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STABILITY UNDER DEFORMATIONS OF EXTREMAL
ALMOST-KÄHLER METRICS IN DIMENSION 4.

Mehdi Lejmi

Abstract. Given a path of almost-Kähler metrics compatible with a fixed symplectic
form on a compact 4-manifold such that at time zero the almost-Kähler metric is an

extremal Kähler one, we prove, for a short time and under a certain hypothesis, the
existence of a smooth family of extremal almost-Kähler metrics compatible with the

same symplectic form, such that at each time the induced almost-complex structure is

diffeomorphic to the one induced by the path.

1. Introduction

An almost-Kähler metric on a 2n-dimensional symplectic manifold (M,ω) is in-
duced by an almost-complex structure J compatible with ω in the sense that the
tensor field g(·, ·) = ω(·, J ·) is symmetric and positive definite and thus it defines a
Riemannian metric on M . The almost-Kähler metric is Kähler if the almost-complex
structure J is integrable. Given an almost-Kähler metric, one can define a canonical
hermitian connection ∇ (see e.g. [16, 24]). The hermitian scalar curvature s∇ is then
obtained by taking a trace and contracting the curvature of ∇ with ω. In the Kähler
case, the hermitian scalar curvature coincides with the Riemannian scalar curvature.

A key observation, made by Fujiki [13] in the integrable case and by Donald-
son [9] in the general almost-Kähler case, asserts that the natural action of the
infinite dimensional group Ham(M,ω) of hamiltonian symplectomorphisms on the
space AKω of ω-compatible almost-Kähler metrics is hamiltonian with moment map
µ : AKω → (Lie(Ham(M,ω)))∗ given by µJ(f) =

∫
M
s∇f ωn

n! . The critical points of
the norm

∫
M

(
s∇

)2 ωn

n! are called extremal almost-Kähler metrics. It turns out that
the symplectic gradient of s∇ of such metrics is a holomorphic vector field in the
sense that its flow preserves the corresponding almost-complex structure. In partic-
ular, extremal Kähler metrics in the sense of Calabi [7] and almost-Kähler metrics
with constant hermitian scalar curvature are extremal.

The GIT formal picture in [9] suggests the existence and the uniqueness of an
extremal almost-Kähler metric, modulo the action of Ham(M,ω), in each ‘stable
complexified’ orbit of the action of Ham(M,ω). However, in this formal infinite
dimensional setting, a natural complexification of Ham(M,ω) does not exist. When
H1(M,R) = 0, an identification of the ‘complexified’ orbit of a Kähler metric (J, g) ∈
AKω is given by considering all Kähler metrics (J, g̃) in the Kähler class [ω] and
applying Moser’s Lemma [9]. In this setting, Fujiki–Schumacher [14] and LeBrun–
Simanca [21] showed, in the abscence of holomorphic vector fileds, that the existence of
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an extremal Kähler metric is an open condition on the space of such orbits. Moreover,
Apostolov–Calderbank–Gauduchon–Friedman [3] generalized this result by fixing a
maximal torus T in the reduced automorphism group of (M,J) and considering T -
invariant ω-compatible Kähler metrics. In general, for an almost-Kähler metric, a
description of these ‘complexified’ orbits is not avaible, see however [10] for the toric
case. Nevertheless, the formal picture suggests that the existence of an extremal
Kähler metric should persist for smooth almost-Kähler metrics close to an extremal
one.

Thus motivated, we consider in this paper the 4-dimensional case where one can
introduce a notion of almost-Kähler potential related to the one defined by Weinkove
[27, 28]. In the spirit of [14, 21], we shall apply the Banach Implicit Function Theorem
for the hermitian scalar curvature of T -invariant ω-compatible almost-Kähler metrics
where T is a maximal torus in Ham(M,ω). The main technical problem is the regu-
larity of a family of Green operators involved in the definition of the almost-Kähler
potential. Using a Kodaira–Spencer result [19, 20], one can resolve this problem if we
suppose that the dimension of gt-harmonic Jt-anti-invariant 2-forms, denoted by h−Jt

(see [12]), satisfies the condition h−Jt
= h−J0

= b+(M)−1 for t ∈ (−ε, ε) along the path
(Jt, gt) ∈ AKT

ω in the space of T -invariant ω-compatible almost-Kähler metrics. So,
our main theorem claims the following

