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A SECOND ORDER ESTIMATE FOR COMPLEX HESSIAN
EQUATIONS ON A COMPACT KÄHLER MANIFOLD

Zuoliang Hou, Xi–Nan Ma, and Damin Wu

1. Introduction

Let (M,ω) be an n–dimensional compact Kähler manifold. For a function v on M ,
we denote

ωv = ω + ddcv = ω +
√
−1

2π
∂∂̄v,

in which dc =
√
−1(∂̄ − ∂)/(4π). The complex Hessian equation on M can be for-

mulated as follows: Let σk be the k–th elementary symmetric function, that is, for
1 ≤ k ≤ n and λ = (λ1, . . . , λn) ∈ Rn,

σk(λ) =
∑

1≤i1<···<ik≤n

λi1 · · ·λik
.(1.1)

Let λ{aij̄} denote the eigenvalues of Hermitian symmetric matrix {aij̄}. We define

σk(aij̄) = σk(λ{aij̄}).
The definition of σk can be naturally extended to Kähler manifolds (and more gener-
ally, Hermitian manifolds). Let A1,1(M) be the space of smooth real (1, 1)–forms on
M ; we define for each χ ∈ A1,1(M),

σk(χ) =
(
n

k

)
ωn−k ∧ χk

ωn
.

For a smooth, positive function f on M , the following equation is called the k-th
complex Hessian equation on M :

(1.2) σk(ωu) =
(
n

k

)
ωn−k ∧ ωk

u

ωn
= f.

Throughout this paper, we fix k to be an integer such that 2 ≤ k ≤ n − 1, unless
otherwise indicated. Clearly, the compatibility condition for (1.2) is∫

M

fωn =
(
n

k

) ∫
M

ωn.(1.3)

It is well known that the famous Calabi conjecture in Kähler geometry is equivalent
to the solvability of the equation (1.2) for k = n, which was solved by Yau [15] in
1976. For the k-th Hessian equation, we consider the admissible solutions introduced
by Caffarelli–Nirenberg–Spruck [2]:
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Definition. For 1 ≤ k ≤ n, define

Γk = {λ ∈ Rn : σ1(λ) > 0, ..., σk(λ) > 0}.
Similarly, we define Γk on M as follows:

Γk(M) = {χ ∈ A1,1(M) : σj(χ) > 0, j = 1, . . . , k}.
A function u ∈ C2(M) is called an admissible solution of (1.2) if ωu ∈ Γk(M).

Note that the real counterparts of (1.2) have been studied extensively in the lit-
erature, as these equations appear naturally and play important roles in classical
geometry and conformal geometry. For example, the Dirichlet problem of a Hessian
equation in Rn was studied by Caffarelli–Nirenberg–Spruck [2] and Ivochkina [9].
Pogorelov [12], Guan–Ma [6] investigated the Christoffel–Minkowski problem, which
is related to the convex solution of a class Hessian equation. The existence of star-
shaped hypersurfaces with prescribed Weingarten curvature was studied by Caffarelli–
Nirenberg–Spruck [3]. For Hessian equations in conformal geometry, see for example,
Chang–Gursky–Yang [4] and Guan–Wang [7]. The Hessian equations on Riemannian
manifolds were studied by Y. Y. Li [11] and Urbas [13]. For more details, we refer to
X. J. Wang [14] and the references therein.

The complex Hessian equation, however, is much less studied so far. As we know,
the Dirichlet problem of complex Hessian equation in Cn was studied by S. Y. Li [10]
and B locki [1]. The first named author [8] proved the uniqueness of the solution of
(1.2); he [8] also proved the existence of a smooth admissible solution of (1.2), by
assuming the nonnegativity of the orthogonal bisectional curvature of ω.

A natural approach to solve (1.2) is the continuity method. The openness follows
from the implicit function theory. The closedness argument depends on the a priori
estimates up to the second order, in view of the standard Evans–Krylov theory. Simi-
lar to the Monge–Ampère equation, the zero order estimate follows from Yau’s Moser
iteration [15]. In this paper, we establish a second order estimate for (1.2).

