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HODGE GROUPS OF CERTAIN SUPERELLIPTIC JACOBIANS

Jiangwei Xue and Yuri G. Zarhin

Throughout this paper K is a field of characteristic zero, K̄ its algebraic closure
and Gal(K) = Aut(K̄/K) the absolute Galois group of K. If X is an abelian variety
over K̄ then we write End(X) for the ring of all its K̄-endomorphisms and End0(X)
for the corresponding Q-algebra End(X)⊗Q; the notation 1X stands for the identity
automorphism of X.

Let f(x) ∈ K[x] be a polynomial of degree n ≥ 3 with coefficients in K and without
multiple roots, Rf ⊂ K̄ the (n-element) set of roots of f and K(Rf ) ⊂ K̄ the splitting
field of f . We write Gal(f) = Gal(f/K) for the Galois group Gal(K(Rf )/K) of f ;
it permutes roots of f and may be viewed as a certain permutation group of Rf ,
i.e., as as a subgroup of the group Perm(Rf ) ∼= Sn of permutation of Rf . (Gal(f) is
transitive if and only if f is irreducible.)

Suppose that p is a prime that does not divide n and a positive integer q = pr is a
power of p. We write Cf,q for the superelliptic K-curve yq = f(x) and J(Cf,q) for its
jacobian. Clearly, J(Cf,q) is an abelian variety that is defined over K and

dim(J(Cf,q)) =
(n− 1)(q − 1)

2
.

Assume that K contains a primitive qth root of unity ζq. In a series of papers
[12, 14, 15, 16], one of the authors (Y.Z.) discussed the structure of End0(J(Cf,q)),
assuming that n ≥ 5 and the Galois group Gal(f) of f(x) over K is, at least, doubly
transitive. In particular, he proved that if n ≥ 5 and Gal(f) coincides either with full
symmetric group Sn or with alternating group An then End0(J(Cf,q)) is (canonically)
isomorphic to a product

∏r
i=1 Q(ζpi) of cyclotomic fields. (If q = p then we proved

that End(J(Cf,p)) = Z[ζp].) More precisely, if q 6= p then the map (x, y) → (x, yp)
defines the map of curves Cf,q → Cf,q/p, which induces (by Albanese functoriality)
the surjective homomorphism J(Cf,q) → J(Cf,q/p) of abelian varieties over K; we
write J (f,q) for the identity component of its kernel. (If q = p then we put J (f,q) =
J(Cf,p).) One may check [16] that J(Cf,q) is K-isogenous to the product

∏r
i=1 J

(f,pi)

and the automorphism δq : (x, y) 7→ (x, ζqy) of Cf,q gives rise to an embedding
Z[ζq] ↪→ End(J (f,q)), ζq 7→ δq. What was actually proved in [16, 18] is that

Z[ζq] ∼= Z[δq] = End(J (f,q))

if Gal(f) = Sn, p ≥ 3 and n ≥ 4 or Gal(f) = An and n ≥ 5.
Let us assume that K ⊂ C and let the field K̄ be the algebraic closure of K in C.

This allows us to consider J(Cf,q) and J (f,q) as complex abelian varieties. Our goal
is to study the (reductive Q-algebraic connected) Hodge group Hdg = Hdg(J (f,q))
of J (f,q). Notice that when q = 2 (i.e., in the hyperelliptic case) this group was
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completely determined in [13] (when f(x) has “large” Galois group). When q > 2 we
determined in our previous paper [9] the center of Hdg(J (f,q)), also assuming that the
Galois group of f(x) is “large”.

Let us assume that q > 2. In order to describe our results let us recall that the
jacobian J(Cf,q) carries the canonical principal polarization that is invariant under all
automorphisms (induced by automorphisms) of Cf,q. This implies that the induced
polarization on the abelian subvariety J (f,q) is δq-invariant. This polarization gives
rise to the δq-invariant nondegenerate alternating Q-bilinear form

ψq : H1(J (f,q),Q)×H1(J (f,q),Q) → Q

on the first rational homology group of the complex abelian variety J (f,q). On the
other hand, H1(J (f,q),Q) carries the natural structure of Q[δq] ∼= Q(ζq)-vector space.
The δq-invariance of ψq implies that

ψq(ex, y) = ψq(x, ēy) ∀e ∈ Q(ζq); x, y ∈ H1(J (f,q),Q).

Here e 7→ ē stands for the complex conjugation map. Let

Q(ζq)+ = {e ∈ Q(ζq) | ē = e}
be the maximal totally real subfield of the cyclotomic CM field Q(ζq) and let

Q(ζq)− = {e ∈ Q(ζq) | ē = −e}.
Pick a non-zero element α ∈ Q(ζq)−. Now the standard construction (see, for in-
stance, [5, p. 531]) allows us to define the non-degenerate Q(ζq)-sesquilinear Hermit-
ian form

φq : H1(J (f,q),Q)×H1(J (f,q),Q) → Q(ζq)
such that

ψq(x, y) = TrQ(ζq)/Q(αφq(x, y)) ∀x, y ∈ H1(J (f,q),Q).

We write U(H1(J (f,q),Q), φq) for the unitary group of φq of the Q(ζq)-vector space
H1(J (f,q),Q), viewed as an algebraic Q-subgroup of GL(H1(J (f,q),Q)) (via Weil’s
restriction of scalars from Q(ζq)+ to Q (ibid). Since the Hodge group respects the
polarization and commutes with endomorphisms of J (f,q),

Hdg(J (f,q)) ⊂ U(H1(J (f,q),Q), φq).

Our main result is the following statement.

Theorem 0.1. Suppose that n ≥ 4 and p is a prime that does not divide n. Let
f(x) ∈ C[x] be a degree n polynomial without multiple roots. Let r be a positive
integer and q = pr. Suppose that there exists a subfield K of C that contains all the
coefficients of f(x). Let us assume that f(x) is irreducible over K and the Galois
group Gal(f) of f(x) over K is either Sn or An. Assume additionally that either
n ≥ 5 or n = 4 and Gal(f) = S4.

Suppose that n > q and one of the following three conditions holds:
(A) q < n < 2q;
(B) p is odd and n 6≡ 1 mod q;
(C) p = 2, n 6≡ 1 mod q and n 6≡ q − 1 mod 2q.
Then Hdg(J (f,q)) = U(H1(J (f,q),Q), φq).