Theorem 1.1. Let (M,ω) be a 4-dimensional compact symplectic manifold and T
a maximal torus in Ham(M,ω). Let (Jt, gt) be any smooth family of almost-Kähler
metrics in AKT

ω such that (J0, g0) is an extremal Kähler metric. Suppose that h−Jt
=

h−J0
= b+(M)−1 for t ∈ (−ε, ε) . Then, there exists a smooth family (J̃t, g̃t) of extremal

almost-Kähler metrics in AKT
ω , defined for sufficiently small t, with (J̃0, g̃0) = (J0, g0)

and such that J̃t is equivariantly diffeomorphic to Jt.

Remark 1.2. (i) The condition that h−Jt
= h−J0

= b+(M)− 1 for t ∈ (−ε, ε) is satisified
in the following cases:

(1) When Jt are integrable almost-complex structures for each t. Then, h−Jt
=

2h2,0(M,Jt) = b+(M) − 1 by a well-known result of Kodaira [5]. On the
other hand, it is unknown whether or not, for an ω-compatible non-integrable
almost-complex J on a compact 4-dimensional symplectic manifold M with
b+(M) ≥ 3, the equality h−J = b+(M)− 1 is possible (see [12]).

(2) When b+(M) = 1, h−Jt
= 0 for each t. This condition is satisfied when (M,ω)

admits a non trivial torus in Ham(M,ω) [17].

(ii) Theorem 1.1 holds under the weaker assumption that the torus T ⊂ Ham(M,ω) is
maximal in Ham(M,ω) ∩ Isom0(M, g0), where Isom0(M, g0) denotes the connected
component of the isometry group of the initial metric g0. By a known result of Calabi
[8], any extremal Kähler metric is invariant under a maximal connected compact
subgroup ofHam(M,ω)∩Ãut(M,J0), where Ãut(M,J0) is the reduced automorphism
group of (M,J0). Hence, Theorem 1.1 generalizes [14, 21] in the 4-dimensional case.
(iii) It was kindly pointed out to us by T. Drăghici that using a recent result of
Donaldson and Remarks (i) and (ii) above, one can further extend Theorem 1.1 in
the case when b+(M) = 1 as follows: Let (M,ω0, J0, g0) be a compact 4-dimensional
extremal Kähler manifold with b+(M) = 1 and T be a maximal torus in Ham(M,ω)∩
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Isom0(M, g0). Then, for any smooth family of T -invariant almost-complex structures
J(t) with J(t) = J0, J(t) is compatible with an extremal almost-Kähler metric gt for
t ∈ (−ε, ε). Indeed, as J(t) are tamed by ω0 for t ∈ (−ε, ε) and b+(M) = 1, one can use
the openess result of Donaldson [11, Proposition 1] (see also [12, Sec. 5]) to show that
there exists a smooth family of J(t)-invariant symplectic forms ωt with [ωt] = [ω0].
Averaging ωt over the compact group T and using the equivariant Moser Lemma,
we obtain a family Jt of T -invariant ω0-compatible almost-complex structures such
that Jt is T -equivariantly diffeomorphic to J(t). We can then apply Theorem 1.1 to
produce compatible extremal metrics

Kim and Sung [18] showed that, in any dimension, if one starts with a Kähler
metric of constant scalar curvature with no holomorphic vector fields, one can con-
struct infinite dimensional families of almost-Kähler metrics of constant hermitian
scalar curvature which concide with the initial metric away from an open set. Similar
existence result was presented in [22] when the initial Kähler metric is locally toric.

2. Preliminaries

Let (M,ω) be a compact symplectic manifold of dimension 2n. An almost-complex
structure J is compatible with ω if the tensor field g(·, ·) := ω(·, J ·) defines a Rie-
mannian metric on M ; then, (J, g) is called an (ω-compatible) almost-Kähler metric
on (M,ω). If, additionally, the almost-complex structure J is integrable, then (J, g)
is a Kähler metric on (M,ω).