Throughout this paper, we denote by C0 a nonnegative constant depending only
on the lower bound of the bisectional curvature of ω. More precisely, for each point
x in M , for any two unit vectors η and ζ of T 1,0

x M , we denote

Rηη̄ζζ̄(x) = R(η, η, ζ, ζ)(x);

then we set

(1.4) C0 = sup
x∈M

∣∣ inf
η,ζ

(Rηη̄ζζ̄)(x)
∣∣,

in which the infimum runs through all two unit vectors η, ζ in T 1,0
x M for a point x

in M . Our theorem is as follows:

Theorem 1.1. Let u ∈ C4(M) be an admissible solution of equation (1.2) and f
satisfy the compatibility condition (1.3). Let C0 be the constant defined by (1.4).
Then, under the normalized condition∫

M

uωn = 0,

we have the following uniform second derivative estimate

(1.5) sup |ddcu|ω ≤ C(sup
M

|∇u|2ω + 1),



COMPLEX HESSIAN EQUATIONS 549

where C is a positive constant depending only on ‖f 1
k ‖C2(M), ω, and C0, n, k.

We remark that the (1, 1)–form ωu in (1.2) allows negative eigenvalues. This feature
breaks down the classic methods for Monge–Amperè type equations, as they require
at least semipositivity of ωu. Here we adopt a casewise argument, motivated by
the treatment of Chou–Wang [5] on the real Hessian equation. The complex case is
however more subtle in handling the third order terms, due to the difference between
|u11̄ī|2 and |u11ī|2. The difference remains to be the major difficulty in deriving a
Pogorelov type interior C2 estimate for the complex Monge–Ampère equation on a
bounded domain in Cn. We overcome this difficulty here by squeezing out a small
positivity in the third order terms and absorbing the negative effect via the Kähler
form.

Moreover, we improve the estimate in [5] so that the constant C in (1.5) does not
depend on infM f (see Lemma 2.2 part (2)). This means that our estimate still holds
for the degenerate case. Let us finally point out that an estimate of the form (1.5) is
also adapted to the blowing up analysis.

2. Estimates

First, we remark that the following zeroth order estimate follows directly from
Yau’s Moser iteration method. Its proof is therefore omitted.

Lemma 2.1. If u ∈ C2(M) is an admissible solution of (1.2) and f satisfies the
compatibility condition (1.3), then under the normalization condition

(2.1)
∫

M

uωn = 0,

we have the following uniform estimates

(2.2) sup
M

|u| ≤ C,

where C is a positive constant depending only on supM |f | and ω.

To show Theorem 1.1, our calculations will be carried out at a point x in the
manifold M . Let (z1, . . . , zn) be a local holomorphic coordinate system centered at
x. The subscripts of a function h always denote the covariant derivatives of h with
respect to ω in the directions of the local frame (∂/∂z1, . . . , ∂/∂zn). Namely,

hi = ∇∂/∂zih, hij̄ = ∇∂/∂z̄j∇∂/∂zih, hij̄l = ∇∂/∂zl∇∂/∂z̄j∇∂/∂zih.

Proof of Theorem 1.1. Let us consider the function

W (x, ξ) = (1 + uij̄ξ
iξ̄j) exp

[
ϕ(|∇u|2) + ψ(u)

]
,

for any x in M and any unit vector ξ ∈ T 1,0
x M . Here

(2.3) ϕ(t) = −1
2

log
(

1− t

2K

)
,

in which

(2.4) K = sup
M

|∇u|2 + 1;
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and

(2.5) ψ(t) = −A log
(

1 +
t

2L

)
,

in which

(2.6) L = sup
M

|u|+ 1, A = 3L(2C0 + 1).

