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FINITE AND COUNTABLE FAMILIES OF ALGEBRAS OF SETS

L.Š. Grinblat

Abstract. Let {Aλ}λ∈Λ be a family of algebras of sets defined on a set X, 0 < #(Λ) ≤
ℵ0, and Aλ 6= P(X) for each λ ∈ Λ. We assume that Aλ are σ-algebras if #(Λ) = ℵ0.
We obtained the necessary and sufficient conditions for which

⋃
λ∈ΛAλ = P(X). In

the formulation of these conditions we use ω-saturated algebras and finite sequences
of ultrafilters on X.

1. The formulation of results

1.1. The object of our present investigation is algebras of sets. The present article
is a further development of the theory formulated in [Gr1],[Gr2],[Gr3], [Gr4], [Gr5].
The results of other authors from [E],[S],[G-S],[W] bear a relation to the subject of
our research.

Definition. By an algebra on a set X we mean a non-empty system of subsets X
with the following properties: (1) if M ∈ A, then X r M ∈ A; (2) if M1,M2 ∈ A,
then M1 ∪M2 ∈ A.

1.2. Some notations and terms. All algebras and measures are considered on
some abstract set X. As usual, P(M) denotes the set of all subsets of the set M .
When it is clear from the context, we will not state explicitly that a set belongs to
P(X). The symbol #(M) denotes the cardinality of the set M . The set M is called
countable if #(M) = ℵ0. We assume that #(X) ≥ ℵ0. We denote the set of natural
numbers by N+. If n ∈ N+, then we define

Nn = {k ∈ N+ | k ≤ n}.
As usual, an algebra A is called a σ-algebra, if for any countable sequence M1, . . . ,Mk,
. . . ∈ A, we have that A 3

⋃∞
k=1 Mk. We will consider ultrafilters on X. Each

ultrafilter is a point βX and vice-versa – each point βX is an ultrafilter on X. (Here,
as usual, βX is the Stone-Čech compactification of X with discrete topology).

1.3. Example. There exists a finite sequence of algebras A1, ...,Aν , where ν is an
odd number ≥ 3, and Ai 6= P(X) for each i ∈ Nν , such that

⋃ν
i=1Ai = P(X).
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Construction. Consider pairwise distinct ultrafilters a1, ..., aν . Let aν+1 = a1.
For any i ∈ Nν we construct the algebra

Ai = {Q ∈ P(X) | either Q ∈ ai, ai+1 or Q /∈ ai, ai+1} .

We shall see that there is a close connection between this simple example and
results which we want to prove.

1.4 Definition. We say that a pair {A, A}, where A is a family of algebras and A is
a set of ultrafilters, forms a cycle, if the following conditions hold:

1) A is a finite sequence of algebras A1, ...,Aν and ν is an odd number ≥ 3 ;
2) A is a set of pairwise distinct ultrafilters a1, ..., aν (let aν+1 = a1);
3) if i ∈ Nν , Q ∈ ai and Q /∈ ai+1, then Q /∈ Ai.

1.5. Definition. Let {Aλ}λ∈Λ be a family of algebras. We say that this family
has a cycle if there exists a pair {A, A} forming the cycle; A = {Aλ1 , ...,Aλn

}, and
λ1, ..., λn are pairwise distinct indices from Λ.

1.6. Definition. Let {Aλ}λ∈Λ be a family of algebras having a countable sequence
cycles {A1, A1}, ..., {Ak, Ak}, ... . We say that this sequence is a countable splitting
sequence if for each n ∈ N+ the following conditions hold:

(1) An+1 r
n⋃

k=1

Ak 6= ∅ ; (2) An+1 r
n⋃

k=1

Ak 6= ∅ .

1.7. The next definition was introduced by other authors long before the publication
of [Gr1].

Definition. An algebra is said to be ω-saturated if there does not exist an infinite
number of pairwise disjoint sets not belonging to it.

Later on it becomes clear that an algebra A is ω-saturated if and only if there
exists a finite set of ultrafilters G such that if M belongs to all ultrafilters from G,
then M ∈ A.

1.8. Definition. A family of algebras is said to be strongly cyclical, if it has a cycle
containing only ω-saturated algebras.