The almost-complex structure J acts on the cotangent bundle T ∗(M) by Jα(X) =
−α(JX), where α is a 1-form and X a vector field on M . Any section ψ of the
bundle ⊗2T ∗(M) admits an orthogonal splitting ψ = ψJ,+ + ψJ,−, where ψJ,+ is the
J-invariant part and ψJ,− is the J-anti-invariant part, given by

ψJ,+(·, ·) =
1
2

(ψ(·, ·) + ψ(J ·, J ·)) and ψJ,−(·, ·) =
1
2

(ψ(·, ·)− ψ(J ·, J ·)) .

In particular, the bundle of 2-forms decomposes under the action of J

(2.1) Λ2(M) = R . ω ⊕ ΛJ,+
0 (M)⊕ ΛJ,−(M),

where ΛJ,+
0 (M) is the subbundle of the primitive J-invariant 2-forms (i.e. 2-forms

pointwise orthogonal to ω) and ΛJ,−(M) is the subbundle of J-anti-invariant 2-forms.
Hence, the subbundle of primitive 2-forms Λ2

0(M) admits the splitting

Λ2
0(M) = ΛJ,+

0 (M)⊕ ΛJ,−(M).

For an ω-compatible almost-Kähler metric (J, g), the canonical hermitian connec-
tion on the complex tangent bundle (T (M), J, g) is defined by

∇XY = Dg
XY − 1

2
J (Dg

XJ)Y,

where Dg is the Levi-Civita connection with respect to g and X,Y are vector fields
on M . Denote by R∇ the curvature of ∇. Then, the hermitian Ricci form ρ∇ is the
trace of R∇X,Y viewed as an anti-hermitian linear operator of (T (M), J, g), i.e.

ρ∇(X,Y ) = −tr(J ◦R∇X,Y ).

Hence, the 2-form ρ∇ is a closed (real) 2-form and it is a deRham representative
of 2πc1(T (M), J) in H2(M,R), where c1(T (M), J) is the first (real) Chern class. If
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the almost-complex structure J is compatible with a symplectic form ω̃ such that
ω̃n = eFωn for some smooth real-valued function F on M , then [26, 27]

(2.2) ρ̃∇ = −1
2
dJdF + ρ∇,

where ρ̃∇ is the hermitian Ricci form of the almost-Kähler metric (J, g̃) (here g̃(·, ·) =
ω̃(·, J ·) is the induced Riemannian metric).

We define the hermitian scalar curvature s∇ of an almost-Kähler metric (J, g) as
the trace of ρ∇ with respect to ω, i.e.

(2.3) s∇ωn = 2n
(
ρ∇ ∧ ωn−1

)
.

The (Riemannian) Hodge operator ∗g : Λp(M) → Λ2n−p(M) is defined to be the
unique isomorphism such that ψ1 ∧ (∗g ψ2) = g(ψ1, ψ2) ωn

n! , for any p-forms ψ1, ψ2.
Then, the codifferential δg, defined as the formal adjoint of the exterior derivative d
with respect to g, is related to d by the relation [6, 15]

δg = − ∗g d ∗g .

It follows that

(2.4) d = ∗g δ
g ∗g .

In dimension 2n = 4, the bundle of 2-forms decomposes as

Λ2(M) = Λ+(M)⊕ Λ−(M),

where Λ±(M) correspond to the eigenvalue (±1) under the action of the Hodge op-
erator ∗g. This decomposition is related to the splitting (2.1) as follows

(2.5) Λ+(M) = R . ω ⊕ ΛJ,−(M) and Λ−(M) = ΛJ,+
0 (M).

3. Extremal almost-Kähler metrics

Let (M,ω) be a compact and connected symplectic manifold of dimension 2n. Any
ω-compatible almost-complex structure is identified with the induced Riemannian
metric.

Denote by AKω the Fréchet space of ω-compatible almost-complex structures. The
space AKω comes naturally equipped with a formal Kähler structure. LetHam(M,ω)
be the group of hamiltonian symplectomorphisms of (M2n, ω). The Lie algebra of
Ham(M,ω) is identified with the space of smooth functions on M with zero mean
value.

A key observation, made by Fujiki [13] in the integrable case and by Donaldson [9]
in the general almost-Kähler case, asserts that the natural action of Ham(M,ω) on
AKω is hamiltonian with momentum given by the hermitian scalar curvature. More
precisely, the moment map µ : AKω → (Lie(Ham(M,ω)))∗ is

µJ(f) =
∫

M

s∇f
ωn

n!

where s∇ is the hermitian scalar curvature of (J, g) and f is a smooth function with
zero mean value viewed as an element of Lie(Ham(M,ω)). The square-norm of the
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hermitian scalar curvature defines a functional on AKω

(3.1) J 7→
∫

M

(
s∇

)2ωn

n!
.