By (2.3) we have

1
2

log 2 ≥ ϕ(|∇u|2) ≥ 0,(2.7)

1
2K

≥ ϕ′(|∇u|2) ≥ 1
4K

> 0,(2.8)

ϕ′′(|∇u|2) = 2
[
ϕ′(|∇u|2)

]2
> 0.(2.9)

It follows from (2.5) that

A log 2 ≥ ψ ≥ A log(2/3),(2.10)
A

L
≥ −ψ′ ≥ A

3L
= 2C0 + 1,(2.11)

ψ′′ ≥ 2ε
1− ε

(ψ′)2, for all ε ≤ 1
2A+ 1

.(2.12)

These inequalities will be used below.
Since M is compact, W attains its maximum at some point x0 in a unit tangent

direction ξ0 ∈ T 1,0
x0
M . Since M is Kähler, we can choose a local normal coordinate

system near x0 such that

gij̄(x0) = δij ,
∂gij̄

∂zl
(x0) = 0, uij̄(x0) = δijuīi(x0).

In addition, we may assume that

(2.13) λ1 ≥ λ2 ≥ · · · ≥ λn.

Here and in what follows, we denote by

λi = (1 + uīi)(x0), for all i = 1, . . . , n.

Then, by definition of W and the above construction, we know that ξ0 must be
coincide with ∂/∂z1 at x0. We can extend ξ0 to a smooth unit vector field in the
neighborhood of x0 by setting

ξ0 = g
−1/2

11̄

∂

∂z1
.

In the follows, the covariant derivatives with respect to ω are given in terms of this
local coordinate system, unless otherwise indicated.

Our goal is to derive a uniform upper bound for λ1. Without loss of generality, we
can assume that λ1 ≥ 1.

Note that the function

G(x) = logW
(
x, ξ0

)
= log(1 + g−1

11̄
u11̄) + ϕ(|∇u|2) + ψ(u)
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is well–defined in a neighborhood of x0, and G achieves its maximum at x0. From
now on, all the calculations will be carried out at the point x0. (Let us bear in mind
that covariant differentiating the metric tensor always equals zero.) First, we have

(2.14) 0 = Gi =
u11̄i

1 + u11̄

+ ϕ′uiuīi + ϕ′
n∑

p=1

upiup̄ + ψ′ui,

for each i = 1, . . . , n. Note that

Gij̄ =
u11̄ij̄

1 + u11̄

−
u11̄iu11̄j̄

(1 + u11̄)2
+ ψ′uij̄ + ψ′′uiuj̄

+ ϕ′′
(
uiuīi +

n∑
p=1

upiup̄

)(
uj̄ujj̄ +

n∑
q=1

uquq̄j̄

)
+ ϕ′(δiju2

īi +
n∑

p=1

upiup̄j̄) + ϕ′
n∑

p=1

(upij̄up̄ + up̄ij̄up).

Let

F (ωu) =
(
σk(ωu)

)1/k
.

We denote by

F ij̄ =
∂F

∂wij̄

, F ij̄,pq̄ =
∂2F

∂wij̄∂wpq̄
,

where (wu)ij̄ = gij̄ +uij̄ . Then, the positive definite matrix (F ij̄(ωu)) is diagonalized
at the point x0. More precisely, we have

(2.15) F ij̄(ωu) = δijF
īi(ωu) =

1
k

[
σk(λ)

]1/k−1
σk−1(λ|i)δij .

Furthermore, at x0,

(2.16) F ij̄,pq̄(ωu) =


F īi,pp̄, if i = j, p = q;
F ip̄,pī, if i = q, p = j, i 6= p;
0, otherwise,

in which

F īi,pp̄ =
1
k

[
σk(λ)

]1/k−1(1− δip)σk−2(λ|ip)

+
1
k

(
1
k
− 1)

[
σk(λ)

]1/k−2
σk−1(λ|i)σk−1(λ|p),

F ip̄,pī = −1
k

[
σk(λ)

]1/k−1
σk−2(λ|ip).

Here and in the follows, σr(λ|i1 . . . il), with i1, . . . , il being distinct, stands for the
r–th symmetric function with λi1 = · · · = λil

= 0. We have, in addition,

(2.17)
n∑

i=1

F īiwīi =
n∑

i=1

F īiλi = σ
1/k
k = f1/k.