Remark 0.2. The case of q = p = 3 was earlier treated in [14].
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Lefschetz’s theorem about algebraicity of 2-dimensional Hodge classes and classical
invariant theory for the unitary groups [5, Theorem 0 on p. 524; see also pp. 531–532
] imply the following corollary to Theorem 0.1.

Corollary 0.3. Let (n, p, q, f(x)) satisfy the conditions of Theorem 0.1. Then ev-
ery Hodge class on each self-product (J (f,q))m of J (f,q) can be presented as a linear
combination with rational coefficients of products of divisor classes. In particular, the
Hodge conjecture holds true for (J (f,q))m.

The paper is organized as follows. In Section 1 we discuss Lie algebras of Hodge
groups of complex abelian varieties. Its main result, Theorem 1.1 (that may be of
independent interest) asserts that under certain conditions the semisimple part of the
Hodge group (and its Lie algebra) is “as large as possible”. We deduce Theorem
0.1 from Theorem 1.1, using auxiliary results from Section 2 concerning divisibility
properties of certain arithmetic functions. In Section 3 we discuss linear reductive Lie
algebras. The last Section contains the proof of Theorem 1.1.

1. Complex abelian varieties

Let Z be a complex abelian variety of positive dimension and let Ω1(Z) be the
dim(Z)-dimensional complex vector space of regular differential 1-forms on Z. We
write CZ for the center of the semisimple finite-dimensional Q-algebra End0(Z). We
write H1(Z,Q) for its first rational homology group. It is well known that H1(Z,Q)
is a 2dim(Z)-dimensional Q-vector space.

The Q-algebra End0(Z) acts faithfully on H1(Z,Q). In particular, if E is a subfield
of End0(Z) that contains the identity map then H1(Z,Q)carries the natural structure
of E-vector space of dimension

d(Z,E) =
2dim(Z)
[E : Q]

.

Let ΣE be the set of all field embeddings σ : E ↪→ C. It is well-known that

Cσ := E ⊗E,σ C = C, EC = E ⊗Q C =
∏

σ∈ΣE

E ⊗E,σ C =
∏

σ∈ΣE

Cσ.

If σ ∈ ΣE then we write σ̄ for the complex-conjugate of σ. We write XE for the
Q-vector space of functions φ : ΣE → Q with

φ(σ̄) + φ(σ) = 0 ∀σ ∈ ΣE .

If E/Q is Galois then XE carries the natural structure of Gal(E/Q)-module.
Let Lie(Z) be the tangent space to the origin of Z; it is a dim(Z)-dimensional C-

vector space. By functoriality, End0(Z) and therefore E act on Lie(Z) and therefore
provide Lie(Z) with a natural structure of E ⊗Q C-module. Clearly,

Lie(Z) =
⊕

σ∈ΣE

CσLie(Z) = ⊕σ∈ΣE
Lie(Z)σ

where Lie(Z)σ := CσLie(Z) = {x ∈ Lie(Z) | ex = σ(e)x ∀e ∈ E}. Let us put
nσ = nσ(Z,E) = dimCσLie(Z)σ = dimCLie(Z)σ. It is well-known that the natural
map Ω1(Z) → HomC(Lie(Z),C) is an isomorphism. This allows us to define via
duality the natural homomorphism E → EndC(HomC(Lie(Z),C)) = EndC(Ω1(Z)).
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This provides Ω1(Z) with a natural structure of E ⊗Q C-module in such a way that
Ω1(Z)σ := CσΩ1(Z) ∼= HomC(Lie(Z)σ,C). In particular,

nσ = dimC(Lie(Z)σ) = dimC(Ω1(Z)σ) (1).

Let us consider the first complex homology group of Z

H1(Z,C) = H1(Z,Q)⊗Q C,

which is a 2dim(Z)-dimensional complex vector space. If E is as above then H1(Z,C)
carries the natural structure of a free EC := E ⊗Q C-module of rank d(Z,E). We
have

H1(Z,C) =
⊕

σ∈ΣE

CσH1(Z,C) = ⊕σ∈ΣE
H1(Z,Q)σ

where

H1(Z,Q)σ := CσH1(Z,C) = {x ∈ H1(Z,C) | ex = σ(e)x ∀e ∈ E} = H1(Z,Q)⊗E,σC.

Clearly, every H1(Z,Q)σ is a d(Z,E)-dimensional C-vector subspace that is also a
EC-submodule of H1(Z,C).

There is a canonical Hodge decomposition ([3, chapter 1], [1, pp. 52–53])

H1(Z,C) = H−1,0 ⊕H0,−1

where H−1,0 = H−1,0(Z) and H0,−1 = H0,−1(Z) are mutually “complex conjugate”
dim(Z)-dimensional complex vector spaces. This splitting is End0(Z)-invariant and
the End0(Z)-module H−1,0 is canonically isomorphic to the commutative Lie algebra
Lie(Z) of Z. This implies that H−1,0 and Lie(Z) are isomorphic as E-modules and
even as EC-modules.

Let
f0H = f0H,Z : H1(Z,C) → H1(Z,C)

be the C-linear operator in H1(Z,C) defined as follows.

fH(x) = −1
2
x ∀ x ∈ H−1,0; f0H(x) =

1
2
x ∀ x ∈ H0,−1.

Clearly, f0H commutes with End0(Z). In particular, every H1(Z,Q)σ is f0H -invariant.
More precisely, the linear operator f0H : H1(Z,Q)σ → H1(Z,Q)σ is semisimple and
its spectrum lies in the two-element set {1/2,−1/2}. Taking into account that the
EC-modules H−1,0 and Lie(Z) are isomorphic, we conclude that the multiplicity of
eigenvalue −1/2 is nσ = nσ(Z,E) while the multiplicity of eigenvalue 1/2 is d(Z,E)−
nσ(Z,E). Let σ̄ : E ↪→ C be the composition of σ : E ↪→ C and the complex
conjugation C → C. It is known ([1], [2]) that

nσ + nσ̄ = d(Z,E).