Definition 3.1. The critical points (J, g) of the functional (3.1) are called extremal
almost-Kähler metrics.

Proposition 3.2. An almost-Kähler metric (J, g) is a critical point of (3.1) if and
only if gradωs

∇ is a Killing vector field with respect to g.

A proof of Proposition 3.2 is given in [4, 15, 22].

3.1. The extremal vector field. We fix a maximal torus T in Ham(M,ω) and
denote by tω the finite dimensional space of real-valued smooth functions on M which
are hamiltonians with zero mean value of elements of t = Lie(T ). Denote by ΠT

ω the
L2-orthogonal projection of T -invariant smooth functions on tω with respect to the
volume form ωn

n! . Let AKT
ω be the space of ω-compatible T -invariant almost-complex

structures. Given any J ∈ AKT
ω , we define zT

ω := ΠT
ωs
∇, where s∇ is the hermitian

scalar curvature of (J, g). Then, we have the following (for more details see [3, 15, 22])

Proposition 3.3. The potential zT
ω is independant of (J, g). Furthermore, a ω-

compatible T -invariant almost-Kähler metric (J, g) is extremal if and only if

s̊∇ = zT
ω ,

where s̊∇ is the integral zero part of the hermitian scalar curvature s∇ of (J, g).

Definition 3.4. The vector field ZT
ω := gradωz

T
ω is called the extremal vector field

relative to T .

Proposition 3.5. The vector field ZT
ω is invariant under T -invariant isotopy of ω.

Remark 3.6. The assumption that T ⊂ Ham(M,ω) is a maximal torus is used only
in the second part of Proposition 3.3. Indeed, the arguments in [22] show that zT

ω =
ΠT

ωs
∇ is independent of (J, g) for any torus T ⊂ Ham(M,ω) and Proposition 3.5 still

holds true for the corresponding vector field ZT
ω = gradωz

T
ω .

4. Almost-Kähler potentials in dimension 4

Let (M,ω) be a compact symplectic manifold of dimension 2n = 4 and (J, g) a
ω-compatible almost-Kähler metric. In order to define the almost-Kähler potentials,
we consider the following second order linear differential operator [23] on the smooth
sections ΩJ,−(M) of the bundle of J-anti-invariant 2-forms.

P : ΩJ,−(M) −→ ΩJ,−(M)
ψ 7−→ (dδgψ)J,−,

where δg is the codifferential with respect to the metric g.

Lemma 4.1. P is a self-adjoint strongly elliptic linear operator with kernel the g-
harmonic J-anti-invariant 2-forms.
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Proof. The principal symbol of P is given by the linear map σ(P )ξ(ψ) = − 1
2 |ξ|

2ψ,

∀ξ ∈ T ∗x (M), ψ ∈ ΩJ,−(M). So, P is a self-adjoint elliptic linear operator with respect
to the global inner product 〈·, ·〉 =

∫
M
g(·, ·) ω2

2 . Now, let ψ ∈ ΩJ,−(M) and suppose
that P (ψ) = 0. Then, 0 =

〈
(dδgψ)J,−, ψ

〉
= 〈dδgψ,ψ〉 = 〈δgψ, δgψ〉 which means that

δgψ = 0. It follows from (2.5) and since ψ is J-anti-invariant that ∗gψ = ψ. Using
the relation (2.4), we obtain dψ = ∗gδ

g ∗g ψ = ∗gδ
gψ = 0. Hence, dψ = δgψ = 0 and

thus ψ is a g-harmonic J-anti-invariant 2-form. �

Corollary 4.2. For f ∈ C∞(M,R), there exist a unique ψf ∈ ΩJ,−(M) orthogonal
to the kernel of P such that (dδgψf )J,− = (dJdf)J,−.