552 ZUOLIANG HOU XI–NAN MA, AND DAMIN WU

Thus, at the point x0,

0 ≥
n∑

i,j=1

F ij̄Gij̄ =
n∑

i=1

F īiGīi

=
n∑

i=1

F īiu11̄īi

1 + u11̄

−
n∑

i=1

F īi|u11̄i|2

(1 + u11̄)2
+ ψ′

n∑
i=1

F īiuīi

+ ψ′′
n∑

i=1

F īi|ui|2 + ϕ′′
n∑

i=1

F īi
∣∣∣uiuīi +

n∑
p=1

upiup̄

∣∣∣2
+ ϕ′

n∑
i=1

F īiu2
īi + ϕ′

n∑
i,p=1

F īi|upi|2 + ϕ′
n∑

i,p=1

F īi(upīiup̄ + up̄īiup).

(2.18)

For an arbitrary smooth function h on M , covariant differentiating the equation

F (ωu) = h

in the ∂/∂zl direction yields that

F ij̄uij̄l = hl.

Here the summation convention is used. Differentiating again in the ∂/∂z̄m direction,
we obtain that

F ij̄uij̄lm̄ + F ij̄,pq̄uij̄lupq̄m̄ = hlm̄.

By commuting the covariant derivatives, we have

uij̄l = uilj̄ − uaR
a
i lj̄ ,

uij̄lm̄ = ulm̄ij̄ + uaj̄R
a
i lm̄ − ubm̄R

b
i lj̄ .

This implies that

F ij̄ulij̄ = hl + uaF
ij̄Ra

l ij̄ ,

F ij̄ulm̄ij̄ = hlm̄ − F ij̄,pq̄uij̄lupq̄m̄ + F ij̄ubm̄R
b
l ij̄ − F ij̄uaj̄R

a
i lm̄.

In particular, at the point x0, we have for h = f1/k,

n∑
i

F īiupīi = (f1/k)p +
n∑

i,q=1

uqF
īiRpq̄īi,(2.19)

n∑
i=1

F īiu11̄īi = (f1/k)11̄ −
n∑

i,j,p,q=1

F ij̄,pq̄uij̄1upq̄1̄ +
n∑

i=1

F īi(u11̄ − uīi)R11̄īi.(2.20)

Recall that

1 + uīi(x0) = wīi(x0) = λi,
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for each i = 1, . . . , n. We have

n∑
i=1

F īi(u11̄ − uīi)R11̄īi =
n∑

i=2

F īi(λ1 − λi)R11̄īi

≥ inf
i 6=l

(Rīill̄)
n∑

i=2

F īi(λ1 − λi)

= inf
i 6=l

(Rīill̄)
(
λ1

n∑
i=1

F īi − f1/k
)
,

(
by (2.17)

)
.

For convenience, we denote by

F =
n∑

i=1

F īi(x0).

Thus, by (2.20),

n∑
i=1

F īiu11̄īi

1 + u11̄

≥ −λ−1
1

n∑
i,j,p,q=1

F ij̄,pq̄uij̄1upq̄1̄ − C0F

− C0 sup
M

f1/k − sup
M

|ddc(f1/k)|ω.
(2.21)

Here C0 is the constant given by (1.4).
It follows from (2.19) that

ϕ′
n∑

i,p=1

F īi(upīiup̄ + up̄īiup)

= ϕ′
n∑

p=1

[
(f1/k)pup̄ + (f1/k)p̄up

]
+ ϕ′

n∑
i,p,q=1

up̄uqF
īiRīipq̄

≥ −ϕ′|∇(f1/k)|2 − ϕ′|∇u|2 − C0ϕ
′|∇u|2F

≥ − supM |∇(f1/k)|2

2
− 1

2
− C0

2
F ,

(
by (2.8)

)
.

(2.22)

Moreover, apply (2.17) to obtain that

ψ′
n∑

i=1

F īiuīi = ψ′
n∑

i=1

F īi(λi − 1) = ψ′f1/k − ψ′F

≥ −3(2C0 + 1) sup
M

f1/k − ψ′F ,
(

by (2.11)
)
.

(2.23)
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Similarly, we have

ϕ′
n∑

i=1

F īiu2
īi = ϕ′

n∑
i=1

F īi(λi − 1)2

= ϕ′
n∑

i=1

F īiλ2
i − 2ϕ′f1/k + ϕ′F

≥ ϕ′
n∑

i=1

F īiλ2
i − sup

M
f1/k + ϕ′F .

