
Math. Res. Lett. 17 (2010), no. 3, 483–492 c© International Press 2010

GEOGRAPHY OF SIMPLY CONNECTED
SPIN SYMPLECTIC 4-MANIFOLDS

Anar Akhmedov and B. Doug Park

Abstract. We present an algorithm that produces new families of closed simply con-

nected spin symplectic 4-manifolds with nonnegative signature that are interesting with

respect to the symplectic geography problem. In particular, for each odd integer q satis-
fying q ≥ 275, we construct infinitely many pairwise nondiffeomorphic irreducible smooth

structures on the topological 4-manifold q(S2 × S2), the connected sum of q copies of

S2 × S2.

1. Introduction

The geography problem for symplectic 4-manifolds was originally posed by Mc-
Carthy and Wolfson in [15], and the first systematic study was carried out by Gompf
in [12]. In this paper we will be concerned with the geography problem for closed sim-
ply connected spin symplectic 4-manifolds. Our geography problem is the symplectic
analogue of the geography problem for closed simply connected spin complex surfaces
that was studied by Persson, Peters and Xiao in [19]. The negative signature case has
been completely solved by the second author and Szabó in [17], so we will focus our
attention only on the nonnegative signature case. For analogous results in the nonspin
case, we refer the reader to our joint paper with Hughes [2].

Let M be a closed simply connected spin symplectic 4-manifold with nonnegative
signature. Let e(M) and σ(M) denote the Euler characteristic and the signature of
M , respectively. We define

χh(M) =
e(M) + σ(M)

4
and c2

1(M) = 2e(M) + 3σ(M).

In [20], Rohlin showed that

(1) c2
1(M)− 8χh(M) = σ(M) ≡ 0 (mod 16).

Our geography problem asks which ordered pairs of positive integers satisfying (1)
can be realized as the pair (χh(M), c2

1(M)) for some closed simply connected spin
symplectic 4-manifold M with nonnegative signature.

According to the classification of symmetric bilinear integral forms that are indefi-
nite and unimodular (cf. [16]), the intersection form of such M is of the form

(2) pE8 ⊕ qH,
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where p = σ(M)/8 is a nonnegative even integer and q = b−2 (M) is a positive odd
integer. Here,

E8 =



2 1 0 0 0 0 0 0
1 2 1 0 0 0 0 0
0 1 2 1 0 0 0 0
0 0 1 2 1 0 0 0
0 0 0 1 2 1 0 1
0 0 0 0 1 2 1 0
0 0 0 0 0 1 2 0
0 0 0 0 1 0 0 2


, H =

[
0 1
1 0

]
.

The famous 11/8 conjecture, originally due to Y. Matsumoto (cf. [14, 10]), speculates
that

b2(M) ≥ 11
8
|σ(M)|,

or equivalently q ≥ 3
2p in (2). To state our results, it will be convenient to introduce

the following terminology.

Definition 1. We say that a 4-manifold M has ∞2-property if there exist infin-
itely many pairwise nondiffeomorphic irreducible symplectic 4-manifolds and infinitely
many pairwise nondiffeomorphic irreducible nonsymplectic 4-manifolds, all of which
are homeomorphic to M . We also say that a symmetric bilinear form has ∞2-property
if it is the intersection form of infinitely many pairwise nondiffeomorphic simply con-
nected irreducible symplectic 4-manifolds and infinitely many pairwise nondiffeomor-
phic simply connected irreducible nonsymplectic 4-manifolds.

A spin 4-manifold cannot contain any surface with odd self-intersection and hence
is minimal. Moreover, the irreducibility condition always holds in our situation.

Lemma 2. Every simply connected spin symplectic 4-manifold is irreducible.

Proof. Let M be a simply connected spin symplectic 4-manifold. Suppose M =
M1#M2 is a connected sum of two smooth 4-manifolds M1 and M2. Then both
M1 and M2 are simply connected and the intersection forms of M1 and M2 are both
even.