This implies that the multiplicity of eigenvalue 1/2 is nσ̄.
We refer to [5], [10, Sect. 6.6.1 and 6.6.2] for the definition and basic properties

of the Hodge group (aka special Mumford–Tate group) Hdg = HdgZ of (the rational
Hodge structure H1(Z,Q) and of) Z. Recall that Hdg is a connected reductive alge-
braic Q-subgroup of GL(H1(Z,Q)), whose centralizer in EndQ(H1(Z,Q)) coincides
with End0(Z). Let

hdg = hdgZ ⊂ EndQ(H1(Z,Q))
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be the Q-Lie algebra of Hdg; it is a reductive Q-Lie subalgebra of EndQ(H1(Z,Q)),
its natural representation in H1(Z,Q) is completely reducible and its centralizer there
coincides with End0(Z). Notice also that its complexification

hdgC = hdg ⊗Q C ⊂ EndQ(H1(Z,Q))⊗Q C = EndC(H1(Z,C))

contains f0H [9, Sect. 3.4].
Suppose that E = End0(Z) is a CM field. Choose a polarization on Z. The

corresponding Rosati involution on End0(Z) coincides with the complex conjugation
e 7→ ē on E. The polarization gives rise to the nondegenerate alternating Q-bilinear
form

ψ : H1(Z,Q)×H1(Z,Q) → Q

such that
ψ(ex, y) = ψ(x, ēy) ∀x, y ∈ H1(Z,Q); e ∈ E.

Let
E+ = {e ∈ E | ē = e}

be the maximal totally real subfield of the CM field E and let

E− = {e ∈ E | ē = −e}.

Pick a non-zero element α ∈ Q(ζq)−. Now the standard construction (see, for in-
stance, [5, p. 531]) allows us to define the non-degenerate E-sesquilinear Hermitian
form

φ : H1(Z,Q)×H1(Z,Q) → E

such that
ψ(x, y) = TrE/Q(αφ(x, y)) ∀x, y ∈ H1(Z,Q).

We write U(H1(Z,Q), φ) for the unitary group of φ of the E-vector space H1(Z,Q),
viewed as an algebraic Q-subgroup of GL(H1(Z,Q)) (via Weil’s restriction of scalars
from E+ to Q (ibid). It is well-known that U(H1(Z,Q), φ) is reductive and its Q-
dimension is

[E+ : Q]d(Z,E)2 =
1
2
[E : Q]d(Z,E)2.

Let u(H1(Z,Q), φ) be the Q-Lie algebra of U(H1(Z,Q), φ): it is a reductive Q-Lie
subalgebra of EndQ(H1(Z,Q)). Explicitly,

u(H1(Z,Q), φ) = {u ∈ EndE(H1(Z,Q)) | φ(ux, y) + φ(x, uy) = 0 ∀x, y ∈ H1(Z,Q)}.

The reductive Q-Lie algebra u(H1(Z,Q), φ) splits into a direct sum

u(H1(Z,Q), φ) = E− ⊕ su(H1(Z,Q), φ)

of its center E− and the semisimple Q-Lie algebra

su(H1(Z,Q), φ) = {u ∈ u(H1(Z,Q), φ) | TrE(u) = 0.}

Here
TrE : EndE(H1(Z,Q)) → E

is the trace map. One may easily check that

dimQ(su(H1(Z,Q), φ)) =
1
2
[E : Q]{d(Z,E)2 − 1}.
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Since the Hodge group respects the polarization and commutes with endomor-
phisms of Z,

Hdg(Z) ⊂ U(H1(Z,Q), φ)

(ibid). This implies that

hdg ⊂ u(H1(Z,Q), φ) ⊂ EndQ(H1(Z,Q)).

This implies that the semisimple part hdgss = [hdg,hdg] of hdg lies in su(H1(Z,Q), φ).
In particular,

dimQ(hdgss) ≤ 1
2
[E : Q]{d(Z,E)2 − 1};

the equality holds if and only if hdgss = su(H1(Z,Q), φ).
The following statement may be viewed as a partial generalization of Theorem 3

in [5, p. 526].

Theorem 1.1. Suppose that E = End0(Z) is a CM field. Assume that all nσ(Z,E)
are distinct positive integers. Assume additionally that there exists a field embedding
σ : E ↪→ C such that nσ(Z,E) and d(Z,E) are relatively prime.

Then hdgss = su(H1(Z,Q), φ).

Remark 1.2. Clearly, in the course of the proof of Theorem 1.1, it suffices to check
that

dimQ(hdgss) ≥ 1
2
[E : Q]{d(Z,E)2 − 1}.

We prove Theorem 1.1 in Section 4.

Proof of Theorem 0.1. Let us put Z = J (f,q) and E = Q(ζq). Clearly,

d(Z,E) = n− 1.

We know that End0(Z) = E = Q(ζq) [16, 18] and if σ = σi : Q(ζq) ↪→ C is a field
embedding that sends ζq to ζ−i

q with 1 ≤ i < q, (i, p) = 1 then nσ = [ni/q] [16, 17].
(Clearly, every field embedding Q(ζq) ↪→ C is of the form σi.) Since n > q, all integers
[ni/q] are positive and distinct. Propositions 2.1 and 2.2 below imply that under our
assumptions on (p, q, n) there exists a positive integer i < q such that (i, p) = 1
and [ni/q] and n − 1 are relatively prime. This allows us to apply Theorem 1.1 and
conclude that hdgss = su(H1(Z,Q), φ). On the other hand, by a result from [9], the
center of hdg coincides with E−. This implies that the reductive Q-Lie algebra hdg
coincides with the direct sum

E− ⊕ su(H1(Z,Q), φ) = u(H1(Z,Q), φ).

Now the connectedness of the Hodge group and the unitary group implies that
Hdg(Z) = U(H1(Z,Q), φ), i.e.,

Hdg(J (f,q)) = U(H1(J (f,q),Q), φq).

�
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2. Divisibility properties of integral parts

Proposition 2.1. Suppose that p is a prime, r a positive integer, q = pr and n is a
positive integer that is not divisible by p.

Suppose that one of the following conditions holds:
(i) q < n < 2q;
(ii) The prime p is odd. In addition, either p - (n− 1) or n < 2q.

Then there exists an integer i such that

1 ≤ i ≤ q − 1, (i, p) = 1

and integers [ni/p] and n− 1 are relatively prime.