(2.24)

Substituting (2.21), (2.22), (2.23), (2.24) into (2.18) yields that

0 ≥ −
n∑

i,j,p,q=1

F ij̄,pq̄uij̄1upq̄1̄

1 + u11̄

−
n∑

i=1

F īi|u11̄i|2

(1 + u11̄)2
+ ψ′′

n∑
i=1

F īi|ui|2

+ ϕ′′
n∑

i=1

F īi
∣∣∣uiuīi +

n∑
p=1

upiup̄

∣∣∣2 + ϕ′
n∑

i=1

F īiλ2
i + ϕ′

n∑
i,p=1

F īi|upi|2

+ (−ψ′ + ϕ′ − 2C0)F − C2,

(2.25)

where C2 is a positive constant depending only on C0, sup f1/k, sup |∇(f1/k)|2, and
sup |ddc(f1/k)|. From here we would derive the estimates separately for two cases,
either λn < −δλ1, or λn ≥ −δλ1. Here and below, we set

δ =
1

1 + 2A
=

[
1 + 6(sup

M
|u|+ 1)(2C0 + 1)

]−1
> 0,

in which A is the constant given by (2.6).
Let us first consider Case 1: Suppose that λn < −δλ1. We apply (2.14) to

obtain that

−
n∑

i=1

F īi|u11̄i|2

(1 + u11̄)2
= −

n∑
i=1

F īi
∣∣∣ϕ′(uiuīi +

n∑
p=1

upiup̄

)
+ ψ′ui

∣∣∣2
≥ −2(ϕ′)2

n∑
i=1

F īi
∣∣∣uiuīi +

n∑
p=1

upiup̄

∣∣∣2 − 2(ψ′)2|∇u|2F

≥ −2(ϕ′)2
n∑

i=1

F īi
∣∣∣uiuīi +

n∑
p=1

upiup̄

∣∣∣2 − 2(6C0 + 3)2KF ,
(

by (2.11)
)

.

On the right hand side of (2.25), the first term can be dropped, in view of the concavity
of F ; so does the seventh term, since by (2.8) and (2.11),

−ψ′ + ϕ′ − 2C0 ≥ −ψ′ − 2C0 ≥ 1.

It follows that

0 ≥
[
ϕ′′ − 2(ϕ′)2

] n∑
i=1

F īi
∣∣∣uiuīi +

n∑
p=1

upiup̄

∣∣∣2
+ ϕ′

n∑
i=1

F īiλ2
i − 18(2C0 + 1)2KF − C2.

(2.26)
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Applying (2.8) and (2.9) to (2.26) yields that

(2.27) 0 ≥ 1
4K

Fnn̄λ2
n − 18(2C0 + 1)2KF − C2.

Note that

(2.28) Fnn̄ ≥ F
n
.

This is due to the monotonicity Fnn̄ ≥ · · · ≥ F 11̄, which, in turn, follows from (2.15)
and that

σk−1(λ|i)− σk−1(λ|j) = (λj − λi)σk−2(λ|ij) ≥ 0, for any i > j.

Substituting (2.28) into (2.27) yields that

0 ≥ F
4Kn

λ2
n − 18(2C0 + 1)2KF − C2.

By the assumption of Case 1, λn < −δλ1, we obtain that

λ2
1 ≤

72n(2C0 + 1)2K2

δ2
+

4nKC2

δ2F
.

To finish Case 1, we note that F has a uniform lower bound. Indeed,

F =
n∑

i=1

F īi =
1
k

[
σk(λ)

]1/k−1
n∑

i=1

σk−1(λ|i)
(

by (2.15)
)

=
n− k + 1

k

[
σk(λ)

]1/k−1
σk−1(λ) ≥ 1,

(
by Maclaurin’s inequality

)
.

Therefore, we conclude that

λ1 ≤
[
72n(2C0 + 1)2 + 4nC2

]1/2

δ
K = CK,

where C > 0 is a constant depending only on C0, n, sup |u|, sup f1/k, sup |∇(f1/k)|2,
and sup |ddc(f1/k)|.