Proof. For a smooth real-valued function f ∈ C∞(M,R) and any α in the kernel of P ,
we have

〈
(dJdf)J,−, α

〉
= 〈dJdf, α〉 = 〈Jdf, δgα〉 = 0. By a standard result of elliptic

theory [6, 29] and since P is self-adjoint, there exist a smooth section ψf ∈ ΩJ,−(M)
such that P (ψf ) = (dJdf)J,−. Moreover, ψf is unique if one requires ψf be orthogonal
to the kernel of P .

�

From Corollary 4.2, it follows that, for f ∈ C∞(M,R), the symplectic form ωf =
ω + d(Jdf − δgψf ) is a J-invariant closed 2-form. Then, the function f is called
an almost-Kähler potential if the induced symmetric tensor gf (·, ·) := ωf (·, J ·) is a
Riemannian metric. This notion of almost-Kähler potential is closely related but
different (in general) from the one defined by Weinkove in [28]. More precisely, if
the almost-complex structure J is compatible with a symplectic form ω̃ which is
cohomologous to ω i.e. ω̃ − ω = dα (for some 1-form α), then the almost-Kähler
potential defined by Weinkove is given by the function f̃ which is uniquely determined
(up to the addition of constant) by the Hodge decomposition of α with respect to
the (self-adjoint elliptic) twisted Laplace operator ∆̃c = J∆g̃J−1, where ∆g̃ is the
(Riemannian) Laplace operator with respect to the induced metric g̃(·, ·) = ω̃(·, J ·).
In other words, we have the decomposition α = αHc + ∆̃cG̃α, where G̃ is the Green
operator associated to ∆̃c and αHc is the harmonic part of α with respect to ∆̃c.
Thus, f̃ = −δg̃J G̃α, where δg̃ is the codifferential with respect to the metric g̃.

Note that (dJdf)J,− = Dg

(df)]g
ω (see e.g. [15]), where ]g stands for the isomorphism

between T ∗(M) and T (M) induced by g−1. Hence, in the Kähler case, (dJdf)J,− = 0
which implies that ψf = 0 and thus this almost-Kähler potential coincides with the
usual Kähler one.

5. Main Theorem

Let (M,ω) be a compact and connected symplectic manifold of dimension 2n = 4
and Jt ∈ AKω be a smooth path of ω-compatible almost-complex structures. We
define the following family of differential operators associated to Jt

Pt : Ω2
0(M) −→ Ω2

0(M)
ψ 7−→ 1

2∆gtψ − 1
4gt(∆gtψ, ω)ω,

where Ω2
0(M) is the space of smooth sections of the bundle Λ2

0(M) of primitive 2-forms
(pointwise orthogonal to ω) and ∆gt is the (Riemannian) Laplacian with respect to
the metric gt(·, ·) = ω(·, Jt·) (here we use the convention gt(ω, ω) = 2).
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One can easily check that Pt preserves the decomposition

Ω2
0(M) = ΩJ,+

0 (M)⊕ ΩJ,−(M).

Furthermore,

Pt|ΩJt,−(M)(ψ) = (dδgtψ)Jt,− and Pt|ΩJt,+
0 (M)

(ψ) =
1
2
∆gtψ.

It follows that the kernel of Pt consists of primitive harmonic 2-forms which splits as
anti-selfdual and Jt-anti-invariant ones so we have

dim ker(Pt) = b−(M) + h−Jt
,

where h−Jt
is introduced by Drăghici–Li–Zhang in [12].

Moreover, Pt − 1
2∆gt is a linear differential operator of order 1. Indeed, a direct

computation shows that

(
Pt −

1
2
∆gt

)
(ψ) =

1
2

[
1
2
δgt (Dgtω(ψ))− 1

2
gt(Dgtψ,Dgtω)

+
sgt

6
gt(ω, ψ)−W gt(ω, ψ)

]
ω,

where W gt stands for the Weyl tensor (see e.g. [6]), Dgt (resp. δgt) for the Levi-
Civita connection (resp. the codifferential) with respect to the metric gt and sgt

for
the Riemannian scalar curvature defined as the trace of the (Riemannian) tensor.

The operator Pt is a self-adjoint strongly elliptic linear operator of order 2. We
obtain then a family of Green operators Gt associated to Pt. If h−Jt

= h−J0
= b+(M)−1

for t ∈ (−ε, ε), then Gt is C∞ differentiable in t ∈ (−ε, ε) [19, 20], meaning that Gt(ψt)
is a smooth family of sections of Λ2

0(M) for any smooth sections ψt.