Proof. If q < n < 2q then
[n · 1/q] = [n/q] = 1

and we may take i = 1.
So, further we assume that p is odd and either n < q or n− 1 is not divisible by p.
If q > n > q/2 then [2n/q] = 1 and we may take i = 2.
If 0 < n < q/2 then there exists a positive integer µ such that

q ≤ µn < (µ+ 1)n < 2q.

Since q is a power of p and n is not divisible by p,

q < µn < (µ+ 1)n < 2q.

Clearly,
1 = [nµ/q] = [n(µ+ 1)/q].

So, we take as i either µ or µ+ 1, depending on which one is not divisible by p.
Now let us assume that n− 1 is not divisible by q. Let us put

k = [n/q], c = n− kq, d = c− 1.

We have

c = d+ 1, n = qk + c, n− 1 = qk + d; 2 ≤ c ≤ q − 1, 1 ≤ d ≤ q − 2,

(c, p) = 1, (d, p) = 1.
Let i be an integer such that 1 ≤ i ≤ q − 1 and (i, p) = 1. Put j = [ci/q]. Clearly, j
is a nonnegative integer such that

qj < ic < (q + 1)j.

(The first inequality holds, because neither c nor i are divisible by p.) In other words,

0 < ic− qj < q.

In addition,
[ni/q] = [(kq + c)i/q] = ik + [ci/q] = ik + j.

Suppose that n− 1 and [ni/q] are not relatively prime. Then there exists a prime
` that divides both n− 1 and [ni/q]. This implies that q · k + d · 1 = 0 in Z/`Z and
i · k + j · 1 = 0 in Z/`Z. So, we get the homogeneous system of two linear equations
over the field Z/`Z that admits the nontrivial solution (k, 1) 6= (0, 0). By Cramer’s
rule, the determinant id − qj is zero in Z/`Z, i.e., the integer id − qj is divisible by
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`. In particular, id − qj 6= ±1. So, we prove the Proposition if we find such i that
id− qj is either 1 or −1. In order to do that, notice that

id− qj = i(c− 1)− qj = (ic− qj)− i.

This implies that
−i < id− qj < q − i.

Since 1 ≤ i ≤ q − 1,
1− q < id− qj < q − 1.

Now if we choose i in such a way that 1 ≤ i ≤ q − 1 and id is congruent to 1 modulo
q (such choice is possible, because d is not divisible by p) then id− qj is congruent to
1 modulo q and therefore id − qj = 1. In addition, the latter equality implies that i
is not divisible by p. �

Proposition 2.1 admits the following (partial) generalization.

Proposition 2.2. Suppose that p is a prime, r a positive integer, q = pr and n is a
positive integer that is not divisible by p. Suppose that n − 1 is not divisible by q. If
p = 2, assume additionally that q = 2r > 2 and n 6≡ q − 1 mod 2q.

Then there exists an integer i such that

1 ≤ i ≤ q − 1, (i, p) = 1

and integers [ni/p] and n− 1 are relatively prime.

Remark 2.3. If q = p = 2 then every odd n is congruent to 1 modulo 2.
If p = 2, q = 4 then (n, q) satisfy the conditions of Proposition 2.2 if and only if

n− 7 is divisible by 8.

Proof of Proposition 2.2. As in the proof of Proposition 2.1, let us put

k = [n/q], c = n− kq, d = c− 1.

We have

(1) (c, p) = 1, 2 ≤ c ≤ q − 1, 1 ≤ d ≤ q − 2.

We are given that q does not divide d. However, in the light of Proposition 2.1, we
may and will assume that p divides d; in particular, q > p and d ≥ p ≥ 2 > 1.

Let
t = (d, q), d′ = d/t, q′ = q/t.

Then
q′ > 1, t > 1, (d′, q′) = 1

and both t and q′ are powers of p. This implies that

(d′, p) = 1, t ≥ p ≥ 2, q′ ≥ p ≥ 2 > 1.

Since q′ > 1, d′ ≥ 1 and (d′, q′) = 1, there exists a unique pair of integers (i, j)
such that

d′i− q′j = 1, 0 < i ≤ q′ − 1, j ≥ 0.
Clearly, (i, p) = 1 and therefore (i+ q′, p) = 1, because q′ is a power of p. Since t ≥ 2,
we have i+ q′ < 2q′ ≤ tq′ = q.

We will treat the case p = 2, n ≡ −1 mod q and n 6≡ q − 1 mod 2q separately
at the end. So we further assume that if p = 2, then n + 1 is not divisible by q. We
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will show that either i or i+ q′ is the desired integer, i.e., either [ni/q] and n− 1 are
relatively prime or [n(i + q′)/q] and n − 1 are relatively prime. It is convenient to
consider both integers [ni/q] and [n(i+ q′)/q] as [n(i+ εq′)/q] with ε = 0, 1.

For every nonnegative integer ε we have

(2) d′(i+ εq′)− q′(j + εd′) = 1.

Multiplying both side of (2) by t, we get

(3) d(i+ εq′)− q(j + εd′) = t.

Since c = d+ 1, it follows that

c(i+ εq′)
q

=
(d+ 1)(i+ εq′)

q
= j + εd′ +

t+ i+ εq′

q

and therefore

(4)
[
c(i+ εq′)

q

]
− (j + εd′) =

[
t+ i+ εq′

q

]
.

The following Lemma will be proven at the end of this Section.

Lemma 2.4. We keep the assumptions of Proposition 2.2. If p = 2, we assume
additionally that q - n+ 1. Then [(t+ i+ q′)/q] = 0 and therefore [(t+ i)/q] = 0.

Let us assume that either p is odd or p = 2 and n + 1 is not divisible by q.
Combining Lemma 2.4 with (4), we conclude that

(5)
[
c(i+ εq′)

q

]
= (j + εd′)

if ε = 0 or 1. It follows that if ε = 0 or 1 then

[n(i+ εq′)/q] = [(kq+ c)(i+ εq′)/q] = k(i+ εq′)+ [c(i+ εq′)/q] = k(i+ εq′)+ (j+ εd′).