1.9. Definition. A cycle {A, A}, where A = {A1, ...,Aν}, is said to be a ω-cycle, if
each pair (A1,A2), (A2,A3), ..., (Aν−1,Aν), (Aν ,A1) contains an ω-saturated algebra.

It is clear that the majority algebras from A are ω-saturated. If algebras from A
are σ-algebras, then all ultrafilters from A are irregular (see Sections 2.4, 2.11).

1.10. In this and in the following section we present theorems about necessary con-
ditions for our results.

Theorem. Let A = {Ak}k∈Nn
be a family of algebras, Ak 6= P(X) for each k ∈ Nn

and
⋃n

k=1Ak = P(X). Then A is strongly cyclical.

1.11. Theorem. Let A = {Ak}k∈N+ be a family of σ-algebras, Ak 6= P(X) for each
k ∈ N+ and

⋃∞
k=1Ak = P(X). Then, if A is not strongly cyclical, it has countable

splitting sequence of ω-cycles.
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1.12. Remark. Using the notation of absolute introduced by Gleason in [Gl] we can
construct the family of algebras {Bk}k∈N+ possessing the following properties: each
algebra is not ω-saturated, not σ-algebra and

⋃∞
k=1 Bk = P(X) (see [Gr2], Chapter

5). Therefore in Theorem 1.11 we consider a family of σ-algebras.

1.13. Definition. We say that an algebra B is the extension of an algebra A if
B ⊃ A, and B 6= P(X) if A 6= P(X). We say that a family of algebras {Bλ}λ∈Λ is the
extension of a family of algebras {Aλ}λ∈Λ if Bλ is the extension of Aλ for each λ ∈ Λ.
We say that an algebra B is the σ-extension of an algebra A if B is the extension of
A and B is a σ-algebra. Accordingly, we say that a family of algebras {Bλ}λ∈Λ is the
σ-extension of a family of algebras {Aλ}λ∈Λ.

1.14. In this and in the following section we present theorems about sufficient con-
ditions for our results.

Theorem. Let A = {Ak}k∈Nn
be a family of algebras and

⋃n
k=1Ak 6= P(X).

Then there exists an extension B of A such that B has no cycle.

1.15. Theorem. Let A = {Ak}k∈N+ be a family of σ-algebras and
⋃∞

k=1Ak 6= P(X).
Then there exists a σ-extension B of A such that B has no cycle.

1.16. Using Theorems 1.10 and 1.14 we can formulate the main result about finite
families of algebras.

Theorem. Let A = {Ak}k∈Nn
be a family of algebras, and Ak 6= P(X) for each

k ∈ Nn. Then we have:
⋃n

k=1Ak = P(X) if and only if any extension of A is strongly
cyclical.

1.17. Using Theorems 1.11 and 1.15 we can formulate the main result about countable
families of σ-algebras.

Theorem. Let A = {Ak}k∈N+ be a family of σ-algebras, and Ak 6= P(X) for each
k ∈ N+. Then we have:

⋃∞
k=1Ak = P(X) if and only if for any σ-extension B of A

one of the following two conditions holds:
(1) B is strongly cyclical;
(2) B is not strongly cyclical, and B has countable splitting sequence of ω-cycles.

2. On necessary conditions

2.1. In the first 13 sections of this chapter we present information from [Gr1] and
[Gr2]. In this section we provide the important statement used in our previous pub-
lications. Consider an algebra A. Two ultrafilters a 6= b are said to be A-equivalent
if for any M ∈ A we have that M ∈ a, b or M /∈ a, b. The A-equivalent relation is
symmetric and transitive. If a, b are A-equivalent ultrafilters then we say that a has
an A-equivalent ultrafilter b, or a is A-equivalent to b. It is clear that if A = P(X),
then A-equivalent ultrafilters do not exist. It is not complicated to prove that Q /∈ A
if and only if there exist A-equivalent ultrafilters a, b such that Q ∈ a,X r Q ∈ b.
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Main Statement. Let {Ak}λ∈Λ be a family of algebras. Then
⋃

λ∈ΛAλ 6= P(X)
if and only if there exist closed disjoint sets S, T ⊂ βX and for each λ ∈ Λ the
following is true: there exist Aλ-equivalent ultrafilters sλ, tλ such that sλ ∈ S and
tλ ∈ T .

