
are identified in Chow3,2//SL6.

We refer to [7] for the definitions of the h- and c-(semi)stability for curves of
arbitrary genus ≥ 3, which are rather intricate. For the genus three case, they may
be defined as follows: A complete curve C of genus three is said to be c-semistable if

(1) C has nodes, cusps and tacnodes as singularities;
(2) ωC is ample;
(3) a genus one subcurve meets the rest of the curve in at least two points not

counting multiplicity.

If C is c-semistable and has no tacnode or elliptic bridge, it is c-stable. If C is c-
semistable and has no elliptic bridge, it is said to be h-semistable. C is said to be
h-stable if it is h-semistable and has no tacnode.1

We shall denote the quotient spaces Hilb3,2//SL6 and Chow3,2//SL6 by M
hs

3 and
M

cs

3 respectively. Our main theorem is:

Theorem 1. (1) M3(α) is isomorphic to M
hs

3 for 17/28 < α < 7/10;
(2) There is a divisorial contraction Θ : M

hs

3 → M3(17/28) that contracts the
hyperelliptic locus, and M3(17/28) is isomorphic to the compact moduli space
Q := P(Γ(OP2(4)))//SL3 of plane quartics;

(3) M3(α) is isomorphic to Q for 5/9 < α ≤ 17/28;
(4) M3(5/9) ' Spec k and for α < 5/9, no Cartier multiple of KM3

+ αδ has
nontrivial sections.

Also, the fact that all tacnodal curves are identified in M
cs

3 allows us to identify
M

cs

3 with the compact moduli space of plane quartics constructed by Kondo using
the period domains of K3 surfaces (Proposition 3). The following diagram gives an

1For genus three curves, h-stability is equivalent to c-stability.
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overview of the whole program:
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We work over an algebraically closed field of characteristic zero.
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2. Modular interpretation of the log canonical models

2.1. Detecting the third critical value for α. In this section, we shall prove
the first part of Theorem 1. Fix m � 0 and let π : Hilb3,2 → M

hs

3 = Hilb3,2//SL6

denote the quotient map, where Hilb3,2 is embedded by taking the mth Hilbert points
Hilb3,2 ↪→ P(

∧P (m)
SmV ), dim V = 6, and the SL6 action is linearized accordingly.

The projective structure on M
hs

3 is given by the invariant sections of OHilb3,2(m) on
Hilb3,2. That is, we have π∗(O

M
hs
3

(1)) = OHilb3,2(m) and by [15, Proposition 5.16],
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it is proportional to

(1)
(

10− 3
2m

)
λ− δ.

where λ and δ denote the determinant of the Hodge bundle and the divisor of singular
curves, respectively.2 Hence for large enough m,

(
10− 3

2m

)
λ−δ descends to an ample

Q-divisor on M
hs

3 . It follows that λ (and consequently, δ) descends to a Cartier divisor
since it is proportional to the difference of

(
10− 3

2m

)
λ− δ and

(
10− 3

2(m+1)

)
λ− δ.

Let Λhs and ∆hs denote the Cartier divisors on the moduli scheme M
hs

3 that pull
back to λ and δ via the birational map from M3 to M

hs

3 . They also coincide with the
divisors coming from λ and δ on the Hilbert scheme Hilb3,2. Likewise, let λps and
δps denote the corresponding divisors on M

ps

3 . Since T contracts δ1 and the locus of
elliptic tails in M

ps

3 is of codimension two, the identity KM3
= 13λ − 2δ translates

to KMps
3

= 13λps − 2δps on M
ps

3 . Since M
ps

3 and M
hs

3 are isomorphic away from

loci of codimension ≥ 2, it further carries over to M
hs

3 to give K
M

hs
3

+ 1/2H
hs

=

13Λhs − 2∆hs, where H
hs

is the divisor of hyperelliptic curves. Since (1) is ample on
M

hs

3 for large enough m, K
M

hs
3

+ 1/2H
hs

+ (7/10− ε)∆hs is ample for small enough
ε, being a positive rational multiple of (1).

Proposition 1. K
M

hs
3

+ 1
2H

hs
+ 17

28∆hs is nef and big on M
hs

3 and has a unique
extremal ray generated by hyperelliptic curves.