Now suppose that n− 1 and [n(i+ εq′)]/q] are not relatively prime for some ε = 0
or 1. Then there exists a prime ` that divides both n − 1 and [n(i + εq′)/q]. This
implies that q · k+ d · 1 = 0 in Z/`Z and (i+ εq′) · k+ (j+ εd′) · 1 = 0 in Z/`Z. So we
get the homogeneous system of linear equations over the field Z/`Z with determinant

d(i+ εq′)− q(j + εd′) = t

(by (3)), which admits a non-trivial solution (k, 1) 6= (0, 0). By Cramer’s rule the
determinant t is zero in Z/`Z, i.e., ` | t. Since t is a power of p, we conclude that
` = p.

Since (i+εq′)·k+(j+εd′)·1 = 0 in Z/`Z and ` = p, the integer (i+εq′)·k+(j+εd′)
is divisible by p.

Now suppose that n− 1 and [n(i+ εq′)/q] are not relatively prime for both ε = 0
and 1. This implies that both integers i·k+j and (i+q′)·k+(j+d′) are divisible by p.
Therefore their difference q′k+d′ is also divisible by p, which is not the case, because
q′ is a power of p while (d′, p) = 1. The obtained contradiction proves Proposition
when either p is odd or p = 2 and n+ 1 is not divisible by q.

At last, let us treat the remaining case when p = 2, q = 2r with r ≥ 2, the integer
n + 1 is divisible by q but n 6≡ q − 1 mod 2q. Then q divides n + 1 and the ratio
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k := (n + 1)/q is an even integer. We have n = 2rk − 1. Let us put i = 2r−1 − 1.
Since r ≥ 2, the integer i is odd. We have[

ni

q

]
=

[
(2rk − 1)(2r−1 − 1)

2r

]
= (2r−1 − 1)k − 1.

It follows that
[ni/q] ≡ −1 mod k.

In particular, [ni/q] is odd, since k is even. Notice that

(n− 1)/2 = [ni/q] + k.

Combining all those assertions, we get

(n− 1, [ni/q]) = ((n− 1)/2, [ni/q]) = ([ni/q] + k, [ni/q])

= (k, [ni/q]) = (k,−1) = 1.

�

Proof of Lemma 2.4. Recall that q′ and t are powers of p. This implies that t ≥ p ≥ 3
if p is odd; if p = 2 then either t = 2 or t ≥ 4.

First, let us assume that p is odd and therefore t ≥ p ≥ 3 and q′ ≥ p ≥ 3. It follows
that

q′(t− 2) ≥ 3(t− 2) = 3t− 6 ≥ t.

Since i ≤ q′ − 1,
q = tq′ ≥ t+ 2q′ > t+ i+ q′.

This implies that [(t+ i+ q′)/q] = 0.
Second, assume that p = 2 and t ≥ 4. Then q′ ≥ 2 and therefore

q′(t− 2) ≥ 2(t− 2) = 2t− 4 ≥ t.

As above, i ≤ q′ − 1,

q = tq′ = (t− 2)q′ + 2q′ ≥ t+ 2q′ > t+ i+ q′

and therefore [(t+ i+ q′)/q] = 0.
Third, assume that p = 2 and t = 2. Then

t = 2, d = 2d′, q′ =
q

2
= 2r−1.

Recall that (i, p) = 1, i. e., i is odd. Since i ≤ q′ − 1, the sum

t+ i+ q′ = 2 + i+ 2r−1

is greater or equal than q = 2r only if i = q′−1 = 2r−1−1. By (2), d′ · i ≡ 1 mod q′.
If i = q′ − 1, then d′ = q′ − 1, since 1 ≤ d′ < q′. This implies that

c = d+ 1 = 2d′ + 1 = 2q′ − 1 = q − 1,

which contradicts the assumption that

n+ 1 = (kq + c) + 1 = kq + (c+ 1)

is not divisible by q. So, this case does not occur.
�
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3. Linear reductive Lie algebras

Throughout this Section, Q is a field of characteristic zero, C is an algebraically
closed field containing Q. If W is a Q-vector space (resp. Q-algebra or Q-Lie algebra)
then we write WC for W ⊗Q C provided with the natural structure of a C-vector
space (resp. C-algebra or C-Lie algebra).

Let W be a nonzero finite-dimensional Q-vector space. Let E ⊂ EndQ(W ) be a
subfield that contains the scalars Q · IdW . Then E/Q is a finite algebraic extension
and W carries the natural structure of E-vector space; in addition,

dimQ(W ) = [E : Q] · dimE(W ).

We write Σ for the set of all Q-linear field embedding σ : E ↪→ C. If σ ∈ Σ then
we write Wσ for the C-vector space W ⊗E,σ C; clearly,

dimC(Wσ) = dimE(W );

there are natural surjective homomorphisms WC � Wσ. Their “direct sum”

WC → ⊕σ∈ΣWσ

is an isomorphism of C-vector spaces, so one may view every Wσ as a C-vector
subspace (direct summand) of WC .

Remark 3.1. Let S be a Q-vector subspace of W . Let ES ⊂ W be the E-vector
subspace of W generated by S, i.e., ES is the set of all linear combinations of elements
of S with coefficients in E. Clearly, ES = W if and only if S contains a basis of the
E-vector space W . It is also clear that the image of the composition

SC ⊂WC � Wσ

coincides with
{ES}σ = ES ⊗E,σ C ⊂W ⊗E,σ C = Wσ;

in particular, the C-dimension of this image coincides with dimE(ES) and does not
depend on the choice of σ.

Remark 3.2. Let k ⊂ EndQ(W ) be a reductive Q-Lie subalgebra such that the
natural representation of k is completely reducible and the centralizer Endk(W ) of
k in EndQ(W ) coincides with E; in particular, the k-module W is simple and k ⊂
EndE(W ). Clearly, Ek is a reductive E-Lie subalgebra of EndE(W ) and the central-
izer of Ek in EndE(W ) coincides with E. In other words, the E-vector space W is
an absolutely simple Ek-module.This implies that the C-vector space Wσ is an ab-
solutely simple {Ek}σ-module. However, applying Remark 3.1 to the E-vector space
EndE(W ) (instead of W ) and its Q-vector subspace S = k, we conclude that the
C-Lie subalgebra {Ek}σ ⊂ EndC(Wσ) is the image of

kC → EndE(W )⊗E,σ C = EndC(Wσ).