2.2. Consider a family of algebras {Ak}k∈Nn . By the Main Statement 2.1
⋃n

k=1Ak 6=
P(X) if and only if there exist two disjoint sets Sn, Tn ⊂ βX such that:

• Sn = {s1, ..., si, ..., sn}, where in general it is possible that si = sj(i 6= j);
• Tn = {t1, ..., ti, ..., tn}, where in general it is possible that tk = tl(k 6= l);
• si, ti are Ai - equivalent ultrafilters for each i ∈ Nn.

2.3. Definition. Consider an algebra A; the set

{a ∈ βX | a has A-equivalent ultrafilter}
is called the kernel of the algebra A and is denoted by kerA.

If an algebra A = P(X), then kerA = ∅. If an algebra A 6= P(X), then #(kerA) ≥
2. An algebra A is ω-saturated if and only #(kerA) < ℵ0; the minimal set G from
Section 1.7 is kerA.

2.4. Notation: if M ⊂ βX, then by M we denote the close M in βX.

Definition. A point a ∈ βX is said to be irregular if for any countable sequence
of sets M1, ...,Mk, ... ⊂ βX such that a 6∈ Mk for all k, we have that a 6∈

⋃
Mk. A

point of βX is said to be regular if it is not irregular.
Since a point of βX is an ultrafilter on X and vice versa, an ultrafilter on X is

a point of βX, we will use the notion of the irregular (regular) ultrafilter along with
the notion of the irregular (regular) point. All points of X are irregular. Just a few
words about irregular points in βX rX. The superposition of the absence of irregular
points in βX rX at an arbitrary cardinality of X is consistent, as is known, with the
usual axioms of set theory. However, it is possible to construct models with irregular
points in βX r X when the cardinality of X is ”very large”.

2.5. Definition. An algebra A is said to be simple, if there exists Z ⊂ βX such
that:

(1) 0 < #(Z) ≤ ℵ0;
(2) all points of Z are irregular;
(3) kerA ⊂ Z.

2.6. Remark. By virtue of Definition 2.5 the algebra P(X) is simple.

2.7. The following theorem was proved in [Gr1], Chapter 5.

Theorem. Let {Ak}k∈N+ be a family of σ-algebras, and let⋃
{Ak | Ak is a simple algebra} 6= P(X).

Then
⋃∞

k=1Ak 6= P(X).

2.8. Remark. The Gitik-Shelah theorem [G-S] is essentially used in the proof of
Theorem 2.7. We now formulate the deep theorem of Gitik-Shelah.
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Given countable sequence of σ-additive measures µ1, ..., µk, ... on X, #(X) = 2ℵ0 ,
and such that for each k ∈ N+ the following conditions hold:

(1) µk({x}) = 0 if x ∈ X;
(2) µk(X) = 1;
(3) if M is µk - measurable set, then either µk(M) = 0 or µk(M) = 1.

Then there exists a set that is nonmeasurable with respect to each of these measures.

2.9. Definition. The set

{a ∈ kerA | a is an irregular point}
is called the spectrum of an algebra A and is denoted by spA.

2.10. The proof of the lemma below can be found in [Gr2], Chapter 7.

Lemma. If A is a simple σ-algebra, then kerA ⊂ spA.

2.11. Remark. If an ω-saturated algebra A is a σ-algebra, then A is simple and
kerA = spA. It is clear that if all algebras of an ω-cycle are σ-algebras, then all
ultrafilters of this cycle are irregular.

2.12. Definition. A simple but not ω-saturated algebra is called strictly simple.

2.13. Let us mention the next simple lemma.

Lemma. Let A be a strictly simple σ-algebra, and M a finite set such that
M ⊂ spA. Then there exist A-equivalent ultrafilters a, b such that a, b ∈ spAr M .

2.14. In this and the following section we prove Theorem 1.10.

Theorem. Let A = {Ak}k∈Nn
be a family of algebras, Ak 6= P(X) for each

k ∈ Nn, and
⋃n

k=1Ak = P(X). Then A has a cycle.