Proof. Note that the divisor K
M

hs
3

+ 1
2H

hs
+ 17

28∆hs in question is proportional to

28Λhs − 3∆hs, which also coincides with (the proper transform of) the Moriwaki
divisor [13] A = 28λ − 3δ0 − 8δ1. By [13, Theorem B], Moriwaki divisor positively
intersects any curve not contained in the boundary ∆hs, and it follows that the divisor
is big.

Since the hyperelliptic locus is equal to 9λ − δ0 − 3δ1 on M3, the corresponding
locus H

hs
on M

hs

3 is equal to 9Λhs −∆hs and we have

28Λhs − 3∆hs = (10Λhs −∆hs) + 2(9Λhs −∆hs) = (10Λhs −∆hs) + 2H
hs

.

The divisor 10Λhs−∆hs is nef, since it is proportional to K
M

hs
3

+ 1
2H

hs
+ 7

10∆hs which

is a limit of ample divisors. It follows that to show the nefness of 28Λhs − 3∆hs, it
suffices to prove that the divisor non-negatively intersects with curves in H

hs
. In fact,

we shall prove that 28Λhs − 3∆hs is trivial on H
hs

.

2Note our abuse of notation as λ and δ are also used to denote the corresponding divisor classes

on the moduli stack M3. Moreover, if σ is a divisor class on the moduli stack, then ‘the divisor σ on

the moduli space’ means the corresponding divisor class on the moduli space through PicQ(M3) =

PicQ(M3). This significantly simplifies our presentation: For instance, δ on M3 means ∆0 + 1
2
∆1

and KM3
on M3 means KM3

+ 1
2
∆1 + 1

2
H where H is the divisor of hyperelliptic curves. These

are just ramification formulae.
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Figure 1. F1 and FEE

Recall from [8, Theorem 1.1] that there is a divisorial contraction T : Mg → M
ps

g

with exceptional locus ∆1 which replaces each elliptic tail with an ordinary cusp,
where M

ps

g is the moduli space of pseudostable curves [17]. Also, recall from [2] that
the cone Nef1(M3) of nef divisors is generated by λ, 12λ−δ0 and 10λ−δ0−2δ1. Since
δ1 is contracted by T , we deduce that Nef1(M

ps

3 ) is generated by 10λps − δps and
12λps− δps: Indeed, since M

ps

3 is of Picard number two, it suffices to show that these
are nef and extremal. But these divisors pull back to the nef generators 10λ−δ0−2δ1

and 12λ− δ0, and contract the loci T (FEE) and T (F1), respectively (Figure 1).
Let Bi ⊂ M3 denote the locus of curves obtained by taking the stabilization of the

admissible cover of C ∈ M0,8 consisting of smooth rational curve C1 with i marked
points and C2 with 8 − i marked points meeting in one node. These are divisors of
the hyperelliptic locus H3 ⊂ M3 that generate the rational Picard group of H3 (see,
for instance, [4, P.302]). Examining the stabilizations of the admissible covers, we
find that

(1) B2 consists of irreducible curves with one node;
(2) B3 consists of elliptic tails;
(3) B4 consists of elliptic bridges.

Among these, B3 is contracted by T : M3 → M
ps

3 and B4, by Ψ : M
ps

3 → M
cs

3 . Hence
the rational Picard group of the hyperelliptic locus H

cs
of M

cs

3 is generated by the
image of B2. The small contraction Ψ+ : M

hs

3 → M
cs

3 restricts to a small contraction
on H

hs
, and Ψ+|

H
hs induces an isomorphism PicQ(H

hs
) ' PicQ(H

cs
). We conclude

that PicQ(H
hs

) is generated by the image of B2.
We summarize some results from §2.1 of [16]: Any smooth hyperelliptic curve of

genus three is a divisor of type (2, 4) in P1 × P1. Let Fh denote a pencil of these
divisors, which is equivalent to twice the curve class F ′

h in B2 obtained by letting one
of the six marked points move. Since F ′

h completely misses the loci of elliptic tails
and of elliptic bridges, the following intersection computation on M3 carries over to
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M
hs

3 :
F ′

h.δ0 = 14, F ′
h.δ1 = 0, F ′

h.λ = 3/2.