This implies that the kC-module Wσ is also absolutely simple. On the other hand, the
reductiveness of k and the equality Endk(W ) = E imply that k splits into the direct
sum

k = kss ⊕ c

of its center c and the semisimple Q-Lie algebra kss = [k, k]; in addition, c ⊂ E. This
implies that Ek = Ekss⊕Ec where Ec is either E or {0}. It follows easily that in both
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cases the kss
C -module Wσ remains absolutely simple and the image of kss

C in EndC(Wσ)
coincides with

{Ekss}σ = Ekss ⊗E,σ C = [{Ek}σ, {Ek}σ].

The following statement is a variant of [6, Sect. 4, Prop. 5]

Lemma 3.3. Let W be a finite-dimensional C-vector space of positive dimension,
let sl(W ) be the Lie algebra of traceless linear operators in W . Let g ⊂ EndC(W )
be an irreducible semisimple linear C-Lie subalgebra. Assume that there exists a
diagonalizable operator

f ∈ g ⊂ EndC(W )

that enjoys the following property: f acts in W as a linear operator with exactly two
eigenvalues, whose multiplicities are relatively prime.

Then g = sl(W ).

Proof of Lemma 3.3. Clearly, f 6= 0 (otherwise, it would have only one eigenvalue).
Let α1 and α2 be the eigenvalues of f and let W1 and W2 are the corresponding

eigenspaces. Since f 6= 0, either α1 6= 0 or α2 6= 0. We claim that g is simple. Indeed,
let us split the semisimple g into a direct sum g = ⊕r

i=1gi of simple C-Lie algebras gi.
Then the simple g-module W splits into a tensor product W = ⊗r

i=1Ui of simple gi-
modules Ui. Since W is a faithful g-module, all dimC(Ui) > 1. We have f =

∑r
i=1 fi

with fi ∈ gi. Clearly, if some fi = 0 then the multiplicities of all eigenvalues of f are
divisible by dimC(Ui). However, the spectrum of f consists of (only) two eigenvalues,
whose multiplicities are relatively prime. This implies that all fi 6= 0, i.e., f does not
belong to a proper ideal of g. Now the simplicity of g follows from [11, Th. 1.5 on p.
286] (with k = C and V = W ).

The semisimplicity of f means that

W = W1 ⊕W2.

Let us put
n = dimC(W1), m = dimC(W2).

By assumption, n and m are positive integers that are relatively prime. Let us put

h := n+m = dimC(W ).

Clearly, h and m are relatively prime.
The semisimplicity of g implies that g ⊂ sl(W ); in particular, the trace of f is zero.

This means that
nα1 +mα2 = 0.

It follows that both α1 and α2 do not vanish. Replacing f by (m/α1)f , we may
and will assume that the spectrum of f consists of eigenvalue m of multiplicity n
and eigenvalue −n of multiplicity m. In addition, W1 is the eigenspace attached to
eigenvalue m and W2 is the eigenspace attached to eigenvalue −n.

Let Θ ⊂ GL(W ) be the linear algebraic subgroup that consists of all linear opera-
tors A(u, v) that act on W1 as multiplication by u and on W2 as multiplication by v
where (u, v) ∈ C∗ × C∗ satisfy

unvm = 1.
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Let us consider the multiplicative algebraic group Gm over C. The morphism of
algebraic C-groups

ρ : Gm → Θ, z 7→ A(zm, z−n)
is an isomorphism: in order to construct the inverse map, pick integers a and b with
ma− nb = 1 (here we use the assumption that n and m are relatively prime). Then
the morphism of algebraic group

Θ → Gm, A(u, v) 7→ uavb

is the inverse of ρ. So, Θ is isomorphic to Gm; in particular, it is a one-dimensional
connected linear algebraic group and its Lie algebra is a one-dimensional C-Lie sub-
algebra of EndC(W ). Considering the tangent map to the composition

Gm → Θ ⊂ GL(W ),

one may easily find that the Lie algebra Lie(Θ) of Θ coincides with C ·f ⊂ EndC(W ).
On the other hand, let µh ⊂ C∗ be the order h cyclic group of hth root of unity. If
z ∈ µh then zm = z−n (since n + m = h) and therefore A(zm, z−n) coincides with
multiplication by zm. This implies that

µh · Id ⊂ Θ ⊂ GL(W )

where Id is the identity map in W .
Since every (linear) simple Lie algebra is algebraic, there exists a connected simple

linear algebraic subgroup G ⊂ GL(W ), whose Lie algebra coincides with g. Since
f ∈ g, we have C · f ⊂ g. In other words, the Lie algebra of connected Θ lies in the
Lie algebra of G. This implies that Θ ⊂ G and therefore

µh · Id ⊂ Θ ⊂ G ⊂ GL(W );

in particular, the order of the center of simple G is divisible by h = dimC(W ). It
follows from Lemma 2 of Sect. 4 in [6] that G = SL(W ). Since the Lie algebra of
SL(W ) coincides with sl(W ), we conclude that g = sl(W ).

�

Theorem 3.4. Let V be a Q-vector space of positive finite dimension and let k ⊂
EndQ(V ) a reductive Lie algebra, whose natural representation in V is completely
reducible. Suppose that the centralizer

E := Endk(V )

is a field. Let us put
h = dimE(V ).

Let
f ∈ kC ⊂ EndQ(V )⊗Q C = EndC(VC)

be a non-zero semisimple element that enjoys the following properties.
(i) The spectrum of the C-linear operator f : VC → VC consists of two eigenval-

ues, λ and µ;
(ii) For every σ ∈ Σ we write nσ and mσ for the multiplicities of of eigenvalues

λ and µ of the C-linear operator f : Vσ → Vσ . Then:
(1) all the numbers {nσ}σ∈Σ are distinct positive integers. Assume also that

all mσ are positive integers.
(2) There exists τ ∈ Σ such that nτ and mτ are relatively prime.
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Then the semisimple part kss
C = [kC , kC ] of kC contains an ideal that is isomorphic

to a direct sum of r copies of the C-Lie algebra sl(h,C) of traceless matrices of size
h with r ≥ [E : Q]/2. In particular, if kss = [k, k] is the semisimple part of k then

dimQ(kss) = dimC(kss
C ) ≥ 1

2
[E : Q](h2 − 1).

In order to prove Theorem 3.4, we need the following two statements.