Now let us consider Case 2: We assume that λn ≥ −δλ1. Recall that

δ =
1

1 + 2A
=

[
1 + 6(sup

M
|u|+ 1)(2C0 + 1)

]−1
> 0.

Let
I = {i ∈ {1, . . . , n} | σk−1(λ|i) > δ−1σk−1(λ|1)}.

Clearly, 1 /∈ I, since δ−1 ≥ 7. By (2.15) we know that an index j is contained in I if
and only if

F jj̄(x0) > δ−1F 11̄(x0).
Let us first treat those indices which are not in I: By (2.14) we obtain that

−
∑
i/∈I

F īi|u11̄i|2

(1 + u11̄)2
≥ −2(ϕ′)2

∑
i/∈I

F īi
∣∣∣uiuīi +

n∑
p=1

upiup̄

∣∣∣2 − 2(ψ′)2
∑
i/∈I

F īi|ui|2

≥ −2(ϕ′)2
∑
i/∈I

F īi
∣∣∣uiuīi +

n∑
p=1

upiup̄

∣∣∣2 − 18(2C0 + 1)2KF 11̄.
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The first term on the right can be absorbed by the term

ϕ′′
∑
i/∈I

F īi
∣∣∣uiuīi +

n∑
p=1

upiup̄

∣∣∣2,
in view of (2.9). It then follows from (2.25) and (2.8) that

0 ≥ −
n∑

i,j,p,q=1

F ij̄,pq̄uij̄1upq̄1̄

1 + u11̄

−
∑
i∈I

F īi|u11̄i|2

(1 + u11̄)2
+ (−ψ′ + ϕ′ − 2C0)F

+ ϕ′′
∑
i∈I

F īi
∣∣∣uiuīi +

n∑
p=1

upiup̄

∣∣∣2 + ψ′′
n∑

i=1

F īi|ui|2

+
1

4K

n∑
i=1

F īiλ2
i − 18(2C0 + 1)2KF 11̄ − C2.

Without loss of generality, we can assume that

λ2
1 ≥

[
12(2C0 + 1)K

]2
,

for, otherwise the desired bound is obtained by

λ1 ≤ 12(2C0 + 1)K.

Thus, we have

0 ≥ −
n∑

i,j,p,q=1

F ij̄,pq̄uij̄1upq̄1̄

1 + u11̄

−
∑
i∈I

F īi|u11̄i|2

(1 + u11̄)2

+ ψ′′
n∑

i=1

F īi|ui|2 + ϕ′′
∑
i∈I

F īi
∣∣∣uiuīi +

n∑
p=1

upiup̄

∣∣∣2
+

1
8K

n∑
i=1

F īiλ2
i + (−ψ′ − 2C0)F − C2.

(2.29)

We claim that the following estimate holds:

−
n∑

i,j,p,q=1

F ij̄,pq̄uij̄1upq̄1̄

1 + u11̄

−
∑
i∈I

F īi|u11̄i|2

(1 + u11̄)2
+ ϕ′′

∑
i∈I

F īi
∣∣∣uiuīi +

n∑
p=1

upiup̄

∣∣∣2
+ ψ′′

n∑
i=1

F īi|ui|2 ≥ 0.

(2.30)

Assuming this claim, we obtain from (2.29) that

C2 ≥ (−ψ′ − 2C0)F +
1

8K

n∑
i=1

F īiλ2
i

≥ F +
1

8K
F 11̄λ2

1, by (2.11).

(2.31)

This in particular implies that F ≤ C2. By the following Lemma 2.2 part (2) we
obtain that

F 11̄ ≥ c(n, k)
Ck−1

2

,
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where c(n, k) is a positive constant depending only on n and k. Substituting this back
into (2.31) yields the desired bound

(2.32) λ1 ≤
2
√

2Ck/2
2

c(n, k)1/2

√
K.

Here we recall that C2 > 0 is a constant depending only C0, sup f1/k, sup |∇(f1/k)|2,
and sup |ddcf |, as given in (2.25).