It follows that (28Λhs − 3∆hs) · F ′
h = 0. Since PicQ(H

hs
) is generated by the image

of B2, the divisor 28Λhs− 3∆hs is trivial on h. Therefore, 28Λhs− 3∆hs is nef and it
contracts H

hs
to a point.

Since the Mori cone of M
hs

3 is of dimension two and K
M

hs
3

+ 1/2H
hs

+ 17
28∆hs is

big, the uniqueness of the extremal ray is obvious.
�

Proof of Theorem 1.(1). Given α ∈ ( 17
28 , 7

10 )∩Q and small ε ∈ Q+, K
M

hs
3

+1/2H
hs

+

α∆hs is a positive multiple of the linear combination

(α− 17/28)

„
K

Mhs
3

+ 1/2H
hs

+ (7/10− ε)∆
hs

«
+ (7/10− α− ε)

„
K

Mhs
3

+ 1/2H
hs

+ (17/28)∆
hs

«
.

Since K
M

hs
3

+H
hs

+(7/10− ε)∆hs is ample and K
M

hs
3

+1/2H
hs

+(17/28)∆hs is nef,

K
M

hs
3

1/2H
hs

+α∆hs is ample and M
hs

3 ' Proj⊕n≥0 Γ(n(K
M

hs
3

+1/2H
hs

+α∆hs)).

Since δ1 is contracted by T , for any Cartier divisor L on M
ps

3 we have

Γ(M3, T
∗L) = Γ(M

ps

3 , T ∗L + bδ1) = Γ(M
ps

3 , L), ∀b ∈ Z+.

Furthermore, since M
ps

3 is isomorphic to M
hs

3 away from a codimension two locus,
Γ(M

ps

3 , L) = Γ(M
hs

3 , L′) for any reflexive sheaf L on M
ps

3 and the corresponding sheaf
L′ on M

hs

3 . Putting these all together, for α ∈ (17/28, 7/10), we have:

(2)

M3(α) = Proj ⊕n≥0 Γ(M3, n(KM3
+ αδ))

= Proj ⊕n≥0 Γ(M3, n(T ∗(KM
ps
3

+ αδps) + (9− 11α)δ1)
' Proj ⊕n≥0 Γ(M

ps

3 , n(KM
ps
3

+ αδps))

' Proj ⊕n≥0 Γ(M
hs

3 , n(K
M

hs
3

+ 1/2H
hs

+ α∆hs)) ' M
hs

3 .

�

2.2. The second divisorial contraction. This is the last (nontrivial) step in the
log minimal program for M3. We have shown in Proposition 1 that K

M
hs
3

+1/2H
hs

+

(17/28)∆hs contracts the hyperelliptic locus, and we aim to describe the resulting log
canonical model M3(17/28).

We first show that M3(17/28) exists by using the base point freeness theorem. In
general, if (X, ∆) is klt then so is (X, a∆) for any 0 < a < 1. Since (M

hs

3 , 1/2H
hs

+
α∆hs) is klt for any α ∈ (17/28, 7/10), (M

hs

3 , a(1/2H
hs

+ ∆hs)) is klt for any 0 <
a < 7/10. Choose ε such that 7/10− 17/28 < ε < 2(7/10− 17/28). We have

(3) 2(K
Mhs

3
+ 1/2H

hs
+ (17/28)∆

hs
)− (K

Mhs
3

+ 1/2H
hs

+ (7/10− ε)∆
hs

) = K
Mhs

3
+ 1/2H

hs
+ β∆

hs

where β := 2 · 17/28 − 7/10 + ε. The log canonical divisor (3) is nef and big since
17/28 < β < 7/10. Recall Kawamata basepoint freeness:
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Theorem 2. [11, 3.3]: Let (X, D) be a proper Kawamata log terminal pair with D
effective. Let M be a nef Cartier divisor such that aM −KX −D is nef and big for
some a > 0. Then |bM | has no basepoint for all b � 0.