If b+
2 (M1) and b+

2 (M2) are both strictly positive, then the Seiberg-Witten invariant
of M1#M2 is trivial (cf. [22]). But since b+

2 (M) = b+
2 (M1)+ b+

2 (M2) > 1, the Seiberg-
Witten invariant of the symplectic 4-manifold M cannot be trivial by Taubes’s theorem
in [21]. This contradiction shows that one of b+

2 (M1) and b+
2 (M2) is 0.

Without loss of generality, assume b+
2 (M1) = 0. If b2(M1) = b−2 (M1) > 0, then

the intersection form of M1 is a nontrivial negative definite form, so by Donaldson’s
theorem in [6], it is equivalent to the diagonal form b2(M1)〈−1〉. But this contradicts
the fact that the intersection form of M1 is even. Thus we conclude that b2(M1) =
0. Since M1 is simply connected, M1 must be homeomorphic to S4 by Freedman’s
theorem in [9]. �

Given a nonnegative even integer p, it is now well known (cf. [18]) that pE8 ⊕ qH
has ∞2-property when the odd integer q is larger than some constant that depends
on p.
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Definition 3. For an even integer p ≥ 0, let Λp denote the smallest positive odd
integer such that pE8 ⊕ qH has ∞2-property for every odd integer q ≥ Λp.

From the 11/8 conjecture, we immediately obtain a conjectural lower bound Λp ≥
3
2p. It may not be too optimistic to make the following conjecture.

Conjecture 4. Λp is the smallest positive odd integer that is greater than or equal
to 3

2p.

Unfortunately, Conjecture 4, as well as the 11/8 conjecture, seems quite difficult
to tackle with existing techniques. More modestly, the main goal of this paper is to
provide new upper bounds on Λp that are easily computable. We refer to Corollary 10
below for the precise statement. In particular, we will prove the following in Section 4.

Theorem 5. Let p ≥ 0 be an even integer. If n ≥ 3 is any odd integer satisfying
p ≤ 1

3n(n2 − 1)− 2, then Λp ≤ 10n3 + 2n− 1− 10p.

For example, Theorem 5 implies that Λ0 ≤ 275, i.e., q(S2 × S2) has ∞2-property
for every odd integer q ≥ 275. This is a significant improvement over the upper bound
Λ0 ≤ 2N + 1 in [18], where N = 267145kx2 + 70 for some sufficiently large integers k
and x which were not explicitly computed.

2. General construction algorithm

Given a surface bundle over a surface with nice properties, we will show how it
can be used to construct closed simply connected spin symplectic 4-manifolds with
nonnegative signature.

Let Σb be a genus b surface. Let X be a closed 4-manifold that is the total space
of a genus f surface bundle over Σb. Assume that X is spin and that σ(X) = 16s.
Further assume that X has a section Σb → X whose image is a genus b surface in
X of self-intersection −2t for some integer t. By symplectically resolving the double
point of the union of a fiber Σf and the image of a section, we obtain a symplectic
submanifold Σf+b in X of genus f + b and self-intersection 2− 2t.

Suppose that r is a positive integer satisfying

1− t ≤ r ≤ min{s, f + b + 1− t}.

Let K be a fibered knot of genus g(K) = f + b + 1− t− r in S3. Let E(2r)K denote
the homotopy elliptic surface with signature −16r that was constructed by Fintushel
and Stern in [7]. A sphere section of E(2r) gives rise to a symplectic submanifold
Sg(K) of genus g(K) and self-intersection −2r in E(2r)K . By symplectically resolving
r+ t−1 double points of the union of r+ t−1 fibers and Sg(K), we obtain a symplectic
submanifold Σ′f+b of genus f + b and self-intersection 2t− 2.