In the following lemma, part (1) was proved by Chou–Wang [5, p. 1037]. We
include here a slightly different proof (which provides the sharp constant θ = k/n).
It is part (2) that enables us to improve the estimates in [5] so that upper bound of
λ1 is independent of infM f .

Lemma 2.2. Let k be an integer between 1 and n. Suppose that µ = (µ1, . . . , µn) ∈ Γk

with µ1 ≥ µ2 ≥ · · · ≥ µn.
(1) We have

µ1σk−1(µ|1) ≥ k

n
σk(µ),

where the quality holds if and only if µ1 = µ2 = · · · = µn.
(2) If there is a constant B > 0 such that

(2.33) σ
1
k−1

k (µ)σk−1(µ) ≤ B,

then

(2.34) σ
1
k−1

k (µ)σk−1(µ|1) ≥ c(n, k)
Bk−1

,

where c(n, k) > 0 is a constant depending only on n and k.

Proof. For (1), since σk(µ) = σk(µ|1) + µ1σk−1(µ|1), it is equivalent to show that

(2.35) µ1σk−1(µ|1) ≥ k

n− k
σk(µ|1).

Note that

(2.36) µ1 ≥
σ1(µ|1)
n− 1

.

Next, we recall the generalized Newton–Maclaurin’s inequality

(2.37)
σ1(µ|1)
n− 1

≥ kσk(µ|1)
(n− k)σk−1(µ|1)

,

where the equality holds if and only if µ1 = · · · = µn. Since σk−1(µ|1) > 0, combining
(2.36) and (2.37) yields (2.35), where the equality holds if and only if µ1 = · · · = µn.

For (2), applying the generalized Newton–Maclaurin’s inequality[
σk(µ)/

(
n
k

)
σ1(µ)/n

] 1
k−1

≥
σk(µ)/

(
n
k

)
σk−1(µ)/

(
n

k−1

)
and (2.33) yield that

(2.38)
σk(µ)

1
k

σ1(µ)
≥

(
n
k

)
n

( k

n− k + 1
)k−1 1

Bk−1
.



558 ZUOLIANG HOU XI–NAN MA, AND DAMIN WU

On the other hand, we have by part (1),

σ
1
k−1

k (µ)σk−1(µ|1) ≥ k

n

σk(µ)
1
k

µ1
>
k

n

σk(µ)
1
k

σ1(µ)
.

This together with (2.38) imply (2.34), with

(2.39) c(n, k) =
(
n

k

)
k

n2

( k

n− k + 1
)k−1

.

�

It remains to prove the claim. We will use the following elementary inequality:

Proposition 2.3. Let a and b be two elements in Cn. For any 0 < ε < 1, the
following inequality holds:

|a+ b|2 ≥ ε|a|2 − ε

1− ε
|b|2.

Proof. Note that

|a+ b|2 = |a|2 + |b|2 + ab̄+ bā ≥ |a|2 + |b|2 − 2|a||b|.

On the other hand, we have

2|a||b| ≤ (1− ε)|a|2 +
1

1− ε
|b|2.

The result then follows immediately. �

Let us now proceed to prove the claim: In view of (2.14), we have

ϕ′′
∑
i∈I

F īi
∣∣∣uiuīi +

n∑
p=1

upiup̄

∣∣∣2 = 2
∑
i∈I

F īi
∣∣∣ u11̄i

1 + u11̄

+ ψ′ui

∣∣∣2
≥ 2δ

∑
i∈I

F īi|u11̄i|2

(1 + u11̄)2
− 2δ(ψ′)2

1− δ

∑
i∈I

F īi|ui|2,
(

by Proposition 2.3
)
.

Recall that we set δ = (1 + 2A)−1. By virtue of (2.12), we obtain that

2(ψ′)2δ
1− δ

n∑
i∈I

F īi|ui|2 ≤ ψ′′
∑
i∈I

F īi|ui|2.