Proof. Let m be the maximum natural number such that
⋃m

k=1Ak 6= P(X) and⋃m+1
k=1 Ak = P(X). It is clear that m ≥ 2 and for algebras A1, ...,Am there exist the

corresponding sets Sm, Tm (see Section 2.2);

Sm = {s1, ..., sm},
Tm = {t1, ..., tm}

etc. Let a, b be Am+1-equivalent ultrafilters. It is clear that either a, b ∈ Sm or a, b ∈
Tm. (If we suppose the contrary, then it is possible to construct the corresponding
sets Sm+1, Tm+1, and

⋃m+1
k=1 Ak 6= P(X)). Let a, b ∈ Sm. Setting

S(1) = {a} ,

T (1) = {tk ∈ Tm | sk = a} ,

S(2) = {sk ∈ Sm | tk ∈ T (1)}
etc. It is clear that S(1) ⊂ S(2) ⊂ ..., and T (1) ⊂ T (2) ⊂ ... . Consider two cases:

(1) there exists minimal ν such that b ∈ S(ν) ;
(2) such ν does not exist.
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Suppose that (2) holds. We continue this process to construct sets S(i), T (j), until it
terminates. Let S∗ denote the last set S(i). Let T∗ denote the last set T (j). Each sk ∈
S∗ we denote by tk, and each set tk ∈ T∗ we denote by sk. Put sm+1 = b, tm+1 = a.
Other sk and tk do not change the notations. We constructed the corresponding sets
Sm+1, Tm+1, and therefore

⋃m+1
k=1 Ak 6= P(X). We arrive at the contradiction. So,

the case (1) is true. There exist pairwise distinct numbers

k1, k2, ..., k2ν−2 ∈ Nm,

and pairwise distinct ultrafilters

a = sk1 , sk3 ∈ S(2), ..., s2ν−3 ∈ S(ν−1), b = s2ν−2 ∈ S(ν),

and pairwise distinct ultrafilters

tk2 ∈ T (1), ..., t2ν−2 ∈ T (ν−1)

such that

sk1 , tk2 are Ak1-equivalent ultrafilters (tk1 = tk2) ,
tk2 , sk3 are Ak2-equivalent ultrafilters (sk2 = sk3) ,
. . . . . . . . . .
sk2ν−3 , tk2ν−2 are A2ν−3-equivalent ultrafilters (tk2ν−3 = tk2ν−2) ,
tk2ν−2 , sk2ν−2 are A2ν−2-equivalent ultrafilters.

In addition, a and b and Am+1-equivalent ultrafilters. We constructed the cycle. �

2.15. Remark. Returning to Theorem 2.14, let us divide the family A into two
subfamilies:

C = {C1, ..., Cn1}
and

D = {D1, ...,Dn2} .

C includes only ω-saturated algebras. D does not include ω-saturated algebras. Sup-
pose that D 6= ∅. Let

L =
n1⋃

k=1

ker Ck.

We know that #(L) < ℵ0, and #(kerDk) ≥ ℵ0 for each k ∈ Nn2 .
1 It is clear that

there exist pairwise distinct ultrafilters

a1, b1, ..., an2 , bn2

such that ak, bk are Dk - equivalent ultrafilters for each k ∈ Nn2 , and

L ∩ {a1, b1, ..., an2 , bn2} = ∅.
Therefore we have: C 6= ∅ and

⋃n1
k=1 Ck = P(X). By Theorem 2.14 we have: A is

strongly cyclical.

1In [Gr2], Chapter 3 it was proved that there does not exist an algebra A such that

ℵ0 ≤ #(kerA) < 22ℵ0
.

.
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2.16. The proof of Theorem 1.11. Let

A′ = {Ak ∈ A | Ak is a simple algebra}.

By Theorem 2.7 we have
⋃

A′ = P(X). Suppose that #(A′) < ℵ0. We know that the
family A′ is not strongly cyclical. Therefore by the considerations of Remark 2.15 we
have:

⋃
A′ 6= P(X). By this contradiction we have #(A′) = ℵ0. Put

A′ = {A′k}k∈N+ , Z =
∞⋃

k=1

spA′k .