Let Z = X#Σf+b=Σ′
f+b

E(2r)K be a generalized fiber sum (cf. [12, 15]) of X and
E(2r)K along symplectic submanifolds Σf+b and Σ′f+b. Then Z is a spin symplectic
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4-manifold satisfying

σ(Z) = σ(X) + σ(E(2r)K) = 16(s− r) ≥ 0,

e(Z) = e(X) + e(E(2r)K)− 2e(Σf+b)

= 4(f − 1)(b− 1) + 24r + 4(f + b− 1) = 4fb + 24r,

χh(Z) = fb + 4s + 2r,

c2
1(Z) = 8fb + 48s.

Note that c2
1(Z) is independent of r.

Lemma 6. Z is simply connected and has ∞2-property (cf. Definition 1).

Proof. Let νΣf+b and νΣ′f+b denote the open tubular neighborhoods of Σf+b and
Σ′f+b inside X and E(2r)K , respectively, such that

(3) Z = (X \ νΣf+b) ∪ (E(2r)K \ νΣ′f+b).

From the homotopy long exact sequence for fibration, we have

π1(Σf ) ι∗−→ π1(X) −→ π1(Σb) −→ 1,

where ι : Σf ↪→ X is the inclusion of a fiber. Thus π1(X) is generated by ι∗(π1(Σf ))
and the image of π1(Σb) under a section. It follows that

(4) π1(X)/〈π1(Σf+b)〉 = 1,

where 〈π1(Σf+b)〉 is the normal subgroup of π1(X) that is generated by the image of
π1(Σf+b) under the inclusion.

Let ∂(νΣf+b) denote the boundary of νΣf+b, which is a circle bundle over Σf+b

with Euler number 2− 2t. It is well known (cf. Proposition 10.4 in [8]) that

π1(∂(νΣf+b)) = 〈αj , βj , µ |
∏f+b

j=1 [αj , βj ] = µ2−2t, αjµα−1
j = µ, βjµβ−1

j = µ〉,
where the index j ranges over 1, . . . , f +b. Here, µ is represented by a fiber circle which
is a meridian of Σf+b, and αj , βj are the parallel push-offs of the standard generators
of π1(Σf+b). Let 〈π1(∂(νΣf+b))〉 denote the normal subgroup of π1(X \ νΣf+b) that
is generated by the image of π1(∂(νΣf+b)) under the inclusion of ∂(νΣf+b) = ∂(X \
νΣf+b) into X \ νΣf+b. Then 〈π1(∂(νΣf+b))〉 is normally generated by the meridians
of Σf+b and the image of π1(Σf+b) under the push-off homomorphism. It now follows
from Seifert-Van Kampen theorem and (4) that π1(X \ νΣf+b)/〈π1(∂(νΣf+b))〉 = 1.

Next recall from [7] that π1(E(2r)K) = 1. Since Σ′f+b transversely intersects once
a topological sphere in E(2r)K coming from a cusp fiber of E(2r), a meridian of Σ′f+b

bounds a disk and hence π1(E(2r)K \ νΣ′f+b) = 1. By applying Seifert-Van Kampen
theorem to (3), we conclude that

π1(Z) =
π1(X \ νΣf+b)
〈π1(∂(νΣf+b))〉

= 1

as well.
To obtain infinite families of pairwise nondiffeomorphic 4-manifolds that are home-

omorphic to Z, we recall from [13] that E(2) contains three disjoint copies of Gompf
nucleus (cf. [11]). We view E(2r) as the fiber sum of r copies of E(2) so that E(2r)K

contains at least two nuclei N1 and N2 that are disjoint from Σ′f+b. By performing a
second knot surgery (cf. [7]) in one of these two nuclei, say N1, inside Z, we obtain an
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irreducible 4-manifold ZK′ that is homeomorphic to Z. By varying our choice of the
knot K ′, we can realize infinitely many pairwise nondiffeomorphic 4-manifolds, either
symplectic or nonsymplectic. �

Note that by the classification of indefinite unimodular integral forms (cf. [16]), the
intersection form of Z is given by

(5) 2(s− r)E8 ⊕ (2fb + 20r − 8s− 1)H.

3. New families of simply connected spin 4-manifolds

In this section, we apply the construction algorithm in the previous section to some
concrete surface bundles that are found in the literature.