Applying the theorem to (X, D) = (M
hs

3 , 1/2H
hs

+ (7/10− ε)∆hs), and (M,a) =
(K

M
hs
3

+ 1/2H
hs

+ (17/28)∆hs, 2), we see that |b(K
M

hs
3

+ 1/2H
hs

+ (17/28)∆hs)| is
base point free for b � 0. Hence

Lemma 1. M3(17/28) exists as a projective variety, and there is a divisorial con-
traction

Θ : M
hs

3 → M3(17/28)

with exceptional locus H
hs

.

We recall some classical results on the GIT of plane quartics [14], [1]. Consider the
natural action of PGL6 on the space P(Γ(OP2(4))) of plane quartics. With respect to
this action, a plane quartic curve C is

(i) stable if and only if it has ordinary nodes and cusps as singularity;
(ii) strictly semistable if it is a double conic or has a tacnode. Moreover, C belongs

to a minimal orbit if and only if it is either a double conic or the union of two
tangent conics (where at least one is smooth).

The minimal orbit statement in (2) implies that in the GIT quotient space Q =
P(Γ(OP2(4)))//PGL6, an irreducible tacnodal curve is identified with the correspond-
ing cat-eye, as in M

hs

3 .

Proof of Theorem 1.(2). Consider the universal quartic curve X :

X � � //

��

P× P2 � � // P× v2(P2) ⊂ P× P5

P
where P := P(Γ(OP2(4)))ss and v2 denotes the second Veronese embedding. Abusing
notation, let X also denote the image of X in P × P5. Let y ∈ Q denote the point
corresponding to the double conic. Away from the orbit O(Xy) of the double conic
Xy, X ↪→ P × P5 is a family of bicanonical h-semistable curves, and induces a map
from P \O(Xy) to Hilbss

3,2 and subsequently to the quotient Hilb3,2//SL. This map is

PGL3 invariant, and it descends to give f : Q \ {y} → M
hs

3 . Recall that Z+ denotes
the locus of tacnodal curves in M

hs

3 , and let Zq denote the locus of tacnodal curves
in Q. Over the stable locus, we have isomorphisms

Q \ ({y} ∪ Zq) ' M
hs

3 \ (Z+ ∪H
hs

) ' M3 \ (∆1 ∪ {elliptic bridges} ∪H3)

where f induces the first isomorphism. The loci Zq and Z+ are of codimension ≥ 2,
and f |Zq is bijective (see item (ii) above and the subsequent remark). It follows that
the inverse rational map f−1 is regular on Z+, giving an isomorphism

Q \ {y} ' M
hs

3 \H
hs ' M3(17/28) \ {Θ(H3)}.

The assertion now follows by applying Hartogs’ Lemma again. �
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Proof of Theorem 1.(3)∼(4). Let λQ and δQ denote the unique divisors on Q extend-
ing Λhs and ∆hs on the open set Q \ {y} ' M

hs

3 \ Z+. We have

(4) KQ + 5/9 δQ = 13λQ − 2 δQ + 5/9 δQ = (13/9− 2 + 5/9) δQ = 0,

that is, KQ + 5/9 δQ is trivial and M3(5/9) ' Proj ⊕n≥0 Γ(n(KQ + 5/9 δQ)) is a
point, where the isomorphism can be obtained by the same argument used in (2) of the
preceding section. It also follows from (4) that KQ+α δQ is ample for α ∈ (5/9, 17/28]
since it is a linear combination

a
(
KQ + 5/9 δQ

)
+ b

(
KQ + 17/28 δQ

)
for some positive rational numbers a, b (determined by α). �

3. Relation to other moduli spaces: Work of Hassett, Hacking and Kondo

There are various constructions of compact moduli spaces of plane quartics [5], [3],
[12]. How do they fit in our minimal model program? In this section, we sketch these
moduli spaces and show that they are log canonical models for M3. In fact, Hassett
already showed in [5] that his moduli space is isomorphic to M3, but we give a brief
description of his moduli space here as we need it to identify other moduli spaces.

3.1. Hassett’s moduli space P4. In [5], B. Hassett constructed a compact moduli
space P4 of plane curves of degree 4 by using smoothable stable log surfaces. There
is a forgetting morphism F : P4 → M3 defined by F ((S, C)) = C which in fact, is
an isomorphism: For each curve C in M3, Hassett explicitly constructs the unique
corresponding surface S with (S, C) ∈ P4. Then he shows that the morphism F is
proper, birational, and locally an isomorphism.