Lemma 3.5. Let g1 and g2 be non-zero finite-dimensional simple Lie algebras over
a field of characteristic zero. Let g ⊂ g1⊕g2 be a semisimple Lie subalgebra such that
the both projection maps

g → g1, g → g2

are surjective. Then either g = g1 ⊕ g2 or there exists a Lie algebra isomorphism
φ : g1

∼= g2 such that g coincides with the graph Γ(φ) of φ in g1 × g2 = g1 ⊕ g2.
In particular, if g1 and g2 are not isomorphic then g = g1 ⊕ g2.

Lemma 3.6. Let n ≥ 2 and d be positive integers. Let a1, . . . , ad be d distinct positive
integers such that

1 ≤ ai < n ∀i; ai 6= n− aj ∀i, j.
Let C be an algebraically closed field of characteristic zero and W1, . . . ,Wd be n-
dimensional C-vector spaces. Let us put

W = ⊕d
i=1Wi

and let
kss ⊂ ⊕d

i=1sl(Wi) ⊂ ⊕d
i=1EndC(Wi) ⊂ EndC(W )

be a semisimple C-Lie algebra that enjoys the following properties:

(i) The projection map kss → sl(Wi) is surjective for all i.
(ii) There exists a semisimple element

f ∈ kss ⊂ ⊕d
i=1EndC(Wi)

such that for all i the element f acts in Wi as a linear operator with two
eigenvalues of multiplicity ai and n− ai respectively.

Then kss = ⊕d
i=1sl(Wi).

Proof of Lemma 3.5. Let g0 be the kernel of the first projection map g � g1. By
definition,

g0 ⊂ {0} ⊕ g2 ⊂ g1 ⊕ g2.

The surjectivity of the second projection g → g2 implies that g0 is an ideal in {0} ⊕
g2
∼= g2. The simplicity of g2 implies that either g0 = {0} or g0 = {0} ⊕ g2. In the

latter case g = g1 ⊕ g2. So, let us assume that g0 = {0}, i.e., the first projection map
is an isomorphism. This means that there is a Lie algebra homomorphism φ : g1 → g2

such that g coincides with the graph Γ(φ) of φ. Now the surjectiveness of the second
projection map means that φ is surjective. Since g1 is simple, φ is injective and
therefore is an isomorphism. �



HODGE GROUPS OF CERTAIN SUPERELLIPTIC JACOBIANS 385

Proof of Lemma 3.6. Let us denote by fi : Wi →Wi the linear operator inWi induced
by f (for all i).

If d = 1 then the result follows from the property (i). Assume now that d = 2.
If kss 6= sl(W1) ⊕ sl(W2) then it follows from Lemma 3.5 that kss coincides with the
graph Γ(φ) of a certain Lie algebra isomorphism φ : sl(W1) ∼= sl(W2). It is well
known that such a Lie algebra isomorphism is induced either by an isomorphism of
vector spaces either between W1 or W2 or between W ∗

1 = HomC(W1, C) and W2. In
the former case the spectra of f1 and f2 coincide (including the multiplicities). In
the latter case the spectra of −f1 and f2 coincide (including the multiplicities). This
implies that either a1 = a2 or a1 = n − a2. This contradicts our assumptions and
proves the case of d = 2. In the case of arbitrary d ≥ 2, let us apply Lemma 3.5 to
the image of kss in sl(Wi)⊕ sl(Wj): we obtain that for every pair of distinct indices
i, j ≤ d the projection map kss → sl(Wi) ⊕ sl(Wj) is surjective. Now the case of
arbitrary d follows from Lemma on pp. 790–791 of [4]. �

Proof of Theorem 3.4. Let us split the reductive Q-Lie algebra kC Lie into a direct
sum

kC = kss ⊕ c

of its center c ⊂ E and the semisimple Q-Lie algebra

kss = [k, k] = [k, k]

Then f = f0 + fc with f0 ∈ kss
C , fc ∈ cC . By Remark 3.2, the kC-module Vσ is

absolutely simple for all σ ∈ Σ. By Schur’s Lemma there exists cσ ∈ C such that fc

acts in Vσ as multiplication by cσ. It follows that f0 acts in Vσ as a diagonalizable
operator with eigenvalues λ − cσ of positive multiplicity nσ and µ − cσ of positive
multiplicity mσ. Let us denote by fσ the linear operator in Vσ induced by f0. It
follows from Remark 3.2 that

fσ ∈ {Ekss}σ ⊂ EndC(Vσ)

and {Ekss}σ is an irreducible linear semisimple Lie C-(sub)algebra. It is also clear that
fσ is a diagonalizable operator with (exactly two) eigenvalues λ − cσ of multiplicity
nσ and µ− cσ of multiplicity mσ.

Taking σ = τ and applying Lemma 3.3 to W = Wτ , f = fτ and g = {Ekss}σ,
we conclude that {Ekss}τ = sl(Wτ ). In other words, the image of kss

C → EndC(Vτ )
coincides with sl(Vτ ); in particular, the C-dimension of the image is h2 − 1. By
Remark 3.1, for all σ ∈ C the image of kss

C → EndC(Vσ) also has C-dimension h2− 1.
The semisimplicity of kss

C implies the semisimplity of the image and therefore this
image must lie in sl(Vσ); in particular, its C-dimension does not exceed h2− 1 (recall
that h = dimC(Vσ) ). It follows that the image of kss

C → EndC(Vσ) coincides with
sl(Vσ) for all σ ∈ Σ.

Now let us choose a maximal subset Π ⊂ Σ with respect to the following property:

nσ 6= mκ ∀σ, κ ∈ Π.

We claim that #(Π) ≥ #(Σ)/2. Indeed, if #(Π) < #(Σ)/2 then the cardinality of
the set

NΠ = {nσ | σ ∈ Π} ∪ {mσ | σ ∈ Π}
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does not exceed

2 ·#(Π) < 2 · #(Σ)
2

= #(Σ).

This implies that #(NΠ) < #(Σ) and therefore there exists κ ∈ Σ such that nκ does
not belong to NΠ; in particular, κ does not belong to Π. It follows from the very
definition of NΠ that mκ also does not belong to NΠ. This implies that Π is not
maximal, because we could replace it by Π∪ {κ}. The obtained contradiction proves
the desired inequality.