Let us divide A′ into two subsequences:

(1) C1, ..., Ck, ...

and
(2) D1, ...,Dk, ... .

The first subsequence includes all ω-saturated algebras. The second subsequence
includes all strictly simple algebras. We recall that ker Ck ⊂ Z. Let C1, ..., Cn be
algebras where n ∈ N+. We know that

⋃n
k=1 Ck 6= P(X) and there exist corresponding

sets of ultrafilters Sn, Tn ⊂ Z. By Lemma 2.13 we have: if (1) includes only a finite
number of algebras or if (1) is empty, then

⋃∞
k=1A′k 6= P(X). Therefore (1) has

an infinite number of algebras. Since #(ker Ck) < ℵ0, we can construct disjoint sets
S, T ⊂ Z such that the following is true: for each k ∈ N+ there exist Ck-equivalent
ultrafilters σk, τk such that σk ∈ S, τk ∈ T . Since S ∪ T includes only irregular
ultrafilters and #(S ∪ T ) ≤ ℵ0, then S ∩ T = ∅. By Main Statement 2.1 we have⋃∞

k=1 Ck 6= P(X). From this it follows that (2) is not empty. We assume, without
any loss of generality, that (2) has an infinite number of algebras. By Lemma 2.13 we
shall construct a countable sequence of pairwise distinct ultrafilters from Z:

a
(1)
1 , b

(1)
1 , a

(1)
2 , b

(1)
2 , ..., a

(1)
k , b

(1)
k , ...

such that a
(1)
k , b

(1)
k are Dk-equivalent ultrafilters for each k ∈ N+. For each k ∈ N+

we consider the algebra D(1)
k for which

kerD(1)
k = {a(1)

k , b(1)
n } .

Consider the countable sequence of ω-saturated algebras

C1,D(1)
1 , C2,D(1)

2 , ..., Ck,D(1)
k , ... .

If this sequence has no cycles, we arrive at the contradiction:
⋃∞

k=1A′k 6= P(X).
Therefore this sequence of algebras has a cycle C1. It is obvious that C1 is the cycle
of the countable sequence of algebras

C1,D1, C2,D2, ..., Ck,Dk, ... .

Since the ultrafilters a
(1)
1 , b

(1)
1 , ..., a

(1)
k , b

(1)
k , ... are pairwise distinct, then C1 is ω-cycle.

It is clear that C1 contains algebras of kind Dk.
Consider a countable sequence of pairwise distinct ultrafilters from Z

a
(2)
1 , b

(2)
1 , a

(2)
2 , b

(2)
2 , ..., a

(2)
k , b

(2)
k , ... .
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If Ck ∈ C1 then

ker Ck

⋂
{a(2)

1 , b
(2)
1 , a

(2)
2 , b

(2)
2 , ..., a

(2)
k , b

(2)
k , ...} = ∅ .

Moreover, a
(2)
k , b

(2)
k are Dk - equivalent ultrafilters for each k ∈ N+. For each k ∈ N+

we consider the algebra D2
k for which

kerD(2)
k = {a(2)

k , b
(2)
k } .

Consider the countable sequence of ω - saturated algebras

C1,D(2)
1 , C2,D(2)

2 , ..., Ck,D(2)
k , ... .

This sequence has a cycle C2. It is obvious that C2 is the cycle of the countable
sequence of algebras

C1,D1, C2,D2, ..., Ck,Dk, ... .

It is clear that C2 is ω-cycle, and C2 contains algebras of kind Dk.
Consider a countable sequence of pairwise distinct ultrafilters from Z

a
(3)
1 , b

(3)
1 , a

(3)
2 , b

(3)
2 , ..., a

(3)
k , b

(3)
k , ... .

If Ck belongs either to C1 or C2, then

ker Ck

⋂
{a(3)

1 , b
(3)
1 , a

(3)
2 , b

(3)
2 , ..., a

(3)
k , b

(3)
k , ...} = ∅ .