To show Theorem 1.1, we consider the extension of Gt to the Sobolev spaces
W k,p(M,Λ2

0(M)) involving derivatives up to k.

Lemma 5.1. Let Gt : Ω2
0(M) → Ω2

0(M) the family of the above Green operators
associated to Pt and suppose that h−Jt

= h−J0
= b+(M) − 1 for t ∈ (−ε, ε). Then,

the extension of Gt to Sobolev spaces, still denoted by Gt, defines a C1 map G :
(−ε, ε)×W p,k(M,Λ2

0(M)) →W p,k+2(M,Λ2
0(M))

Proof. Denote by Πt the L2-orthogonal projection to the kernel of Pt with respect to
〈·, ·〉L2

gt

=
∫

M
gt(·, ·)ω2

2 . We claim that Gt◦Π0 and Π0◦G : (−ε, ε)×W k,p(M,Λ2
0(M)) →

W k+2,p(M,Λ2
0(M)) are C1 maps. Indeed, let {ψi

0} be an orthonormal basis of the
kernel of P0 with respect to 〈·, ·〉L2

g0
. Note that ψi

0 are smooth since P0 is elliptic.
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Then, we have

(Gt ◦Π0) (ψ) =
∑

i

〈
ψ,ψi

0

〉
L2

g0
Gt(ψi

0),

(Π0 ◦Gt) (ψ) =
∑

i

〈
Gt(ψ), (ψi

0)
J0,+ + (ψi

0)
J0,−〉

L2
g0
ψi

0

=
∑

i

(∫
M

−Gt(ψ) ∧ (ψi
0)

J0,+ + Gt(ψ) ∧ (ψi
0)

J0,−
)
ψi

0

=
∑

i

(∫
M

−Gt(ψ) ∧
(
(ψi

0)
J0,+

)Jt,+ −Gt(ψ) ∧
(
(ψi

0)
J0,+

)Jt,−

+ Gt(ψ) ∧
(
(ψi

0)
J0,−)Jt,+ + Gt(ψ) ∧

(
(ψi

0)
J0,−)Jt,−

)
ψi

0

=
∑

i

[〈
ψ,Gt

((
(ψi

0)
J0,+

)Jt,+
)〉

L2
gt

−
〈
ψ,Gt

((
(ψi

0)
J0,+

)Jt,−
)〉

L2
gt

−
〈
ψ,Gt

((
(ψi

0)
J0,−)Jt,+

)〉
L2

gt

+
〈
ψ,Gt

((
(ψi

0)
J0,−)Jt,−

)〉
L2

gt

]
ψi

0

(in the latter equality, we used the fact that Gt is self-adjoint with respect to L2
gt

).
The claim follows from the result of Kodaira–Spencer [19, 20].

Denote by W k,p(M,Λ2
0(M))⊥ the space of 2-forms in W k,p(M,Λ2

0(M)) which are
orthogonal to the kernel of P0 with respect to L2

g0
and consider the map

Φ : (−ε, ε)×W k+2,p(M,Λ2
0(M))⊥ −→ (−ε, ε)×W k,p(M,Λ2

0(M))⊥

(t, ψ) 7−→ (t, (Id−Π0)Pt(ψ)),

Clearly, the map Φ is of class C1 and its differential at (0, ψ) is an isomorphism so
by the inverse function theorem for Banach spaces there exist a neighboorhood V
of (0, ψ) such that Φ|V admits an inverse of class C1. By the The Kodaira–Spencer
result [19, 20], the map Π : (−ε, ε)×W k,p(M,Λ2

0(M)) →W k,p(M,Λ2
0(M)) is C1 and

thus the map Pt(Id−Π0)Gt(Id−Π0) = (Id−Πt)(Id−Π0)− Pt(Π0Gt)(Id−Π0) is
clearly C1 since it is a composition of such operators. Then, the map

Φ|−1
V (t, (Id−Π0)Pt(Id−Π0)Gt(Id−Π0)) = (t, (Id−Π0)Gt(Id−Π0))

= (t,Gt −Π0Gt −GtΠ0 + Π0GtΠ0)

is C1 and hence Gt is C1.
�

Proof of Theorem 1.1 Let (M,ω) be a 4-dimensional compact and connected sym-
plectic manifold and T a maximal torus inHam(M,ω). Let (Jt, gt) a smooth family of
ω-compatible almost-Kähler metrics in AKT

ω such that (J0, g0) is an extremal Kähler
metric.