Since #(Σ) = [E : Q], we have #(Π) ≥ [E : Q]/2. Now let us put

W := ⊕σ∈ΠVσ

and denote by kΠ the image of kss
C in

⊕σ∈ΠEndC(Vσ) ⊂ EndC(⊕σ∈ΠVσ) = EndC(W ).

Clearly, the linear operator fΠ : W →W induced by f is a semisimple element of kΠ.
Now the result follows from Lemma 3.6 applied to W , the semisimple C-Lie algebra
kΠ ⊂ EndC(W ) and fΠ. �

The following statement will be used in Section 4.

Lemma 3.7. Let r ≥ 2 be a positive integer and let g1, . . . , gr be mutually nonisomor-
phic finite-dimensional simple Q-Lie algebras. Let g ⊂ ⊕r

i=1gi be a semisimple Q-Lie
subalgebra such that every projection map g → gi is surjective. Then g = ⊕r

i=1gi

Proof. Let i, j ≤ r be two distinct positive integers. Applying Lemma 3.5 to the
image of g in gi⊕gj (with respect to the corresponding projection map), we conclude
that the projection map g → gi⊕gj is surjective. Now the result follows from Lemma
on pp. 790–791 of [4].

�

4. Semisimple components of Hodge groups and their Lie algebras

Proof of Theorem 1.1. Let us apply Theorem 3.4 to

Q = Q, C = C, V = H1(Z,Q), h = d(Z,E),

k = hdg, f = f0H , λ = −1
2
, µ =

1
2
,

nσ = nσ(Z,E), mσ = d(Z,E)− nσ(Z,E) = nσ̄(Z,E).

We conclude that

dimQ(hdgss) ≥ 1
2
[E : Q]{d(Z,E)2 − 1}.

By Remark 1.2, this implies that

hdgss = su(H1(Z,Q), φ)

and we are done. �
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4.1. Let us assume that p is odd and q = pr and consider the abelian variety Z =∏r
i=1 J

(f,pi) and its first rational homology group H1(Z,Q) = ⊕r
i=1H1(J (f,pi),Q).

Then every subspace H1(J (f,pi),Q) is Hdg(Z)-invariant and the image of Hdg(Z) in
GLQ(H1(J (f,pi),Q)) coincides with Hdg(J (f,pi)). (This assertion follows easily from
the minimality property of Hodge groups.) It follows that every H1(J (f,pi),Q) is
hdgZ-invariant and the image of hdgZ in EndQ(H1(J (f,pi),Q)) coincides with the Lie
algebra of Hdg(J (f,pi)). This implies that the image of the semisimple Q-Lie algebra
hdgss

Z in EndQ(H1(J (f,pi),Q)) coincides with the semisimple part of the Lie algebra
of Hdg(J (f,pi)).

Theorem 4.2. Suppose that p is an odd prime, n ≥ 4 is a positive integer such
that p does not divide n(n − 1). Suppose that f(x) ∈ C[x] is a degree n polynomial
without multiple roots. Suppose that there exists a subfield K of C that contains all
the coefficients of f(x). Let us assume that f(x) is irreducible over K and the Galois
group Gal(f) of f(x) over K is either Sn or An. Assume additionally that either
n ≥ 5 or n = 4 and Gal(f) = S4. Let r be a positive integer and q = pr. Let us put
Z =

∏r
i=1 J

(f,pi). If n > q then

hdgZ
ss = ⊕r

i=1su(H1(J (f,pi),Q), φpi).

Proof. It follows from Theorem 0.1 that the semisimple part of the Lie algebra
of Hdg(J (f,pi)) coincides with su(H1(J (f,pi),Q), φpi) for all i ≤ r; notice that all
su(H1(J (f,pi),Q), φpi)’s are mutually nonisomorphic simple Q-Lie algebras. Now the
result follows from arguments of Subsect. 4.1 combined with Lemma 3.7. �

We keep the notation and assumptions of Theorem 4.2. For every positive integer
i let us put

Q(ζpi)− := {e ∈ Q(ζpi) | ē = −e} ⊂ Q(ζpi) = End0(J (f,pi)) ⊂ EndQ(H1(J (f,pi),Q)).

Let us put

Tri = TrQ(ζpi+1 )/Q(ζpi ) : Q(ζpi+1) → Q(ζpi),

Ep,r
− := {(ei)r

i=1 ∈ ⊕r
i=1Q(ζpi)− | Tri(ei+1) = ei ∀i < r} ⊂

⊕r
i=1Q(ζpi)− ⊂ ⊕r

i=1EndQ(H1(J (f,pi),Q)) ⊂ EndQ(H1(Z,Q)).

Recall [9] that (under our assumptions) the center of the Q-Lie algebra hdgZ coincides
with

Ep,r
− ⊂ EndQ(H1(Z,Q)).

Then the reductiveness of hdgZ combined with Theorem 4.2 implies the following
statement.

Theorem 4.3. Suppose that p is an odd prime, n ≥ 4 is a positive integer such
that p does not divide n(n − 1). Suppose that f(x) ∈ C[x] is a degree n polynomial
without multiple roots. Suppose that there exists a subfield K of C that contains all
the coefficients of f(x). Let us assume that f(x) is irreducible over K and the Galois
group Gal(f) of f(x) over K is either Sn or An. Assume additionally that either
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n ≥ 5 or n = 4 and Gal(f) = S4. Let r be a positive integer and q = pr. Let us put
Z =

∏r
i=1 J

(f,pi). If n > q then

hdgZ = Ep,r
− ⊕ [⊕r

i=1su(H1(J (f,pi),Q), φpi)].

Remark 4.4. We keep the assumptions of Theorem 4.3. Let us fix an isogeny α :
J(Cf,pr ) →

∏r
i=1 J

(f,pi) = Z. Then α induces an isomorphism of Q-vector spaces
α : H1(J(Cf,pr ),Q) ∼= H1(Z,Q). Clearly, the Hodge group of Hdg(J(Cf,pr )) coincides
with α−1Hdg(Z)α. This implies that the Q-Lie algebra of Hdg(J(Cf,pr ))) coincides
with

α{Ep,r
− ⊕ [⊕r

i=1su(H1(J (f,pi),Q), φpi)]}α−1.
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