Example 7. For any pair of integers g, n ≥ 2, let Xg,n be a genus gn surface bundle
over a genus g(g − 1)n2g−2 + 1 surface D̃ in Theorem 1.1 of [4]. Recall from [4] that
ϕg,n : Xg,n → D̃×C is an n-fold cyclic branched cover whose branch locus is the union
of two disjoint surfaces Γ1 and Γ2 in D̃ × C. Here, C is a genus g surface, and each
Γi is the graph of a map D̃ → C such that the homology class [Γ1]− [Γ2] is divisible
by n. Our surface bundle is given by the composition pr1 ◦ ϕg,n : Xg,n → D̃ × C →
D̃, where pr1 denotes the projection onto the first factor. Note that Xg,n has two
disjoint sections whose images are ϕ−1

g,n(Γi), i = 1, 2, both with self-intersection equal
to 1

n [Γi]2 = −2g(g − 1)n2g−3. We have

σ(Xg,n) =
4
3
g(g − 1)(n2 − 1)n2g−3,

and by the work of Brand [3], we have

w2(Xg,n) ≡ ϕ∗g,n

(
w2(D̃ × C) +

n− 1
n

PD([Γ1]− [Γ2])
)

≡ n− 1
n

ϕ∗g,n

(
PD([Γ1]− [Γ2])

)
(mod 2),

where PD denotes the Poincaré dual. If n is odd, then w2(Xg,n) ≡ 0 (mod 2), and
consequently Xg,n is spin.

Applying the algorithm in Section 2, for any triple of positive integers g, n and r
satisfying

g ≥ 2, n ≥ 3, n ≡ 1 (mod 2),

r ≤ 1
12

g(g − 1)(n2 − 1)n2g−3,

r ≤ 2 + gn + g(g − 1)(n− 1)n2g−3,



488 A. AKHMEDOV AND B. D. PARK

we get a closed simply connected spin symplectic 4-manifold Z = Zr
g,n having ∞2-

property and satisfying

σ(Zr
g,n) =

4
3
g(g − 1)(n2 − 1)n2g−3 − 16r,

e(Zr
g,n) = 4gn

(
g(g − 1)n2g−2 + 1

)
+ 24r,

χh(Zr
g,n) = gn +

1
3
g(g − 1)n2g−3

(
(3g + 1)n2 − 1

)
+ 2r,

c2
1(Z

r
g,n) = 8gn + 4g(g − 1)n2g−3

(
(2g + 1)n2 − 1

)
.

Table 1 below lists the smallest Zr
g,n’s with signature lying between 0 and 160. In par-

ticular, by Freedman’s classification theorem in [9], Z4
2,3 is homeomorphic to 275(S2×

S2). Since Z4
2,3 is irreducible, it is not diffeomorphic to 275(S2 × S2).

Table 1.

Z4
2,3 Z3

2,3 Z2
2,3 Z1

2,3 Z16
2,5 Z15

2,5 Z14
2,5 Z13

2,5 Z12
2,5 Z11

2,5 Z10
2,5

σ 0 16 32 48 64 80 96 112 128 144 160
e 552 528 504 480 2424 2400 2376 2352 2328 2304 2280

χh 138 136 134 132 622 620 618 616 614 612 610
c2
1 1104 1104 1104 1104 5040 5040 5040 5040 5040 5040 5040

We note that the ratio c2
1(Z

r
g,n)/χh(Zr

g,n) is a decreasing function of r and an
increasing function of n. It follows that

c2
1(Z

r
g,n)

χh(Zr
g,n)

< lim
n→∞

c2
1(Z

1
g,n)

χh(Z1
g,n)

=
4(2g + 1)
1
3 (3g + 1)

≤ 60
7
≈ 8.5714286.

Hence Zr
g,n’s lie below the Bogomolov-Miyaoka-Yau (BMY) line, c2

1 = 9χh.