Moreover, a
(3)
k , b

(3)
k are Dk-equivalent ultrafilters for each k ∈ N+ etc. Continuing our

process we shall construct a countable splitting sequence of ω-cycles. �

2.17. Now we turn to the necessary conditions of the main Theorem 1.17. In this
theorem it is necessary to assume that Bk are σ-algebras.

Theorem. There exist families of σ-algebras A = {Ak}k∈N+ , and the following is
true:

I.
⋃∞

k=1Ak = P(X);
II.

⋃
{Ak | Ak is ω − saturated algebra} 6= P(X).

We approve that for such a family A there exists an extension B which does not
contain any cycle. 2

Proof. It is clear that there exist families of σ-algebras A = {Ak}k∈N+ with the
conditions I and II. Let us divide A into two subsequences:

(1) C1, ..., Ck, ...

and
(2) D1, ...,Dk, ... .

The first subsequence includes all ω-saturated algebras. The second subsequence
includes all other algebras. It is clear that (1) includes an infinite number of algebras
and (2) is not empty. Suppose that (2) contains an infinite number of algebras. For
each k ∈ N+ we can take Ck-equivalent ultrafilters σk, τk such that S ∩ T = ∅, where
S =

⋃
{σk}, T =

⋃
{τk}. For each k ∈ N+ we consider the algebra C∗k with

ker C∗k = {σk, τk} .

2It is obvious that B is not a σ-extension of A.
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It is clear (see the footnote 1) that there exist pairwise distinct ultrafilters

a1, b1, a2, b2, ..., ak, bk, ...

such that ak, bk are Dk-equivalent ultrafilters, and

(S ∪ T ) ∩ {a1, b1, ..., ak, bk, ...} = ∅ .

For each ker ∈ N+ we consider the algebra D∗k with

kerD∗k = {ak, bk} .3

We have the extension

B = {C∗1 , ..., C∗k , ...,D∗1 , ...,D∗k, ...}
of A. If B has a cycle {B∗, B∗} then

B∗ = {C∗k1
, ..., C∗kν

} ,

B∗ = {qk1 , ..., qkν
} ⊂ S ∪ T ,

ν is an odd number ≥ 3 etc. If qk1 ∈ S then qk1 = σk1 , qk2 = τk1 = τk2 , qk3 = σk2 .
If ν > 3 then σk2 = σk3 , qk4 = τk3 etc. It is clear that qkν = σkν−1 . However,
σk1 , σkν−1 ∈ S, and therefore they are not C∗kν

-equivalent ultrafilters. We arrive at a
contradiction; B does not contain any cycle. �

3. On sufficient conditions

3.1. The proof of Theorem 1.14. Consider the corresponding sets of ultrafilters
Sn, Tn (see Section 2.2). For each k ∈ Nn consider the algebra Bk with kerBk =
{sk, tk}. The family of algebras B = {Bk}k∈Nn

has no cycle (see the end of the proof
of Theorem 2.17). �

3.2. We begin the preparation for the proof of Theorem 1.15.

Definition. Let A be an algebra and U ∈ P(X). We denote by AU the algebra

{Q ∈ P(X) | there exists V ∈ A such that Q ∩ U = V ∩ U} .

It is clear that AU ⊃ A. It is clear that if A is a σ-algebra, then AU is a σ-algebra.

3.3. The proof of the next lemma is not difficult.

Lemma. We have AU 6= P(X) if and only if there exist A-equivalent ultrafilters
a, b such that U ∈ a, b.

3.4. The proof of the next lemma is not difficult.

Lemma. Let A be a σ-algebra, S and T are disjoint sets of irregular ultrafilters,
#(S ∪ T ) = ℵ0, and s, t are A-equivalent ultrafilters s ∈ S, t ∈ T . Then there exist
A-equivalent ultrafilters s′ and t′ such that s′ ∈ S, t′ ∈ T .

3.5. Lemma. Let {Ak}k∈N+ be a family of simple σ-algebras and
⋃∞

k=1Ak 6= P(X).
Then there exist disjoint sets of irregular ultrafilters S and T such that #(S∪T ) ≤ ℵ0,
and for each k ∈ N+ there exist Ak-equivalent ultrafilters sk, tk, where sk ∈ S, tk ∈ T .