Following [21], we consider the almost-Kähler deformations

ωt,f = ω + d(Jtdf − δgtψt
f ),

where f belongs to the Fréchet space C̃∞T (M,R) of T -invariant smooth functions
(with zero integral), which are L2-orthogonal, with respect to ω2

2 , to tω and where
the 2-form ψt

f is given by Corollary 4.2.
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Let U be an open set in R× C̃∞T (M,R) containing (0, 0) such that the symmetric
tensor gt,f (·, ·) := ωt,f (·, Jt·) is a Riemannian metric.

By possibly replacing U with a smaller open set, we may assume as in [21] that the
kernel of the operator (Id−ΠT

ω ) ◦ (Id−ΠT
ωt,f

) is equal to the kernel of (Id−ΠT
ωt,f

).
Indeed, let {X1, · · · , Xn} be a basis of t = Lie(T ). Then, the corresponding hamil-
tonians with zero mean value {ξ1ω, · · · , ξn

ω} resp. {ξ1ωt,f
, · · · , ξn

ωt,f
}, with respect to ω

resp. ωt,f , form a basis of tω resp. tωt,f
. Let {ξ̃1ω, · · · , ξ̃n

ω} resp. {ξ̃1ωt,f
, · · · , ξ̃n

ωt,f
} the

corresponding orthonormal basis obtained by the Gram–Schmidt procedure. Since
det

[〈
ξ̃i
ω, ξ̃

j
ωt,f

〉]
defines a continuous function on U , then we may suppose that

det
[〈
ξ̃i
ω, ξ̃

j
ωt,f

〉]
6= 0 on an eventually smaller open set than U (here 〈·, ·〉 denotes

the L2 product with respect to the volume form ω2
t,f

2 ). So, if

u ∈ ker
(
(Id−ΠT

ω ) ◦ (Id−ΠT
ωt,f

)
)

then v ∈ tω ∩
(
tωt,f

)⊥gt,f , where v = (Id−ΠT
ωt,f

)u. But the hypothesis

det
[〈
ξ̃i
ω, ξ̃

j
ωt,f

〉]
6= 0

implies that v ≡ 0 and then ker
(
(Id−ΠT

ω ) ◦ (Id−ΠT
ωt,f

)
)

= ker(Id−ΠT
ωt,f

).
We then consider the map:

Ψ : U −→ R× C̃∞T (M,R)
(t, f) 7−→

(
t, (Id−ΠT

ω ) ◦ (Id−ΠT
ωt,f

)(̊s∇t,f )
)
,

where s̊∇t,f is the zero integral part of the hermitian scalar curvature s∇t,f of (Jt, gt,f ).

It follows from Proposition 3.3 that Ψ(t, f) = (t, 0) if and only if (Jt, gt,f ) is an
extremal almost-Kähler metric. In particular, Ψ(0, 0) = (0, 0).

Let αt,f = Jtdf − δgtψt
f = Jtdf − δgtGt

(
(dJtdf)Jt,−

)
= Jtdf − δgtGt(D

gt

df]gt
ω),

where Gt is the Green operator associated to the elliptic operator Pt : ΩJt,−(M) →
ΩJt,−(M). In order to extend the map Ψ to Sobolev spaces, we give an explicit
expression of (Id−ΠT

ωt,f
)(s∇t,f ). A direct computation using (2.2) shows that

(5.1) s∇t,f = ∆gt,fFt,f + gt,f (ρ∇t , ωt,f ),

where Ft,f = log
(

1
2

(
(1 + gt (dαt,f , ω))2 + 1− gt(dαt,f , dαt,f )

))
satisfying the rela-

tion ω2
t,f = eFt,fω2. Then

(5.2) (Id−ΠT
ωt,f

)(s∇t,f ) = ∆gt,fFt,f + gt,f (ρ∇t , ωt,f )−
∑

j

〈
s∇t,f , ξ̃j

ωt,f

〉
ξ̃j
ωt,f

.