Example 8. For each integer n ≥ 2, let Xn be a genus 3n surface bundle over a genus
2n2 + 1 surface B̃ in Theorem 3.1 of [5]. Recall from [5] that ϕn : Xn → B̃ ×B is an
n-fold cyclic branched cover whose branch locus is the union of two disjoint surfaces
Γπ and Γ′π in B̃ × B. Here, B is a genus 3 surface, and Γπ and Γ′π are the graphs of
certain maps B̃ → B such that the homology class D = [Γπ] − [Γ′π] is divisible by n.
Our surface bundle is then given by the composition pr1 ◦ ϕn : Xn → B̃ × B → B̃,
where pr1 denotes the projection onto the first factor. Note that Xn has two disjoint
sections whose images are ϕ−1

n (Γπ) and ϕ−1
n (Γ′π), both with self-intersection equal to

1
2nD2 = −4n. We have

σ(Xn) =
8
3
n(n− 1)(n + 1),

w2(Xn) ≡ n− 1
n

ϕ∗n
(
PD([Γπ]− [Γ′π])

)
(mod 2).

If n is odd, then w2(Xn) ≡ 0 (mod 2), and hence Xn is spin.
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Applying the algorithm in Section 2, for any pair of positive integers n and r
satisfying

n ≥ 3, n ≡ 1 (mod 2),

r ≤ min
{

1
6
n(n− 1)(n + 1), 2n2 + n + 2

}
,

we get a closed simply connected spin symplectic 4-manifold Z = V r
n having ∞2-

property and satisfying

σ(V r
n ) =

8
3
n(n− 1)(n + 1)− 16r,

e(V r
n ) = 12n(2n2 + 1) + 24r,

χh(V r
n ) =

1
3
n(20n2 + 7) + 2r,

c2
1(V

r
n ) = 8n(7n2 + 2).

Table 2 below lists the smallest V r
n ’s with signature lying between 0 and 160. In

particular, V 4
3 is homeomorphic but not diffeomorphic to 389(S2 × S2).

Table 2.

V 4
3 V 3

3 V 2
3 V 1

3 V 16
5 V 15

5 V 14
5 V 13

5 V 12
5 V 11

5 V 10
5

σ 0 16 32 48 64 80 96 112 128 144 160
e 780 756 732 708 3444 3420 3396 3372 3348 3324 3300

χh 195 193 191 189 877 875 873 871 869 867 865
c2
1 1560 1560 1560 1560 7080 7080 7080 7080 7080 7080 7080

We note that the ratio c2
1(V

r
n )/χh(V r

n ) is a decreasing function of r and an increasing
function of n. For fixed r, we have

lim
n→∞

c2
1(V

r
n )

χh(V r
n )

= 8.4

and thus V r
n ’s lie well below the BMY line c2

1 = 9χh.

4. Geography of spin 4-manifolds

The following theorem is a spin analogue of Theorem 5.3 in [1] and Theorem 6.2 in
[12].

Theorem 9. Let Z be a closed spin symplectic 4-manifold that contains a symplectic
torus T of self-intersection 0. Let νT be a tubular neighborhood of T and ∂(νT ) its
boundary. Suppose that the homomorphism π1(∂(νT )) → π1(Z \ νT ) induced by the
inclusion is trivial. Then for any pair of integers (χ, c) satisfying

(6) χ ≥ 1, 0 ≤ c ≤ 8χ and c− 8χ ≡ 0 (mod 16),

there exists a closed spin symplectic 4-manifold Y with π1(Y ) = π1(Z),

χh(Y ) = χh(Z) + χ and c2
1(Y ) = c2

1(Z) + c.
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Proof. Recall from Proposition 3.2 in [17] that for any pair of integers n ≥ 0 and ρ ≥ 0,
there exists a closed simply connected spin symplectic 4-manifold Mn(ρ) satisfying

χh(Mn(ρ)) = 2(ρ + 1) + n and c2
1(Mn(ρ)) = 8n.