The cone of effective divisors NE
1
(M3) is generated by δ0, δ1 and h. A general

element in each of these divisors corresponds to the following stable log surface in P4:

(1) C in δ0 ⇐⇒ (P2, C);
(2) C = C1 ∪p C2 in δ1 where C1 and C2 are irreducible curves of genus two and

one respectively ⇐⇒ (S1 ∪B S2, C) where S1 is the toroidal blowup of P2 and
S2 = P(1, 2, 3). The curve C1 in S1 does not pass through the two singular
points of type 1

2 (1, 1) and 1
3 (1, 1) of the surface S1. Also the curve C2 in

S2 does not pass through the two singular points 1
2 (1, 1) and 1

3 (1, 2) of the
surface S2. The curve C = C1 ∪p C2 meets the double curve B at the point
p.

(3) C in h ⇐⇒ (S, C) where S = P(1, 1, 4). Since C is a smooth hyperelliptic
curve of genus three, C is regarded as a bisection of the rational surface
F4 = P(OP1 ⊕ OP1(4)). S is obtained by the contraction of the zero section.
The curve C does not pass through the singular point of type 1

4 (1, 1).
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3.2. Hacking’s moduli space P
′
4. Hacking gave an alternate compactification of

the moduli space of plane curves of degree d [3] by employing a method similar to [5]
but allowing worse singularities. We denote his moduli space for d = 4 by P

′
4 (His

original notation M3 is unfortunately reserved for the moduli stack of smooth curves
of genus three.) A stable pair of degree 4 is a pair consisting of a surface S and a
curve C ⊂ S such that (S, βC) has semi-log canonical singularities and KS + βC is
ample, where β is a rational number 3

4 +ε for a sufficient small positive number ε. We
also impose the condition that there be a one parameter family of deformations (S, C)
whose general fiber is a smooth pair (P2, smooth quartic curve). Both Q-divisors
KS + βC and C are Q-Cartier.

From his classification of stable surfaces of degree 4, P
′
4 = Z0 ∪ Z1 ∪ Z2 where Z1

has codimension 1 and Z2 has codimension 2 such that:
(1) Any element in Z0 is a pair (P2, C) where C is a pseudo-stable plane curve of

degree 4;
(2) Any element in Z1 is a pair (S, C) where S = P(1, 1, 4) and C is a (degener-

ating) hyperelliptic curve of genus 3. The curve C does not pass through the
singular point of type 1

4 (1, 1);
(3) Any element in Z2 is a pair (S, C) where S = S1 ∪B S2 is the union of

two P(1, 1, 2)s and C is a (degenerating) elliptic bridge. Both irreducible
components S1 and S2 have cyclic quotient singularities of type 1

2 (1, 1) on the
double curve B = P1. The curve C does not pass through the singular points
of S1 and S2.

If (S, C) is a stable pair in P
′
4 then C has nodes and cusps as singularities, and there

is a forgetting morphism F ′ : P
′
4 → M

ps

3 defined by F ′((S, C)) = C.

3.3. P4 and P
′
4 as log canonical models. Hassett proved that P4 is isomorphic

to the moduli space M3 of stable curves. Implicit in Hacking’s work is that

Proposition 2. P
′
4 is isomorphic to M3(9/11).

Proof. It is remarked in Hassett’s paper that for β > 5/6, KS + βC is ample for
any pair (S, C) ∈ P4. Therefore P4(β) ' P4 for β > 5/6, where P4(β) denotes
the moduli space of pairs constructed in §3.2 using the prescribed value of β whereas
3/4 + ε was used for β in §3.2.

We consider what happens at β = 5/6. First, there is a morphism T ′ : P4 →
P4(5/6) that associates to (S, C) the pair (S′, C ′) constructed as follows: By as-
sumption (S, C) is smoothable and there is a one-parameter family (S, C), π : S →
Spec(k[[t]]) whose special fibre is (S, C) and whose generic fibre is smooth. S′ is then
the special fibre of the relative log canonical model S ′ := Proj ⊕m≥0 π∗(m(KS +
5/6 C)) and C′, the scheme theoretic image f(C′) where f is the canonical fibration
from S to S ′. Regardless of the choice of the smoothing, (S′, C ′) is always the log
canonical model of (S, C) (If S has more than one component, then S′ is the union of
the log canonical models of the components with the restriction of the log canonical
divisor as boundary divisor.)