Thus,

−
n∑

i,j,p,q=1

F ij̄,pq̄uij̄1upq̄1̄

1 + u11̄

−
∑
i∈I

F īi|u11̄i|2

(1 + u11̄)2
+ ψ′′

n∑
i=1

F īi|ui|2

+ ϕ′′
∑
i∈I

F īi
∣∣∣uiuīi +

n∑
p=1

upiup̄

∣∣∣2
≥ −

n∑
i,j,p,q=1

F ij̄,pq̄uij̄1upq̄1̄

1 + u11̄

− (1− 2δ)
∑
i∈I

F īi|u11̄i|2

(1 + u11̄)2
.
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To prove this claim, it is sufficient to show that

(2.40) −
n∑

i,j,p,q=1

F ij̄,pq̄uij̄1upq̄1̄

1 + u11̄

− (1− 2δ)
∑
i∈I

F īi|u11̄i|2

(1 + u11̄)2
≥ 0.

Notice that, by (2.16),

−
n∑

i,j,p,q=1

F ij̄,pq̄uij̄1upq̄1̄

1 + u11̄

≥ −
n∑

i,p=1

F īi,pp̄uīi1upp̄1̄

1 + u11̄

−
n∑

i=2

F i1̄,1ī|u11̄i|2

1 + u11̄

−
n∑

i=2

F 1ī,i1̄|uī11|2

1 + u11̄

≥ −
n∑

i=2

F i1̄,1ī|u11̄i|2

1 + u11̄

−
n∑

i=2

F 1ī,i1̄|uī11|2

1 + u11̄

(
by concavity of F

)
≥ −

∑
i∈I

F i1̄,1ī|u11̄i|2

1 + u11̄

.

To show (2.40), it suffices to prove that

−F i1̄,1ī ≥ (1− 2δ)
F īi

1 + u11̄

, for each i ∈ I.

This is equivalent to prove that,

(2.41) λ1σk−2(λ|i1) ≥ (1− 2δ)σk−1(λ|i), for each i ∈ I.

Since λ1 > λi for each i ∈ I, we can write

σk−2(λ|i1) =
σk−1(λ|i)− σk−1(λ|1)

λ1 − λi
.

Thus, (2.41) is in turn equivalent to that

(2.42)
(

2δ + (1− 2δ)
λi

λ1

)
σk−1(λ|i) ≥ σk−1(λ|1), for each i ∈ I.

Let us now proceed to prove (2.42): For each i ∈ I, we have

σk−1(λ|i) > δ−1σk−1(λ|1).

Then, (
2δ + (1− 2δ)

λi

λ1

)
σk−1(λ|i) ≥

(
2 + (1− 2δ)

λi

δλ1

)
σk−1(λ|1).

We have assumed in this second case that λn ≥ −δλ1. In view of (2.13),

λi ≥ −δλ1, for all i ∈ I.

Therefore, (
2δ + (1− 2δ)

λi

λ1

)
σk−1(λ|i) ≥ (1 + 2δ)σk−1(λ|1).

This implies (2.42). Hence, the claim is proved, and this completes the estimates in
Case 2.
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Combining the two cases, we obtain that

(2.43) λ1 ≤ CK = C(sup
M

|∇u|2 + 1),

Here and in the rest of this section, we denote by C a generic positive constant
depending only on C0, n, sup |u|, sup f1/k, and sup |∇(f1/k)|2, and sup |ddc(f1/k)|.
The estimate (2.43) would imply that

|ddcu|ω =
[
giq̄gpj̄uij̄upq̄

]1/2 ≤ C(sup
M

|∇u|2 + 1).

Indeed, since ωu ∈ Γk, we have σ1(ωu) > 0, and hence, at x0,

−λn < λ1 + · · ·+ λn−1 ≤ (n− 1)λ1 ≤ CK.

Then,

|ω + ddcu|ω ≤ n2W (x0, ξ0) exp(−ϕ− ψ)

≤ n2λ1 exp(supϕ− inf ϕ) exp(supψ − inf ψ)

≤
√

2 3An2λ1,
(

by (2.7) and (2.10)
)
,

≤ CK,
(

by (2.43)
)
.

Therefore, Theorem 1.1 is proved, by virtue of Lemma 2.1. �
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