Let W̃ p,k
T be the completion of C̃∞T (M,R) with respect to the Sobolev norm ‖ · ‖p,k

involving derivatives up to order k. We choose p, k such that pk > 2n and the corre-
sponding Sobolev space W̃ p,k

T ⊂ C3
T (M,R) so that all coefficients are C0

T (M,R). Since
W̃ p,k

T form an algebra relative to the standard multiplication of functions [1], we de-
dudce from the expression (5.2) that the extension of Ψ to the Sobolev completion of
C̃∞T (M,R) is a map Ψ(p,k) : Ũ ⊂ R× W̃ p,k+4

T −→ R× W̃ p,k
T .
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Clearly Ψ(p,k) is a C1 map (in a small enough open around (0, 0)). Indeed, it is
obtained by a composition of C1 maps by Lemma 5.1 and (5.2).

As in [21] and using Proposition 3.3, the differential of Ψ(p,k) at (0, 0) is given by(
T(0,0)Ψ(p,k)

)
(t, f) =

(
t, tδg0δg0h− 2δg0δg0(Dg0df)J0,−)

,

where h = d
dt |t=0 gt.

The operator L := ∂Ψ
∂f |(0,0) given by L(f) = −2δg0δg0(Dg0df)J0,− is called the

Lichnerowicz operator. It is a 4-th order self-adjoint T -invariant elliptic linear operator
leaving invariant (tω)⊥ since L(f) = 0 for any f ∈ tω. By a known result of the elliptic
theory [6, 29], we obtain the L2-orthogonal splitting C̃∞T (M,R) = ker(L) ⊕ Im(L).
Following the argument in [3, Lemma 4], any f ∈ ker(L) gives rise to a Killing vector
field in the centralizer of t = Lie(T ). By the maximality of the torus T , f ∈ tω. It
follows that L is an isomorphism of C̃∞T (M,R) and also from W̃ p,k+4

T to W̃ p,k
T . Thus,

T(0,0)Ψ(p,k) is an isomorphism from R ⊕ W̃ p,k+4
T to R ⊕ W̃ p,k

T . It follows from the
inverse function theorem for Banach manifolds that Ψ(p,k) determines an isomorphism
from an open neighbourhood V of (0, 0) to an open neighbourhood of (0, 0). In
particular, there exists µ > 0 such that for |t| < µ, Ψ(p,k)

(
Ψ(p,k)|−1

V (t, 0)
)

= (t, 0). By
Sobolev embedding, we can choose a k large enough, such that W̃ p,k+4

T ⊂ C̃6
T (M,R).

Thus, for |t| < µ, (Jt, gΨ(p,k)|−1
V (t,0)) is an extremal almost-Kähler metric of regularity

at least C4 (so we ensure, in this case, that gradωs
∇t,f is of regularity C1).

By Proposition 3.5, the extremal vector field ZT
ωt,f

= ZT
ω is smooth for any almost-

Kähler metric (Jt, gt,f ). In particular, for an extremal almost-Kähler metric (Jt, gt,f )
of regularity C4, the dual ds∇t,f of ZT

ω with respect to ωt,f is of regularity C4, then
the hermitian scalar curvature s∇t,f of (Jt, gt,f ) is of regularity C5. From (5.1), it
follows that the hermitian scalar curvature is given by the pair of equations

s∇t,f − gt,f (ρ∇t , ωt,f ) = ∆gt,f (u),(5.3)

eu =
ω2

t,f

ω2
.(5.4)

From (5.3), using the ellipticity [6] of the (Riemannian) Laplacian ∆gt,f and since
the l.h.s of (5.3) is of Hölder class C3,β for any β ∈ (0, 1), it follows that u is of class
C5,β . Following [11, 28], the linearisation of the equation (5.4) (ω + dα) ∧ dα̇ = 0
together with the constraints δgt α̇ = 0 and (dα̇)Jt,− = 0 form a linear elliptic system
in α̇. Elliptic theory [2, 6] ensures that the almost-Kähler metric gt,f is of class C5,β

as the volume form and we can prove that any extremal almost-Kähler metric of
regularity C4 is smooth by a bootstraping argument (in the Kähler case see [21]).

We obtain then a smooth family of T -invariant extremal almost-Kähler structures
(Jt, ωt = ω + dαt) defined for |t| < µ. The main theorem follows from the Moser
Lemma [25].
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