Moreover, each Mn(ρ) contains a Gompf nucleus of E(2) (cf. proof of Theorem 1.3 in
[17]), and hence there is a symplectic torus F ⊂ Mn(ρ) of self-intersection 0 such that
π1(Mn(ρ) \ νF ) = 1.

For each integer χ ≥ 1, recall from the proof of Theorem 5.3 in [1] that there exists
a closed spin symplectic 4-manifold W with the following properties.

(i) χh(W ) = χ and c2
1(W ) = 8χ.

(ii) W contains a symplectic torus T ′ of self-intersection 0 such that the com-
plement W \ T ′ does not contain any symplectic sphere of self-intersection
−1.

(iii) π1(W \ νT ′)/G = 1, where G is the normal subgroup of π1(W \ νT ′) that is
generated by the image of the inclusion induced homomorphism π1(∂(νT ′)) →
π1(W \ νT ′).

Given a pair of integers (χ, c) satisfying (6), we write

c− 8χ = −16(ρ + 1)

for some integer ρ ≥ −1. If ρ = −1, then let Y be the generalized fiber sum Z#T=T ′W .
If ρ ≥ 0, then let Y be the generalized fiber sum Z#T=F Mn(ρ), where n = χ−2(ρ+1).

An easy application of Seifert-Van Kampen theorem gives π1(Y ) = π1(Z \ νT ) =
π1(Z). Other properties of Y can also be immediately verified. �

From the above theorem, we can deduce the following upper bound on Λp (cf.
Definition 3).

Corollary 10. Let X be a spin 4-manifold that is the total space of a genus f surface
bundle over a genus b surface. Assume that σ(X) = 16s, and X has a section whose
image is a genus b surface of self-intersection −2t for some integer t. Let r be a
positive integer satisfying

1− t ≤ r ≤ min{s, f + b + 1− t}.

If p and q are nonnegative integers satisfying

p ≡ 0 (mod 2), 0 ≤ p ≤ 2(s− r),

q ≡ 1 (mod 2), q ≥ 2fb + 12s− 1− 10p,

then the symmetric bilinear form pE8 ⊕ qH has ∞2-property (cf. Definition 1) and

Λp ≤ 2fb + 12s− 1− 10p.

Proof. Let Z = X#Σf+b=Σ′
f+b

E(2r)K be the simply connected spin symplectic 4-
manifold in Section 2. Recall from the proof of Lemma 6 that Z contains two copies
of Gompf nucleus denoted by N1 and N2. Let T be a symplectic torus fiber in the
second nucleus N2. Since π1(Z \ νT ) = 1, we can apply Theorem 9 to Z, and obtain
a closed simply connected spin symplectic 4-manifold Y with intersection form

(7)
(

2(s− r) +
c− 8χ

8

)
E8 ⊕ (2fb + 20r − 8s− 1 + 10χ− c) H.
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If p = 2(s−r) and q = 2fb+20r−8s−1, then our claim follows from (5) and Lemma 6.
Otherwise we set

χ =
1
2
(q − 2fb− 4r − 8s + 1 + 8p),

c = 4(q − 2fb− 12s + 1 + 10p),

which turns (7) into pE8 ⊕ qH.
By performing a knot surgery inside the nucleus N1 ⊂ Y , we obtain an irreducible

4-manifold YK′ that is homeomorphic to Y . By varying our choice of the knot K ′,
we can again realize infinitely many pairwise nondiffeomorphic 4-manifolds, either
symplectic or nonsymplectic. �

Finally we are ready to prove Theorem 5 from the introduction.

Proof of Theorem 5. We apply Corollary 10 to surface bundles Xg,n in Example 7
with g = 2, r = 1 and odd n ≥ 3. Since f = t = 2n, b = 2n2 + 1 and s = 1

6n(n2 − 1),
we conclude that pE8 ⊕ qH has ∞2-property when

p ≡ 0 (mod 2), 0 ≤ p ≤ 1
3
n(n2 − 1)− 2,

q ≡ 1 (mod 2), q ≥ 10n3 + 2n− 1− 10p. �
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