Since the divisor KS +5/6 C is ample for all pairs (S, C) ∈ P4 except the ones with
S = (toroidal blowup of P2 ∪ P(1, 2, 3)) and C an elliptic tail, T ′ is an isomorphism
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away from the locus D1 ⊂ P4 of elliptic tails. For elliptic tails (S1∪BS2, C), restricting
KS + 5/6 C on S2, we find that

(KS +
5
6
C)|S2 = KS2 +

5
6
C + B = OS2(−6 + 5 + 1) = OS2 .

This means that f : S → S′ contracts the elliptic component: In fact, Hassett proves
that f : C → C ′ replaces the elliptic tail by an ordinary cusp. Also, the log canonical
models of (S, C) ∈ P4 with respect to KS + 5/6 C are precisely the stable pairs in
Hacking’s moduli space. All in all, we have a birational contraction

T ′ : M3 → P
′
4

such that T ′(curve) = point if and only if curve ⊂ M3 is a curve in δ1 obtained by
varying the j-invariant of the elliptic tail. Hence the forgetful map F ′ : P

′
4 → M

ps

3 is
a bijective birational morphism between normal varieties. By Zariski’s main theorem,
F ′ is an isomorphism. �

3.4. Kondo’s compact moduli space. Kondo constructed a compact moduli space
of plane quartic curves by using the period domains of K3 surfaces [12]. Let C be
a smooth plane quartic curve. Then the cyclic Z4-cover of P2 branched along C is
a K3 surface. The period domains of such K3 surfaces correspond to an arithmetic
quotient of a bounded symmetric domain D minus two hyperplanes. He extends this
correspondence to the whole D by allowing hyperelliptic curves of genus 3 and singular
pseudo-stable plane curves of genus 3 [12]. By using the Baily-Borel compactification
of period domains, he constructs a compact moduli space which is normal and whose
boundary is one point. Details can be found in [1] and [12]. Let us denote Kondo’s
compact moduli space by K, and denote the unique point in the boundary by q.

Proposition 3. K ' M3( 7
10 ).

Proof. Recall that Chow3,2//SL6 is isomorphic to M3( 7
10 ) and all strictly semistable

points are identified in Chow3,2//SL6. Considering Kondo’s construction and the
classification of curves in Chow3,2//SL6 reveals that there is a forgetful morphism
FK : K → Chow3,2//SL mapping (S, C) to C.

We claim that there is a birational map P
′
4 → K that induces an isomorphism

(5) P
′
4 \ Z2 ' K \ {q}.

Recall that P
′
4 = Z0 ∪ Z1 ∪ Z2. Let (P2

Z0
, C) denote the universal pair over Z0.

The universal pair has P2 as the constant surface part and is parametrized by the
curve part that walks through all pseudostable plane curves. By taking the cyclic
Z4-cover of P2 branched along the curve, we obtain a universal pair (X , C) of K3
surfaces paired with pseudo-stable plane curves. This induces a morphism from Z0

to K. It is an isomorphism onto its image since it is a bijective morphism of normal
varieties. A similar construction gives an isomorphism from Z1 to its image in K.
Considering the description of curves in Z0 and Z1, we obtain the desired isomorphism
P
′
4 \ Z2 ' K \ {q}.



LOG MINIMAL MODEL PROGRAM FOR M3 635

The upshot of the isomorphism (5) is that, since P
′
4 \ Z2 ' M

ps

3 \ Z which is
isomorphic under Ψ to M

cs

3 \ {strictly semistable point}, we have

K \ {q} ' (Chow3,2//SL6) \ {strictly semistable point}.

By Hartog’s theorem this birational map defined away from a locus of codimension
> 2 is extended to an isomorphism since both varieties are normal. �

Remark 1. To our knowledge, the moduli space M
hs

3 of h-stable curves is a new
modular compactification of M3. But we note that h-stable curves are precisely the
curves that appear in the semistable pairs of degree four [3]. Although Hacking defined
the notion, the corresponding moduli space was not constructed.
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