3There exists, necessarily, a non σ-algebra between algebras D∗
k.
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Proof. There exist disjoint sets U and V such that for each k ∈ N+ there exist
Ak-equivalent ultrafilters σk, τk and σk 3 U, τk 3 V . If σk is a regular ultrafilter (it is
possible if Ak is strictly simple algebra), then there exists a countable set of irregular
points S(k) ⊂ U and σk ∈ S(k). By analogy, if τk is a regular ultrafilter then there
exists a countable set of irregular points T(k) ⊂ V and τk ∈ T (k). Therefore for each
k ∈ N+ there exist at most countable sets of irregular points S(k), T(k) such that

σk ∈ S(k) ⊂ U, τk ∈ T (k) ⊂ V .

By Lemma 3.4 for each k ∈ N+ there exists Ak-equivalent irregular ultrafilters sk and
tk such that sk 3 U, tk 3 V . Put

S = {sk}k∈N+ , T = {tk}k∈N+ . �

3.6. The next theorem from [Gr2], Chapter 17 is a generalization of Theorem 2.7
Theorem. Let {Ak}k∈N+ and {Bk}k∈N+ be two families of σ-algebras. Let all the

algebras Ak be simple, and along the algebras Bk let there be no simple algebras.
Then there exist pairwise disjoint sets W,U1, ..., Uk, ..., V1, ..., Vk, ... such that

(1) kerAk ⊂ W for all k ∈ N+ ;
(2) if a set Q contains one of the two sets Uk, Vk and its intersection with the

other set is empty, then Q /∈ Bk.
It is clear that in the proof of this theorem the Gitik-Shelah theorem is used (see

Remark 2.8). It is clear that for each k ∈ N+ there exists Bk-equivalent ultrafilters
ak, bk such that Uk ∈ ak, Vk ∈ bk.

3.7. Proof of Theorem 1.15. We assume, without any loss of generality, that it is
possible to divide the family A into two subfamilies:

(1) {C(k)}k∈N+ , (2) {D(k)}k∈N+ .

The subfamily (1) includes all simple algebras. The subfamily (2) includes all other
algebras. By Lemma 3.5 and Theorem 3.6 there exist disjoint sets of irregular ul-
trafilters S, T and pairwise disjoint sets U1

1 , U1
2 , U2

1 , U2
2 , ..., Uk

1 , Uk
2 , ... such that the

following holds:
(1) #(S ∪ T ) ≤ ℵ0 ;
(2) for each k ∈ N+ there exist C(k)-equivalent ultrafilters sk, tk such that sk ∈

S, tk ∈ T ;

(3) (S ∪ T ) ∩ (Uk
1 ∪ Uk

2 ) = ∅ for each k ∈ N+;
(4) for each k ∈ N+ there exist D(k)-equivalent ultrafilters ak, bk such that Uk

1 ∈
ak, Uk

2 ∈ bk .
Put

Vk = Uk
1 ∪ Uk

2 .

For each k ∈ N+ we consider two σ - algebras B′k,B′′k :

kerB′k = {sk, tk},
B′′k = D(k)

Vk
.

By Lemma 3.3 we have B′′k 6= P(X). The family B = {B′k,B′′k}k∈N+ is the σ-extension
of the family {C(k),D(k)}k∈N+ . It is clear that B has no cycle (see the end of the
proof of Theorem 2.17). �
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3.8. Remark. For the proof of the sufficient condition of Theorem 1.17 we can use
the following result:

Let A = {Ak}k∈N+ be a family of σ-algebras and
⋃∞

k=1Ak 6= P(X). Then there
exists σ-extension B of A such that if B has a cycle then this cycle does not contain
ω-saturated algebras.

This result is a weaker result than Theorem 1.15 and for the proof of this result
we do not use the Gitik-Shelah theorem. If 2ℵ0 = ℵ1, then for the proof of the
necessary condition of Theorem 1.17 we can use the simple Alouglu-Erdös theorem
[E] instead of the complicated Gitik-Shelah theorem. The Alouglu-Erdös theorem is
the Gitik-Shelah theorem with the assumption that #(X) = ℵ1 (see Section 2.8).
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