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ON FINITENESS OF ENDOMORPHISM RINGS OF ABELIAN
VARIETIES

Chia-Fu Yu

Abstract. The endomorphism ring End(A) of an abelian variety A is an order in a

semi-simple algebra over Q. The co-index of End(A) is the index to a maximal order

containing it. We show that for abelian varieties of fixed dimension over any field of

characteristic p > 0, the p-exponents of the co-indices of their endomorphism rings are

bounded. We also give a few applications to this finiteness result.

1. Introduction

Endomorphism algebras of abelian varieties are important objects for studying
abelian varieties. For example, a theorem of Grothendieck tells us that any isogeny
class of abelian varieties over a field of characteristic p > 0 that has sufficient many
complex multiplications is defined over a finite field. See Oort [12] and [22] for more
details. Endomorphism algebras have been studied extensively in the literature; see
Oort [13] for many detailed and interesting discussions and quite complete references
therein. Thanks to Tate [20], Zarhin [24], Faltings [5], and de Jong [2], we have now
a fundamental approach using Tate modules (and its analogue at p) to study these
endomorphism algebras. However, not much is known for their endomorphism rings
except for the one-dimensional case (see Theorem 1.4). In [21] Waterhouse determined
all possible endomorphism rings for ordinary elementary abelian varieties over a finite
field (see [21], Theorem 7.4 for more details).

Let A0 be an abelian variety over a field k. Denote by [A0]k the isogeny class of
A0 over k. It is well-known that the endomorphism ring End(A0) is an order of the
semi-simple Q-algebra End0(A0) := End(A0)⊗Q. A general question is what we can
say about the endomorphism rings End(A) of abelian varieties A in the isogeny class
[A0]k. In the paper we consider the basic question: how many isomorphism classes of
the endomorphism rings End(A) of abelian varieties A in a fixed isogeny class [A0]k?

We define a natural numerical invariant for orders in a semi-simple algebra which
measures how far it is from a maximal order. Let B be a finite-dimensional semi-
simple algebra over Q, and O an order of B. Define the co-index of O, which we
denote ci(O), to be the index [R : O], where R is a maximal order of B containing O.
The invariant ci(O) is independent of the choice of R (see Lemma 2.1). For any prime
`, let v` be the discrete valuation on Q at the prime ` normalized so that v`(`) = 1.
The main results of this paper are:
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Theorem 1.1. Let g ≥ 1 be an integer. There is an positive integer N only depending
on g such that vp(ci(End(A))) < N for any g-dimensional abelian variety over any
field of characteristic p > 0.

Theorem 1.2. Let g ≥ 1 be an integer. There are only finitely many isomorphism
classes of rings End(A)⊗ Zp for all g-dimensional abelian varieties A over any field
of characteristic p > 0.

One can also deduce easily from Theorem 1.1 the following:

Corollary 1.3. Let g ≥ 1 be an integer. There are only finitely many isomorphism
classes of endomorphism rings of g-dimensional supersingular abelian varieties over
an algebraically closed field k of characteristic p > 0.

As pointed out by the referee, Theorem 1.1 generalizes the following classical result
of Deuring [4]. See Lang’s book [7], Chapter 13 for a modern exposition.

Theorem 1.4 (Deuring). Let E be an elliptic curve over an algebraically closed
field of prime characteristic p. Then its endomorphism ring End(E) is either Z, a
maximal order in the definite quaternion Q-algebra of discriminant p, or an order in
an imaginary quadratic field whose conductor is prime to p. In particular, the index
of End(E) in a maximal order of End0(E) is prime to p.

Note that by a theorem of Li-Oort [8], the supersingular locus Sg of the Siegel
moduli space Ag ⊗ Fp has dimension [g2/4]. In particular, there are infinitely many
non-isomorphic supersingular abelian varieties. It is a priori not obvious why there
should be only finitely many isomorphism classes in their endomorphism rings. How-
ever, since all of them are given by an isogeny of degree pg(g−1)/2 from a superspecial
one (see Li-Oort [8]), the finiteness result might be expected. This is indeed the idea
of proving Theorem 1.1.

The proof of Theorem 1.1 uses the following universal bounded property due to
Manin [9]: for a fixed integer h ≥ 1, the degrees of the minimal isogenies ϕ : X0 → X,
for all p-divisible groups X of height h over an algebraically closed field of fixed
characteristic p, are bounded. See Section 4 for the definition and properties of
minimal isogenies. F. Oort asks (in a private conversation) the following question:
if X is equipped with an action ι by an order O of a finite-dimensional semi-simple
algebra over Qp, is there an action ι0 of O on X0 so that the minimal isogeny ϕ
becomes O-linear? Clearly, such a map ι0 : O → End(X0) is unique if it exists.
The motivation of this question is looking for a good notion of minimal isogenies
when one considers abelian varieties with additional structures (polarizations and
endomorphisms). We confirm his question with positive answer in Section 4 (see
Proposition 4.8). This also plays a role in the proof of Theorem 1.1.

Theorem 1.1 is sharp at least when the ground field k is algebraically closed.
Namely, for any prime ` 6= char(k), the finiteness for v`(ci(End(A))) does not hold in
general. Indeed, we show (see Section 5)

Proposition 1.5. Let p be a prime number or zero. There exists an abelian variety
A0 over an algebraically closed field k of characteristic p so that for any prime ` 6= p
and any integer n ≥ 1, there exists an A ∈ [A0]k such that v`(ci(End(A))) ≥ n.
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In fact, elliptic curves already provide such examples in Proposition 1.5. For these
examples, there are infinitely many isomorphism classes of rings End(A)⊗ Z` in the
isogeny class for each prime ` prime to the characteristic of ground field.

The finiteness result (Corollary 1.3) gives rise to a new refinement on the supersin-
gular locus Sg arising from arithmetic. We describe now this “arithmetic” refinement
in the special case where g = 2. Let V be an irreducible component of the super-
singular locus S2 in the Siegel 3-fold (with an auxiliary prime-to-p level structure)
over Fp. It is known that V is isomorphic to P1 over Fp. We fix an isomorphism
and choose an appropriate Fp2-structure on V (see Subsection 5.3 for details). For
any point x in the Siegel moduli space, write cp(x) for vp(ci(End(Ax))), where Ax is
the underlying abelian variety of the object (Ax, λx, ηx) corresponding to the point
x. For each integer m ≥ 0, let

Vm := {x ∈ V ; cp(x) ≤ m}.

The collection {Vm}m≥0 forms an increasing sequence of closed subsets of V = P1.
We have (see Subsection 5.4)

V0 = · · · = V3 ⊂ V4 = V5 ⊂ V6 = V,

and
V0 = P1(Fp2), V4 = P1(Fp4).

This refines the standard consideration on S2 by superspecial and non-superspecial
points.

This paper is organized as follows. Sections 2-4 are devoted to the proof of Theo-
rems 1.1 and 1.2. Section 2 reduces to an analogous statement for p-divisible groups
over an algebraically closed field. Section 3 provides necessary information about
minimal Dieudonné modules. In Section 4 we use minimal isogenies to conclude the
finiteness of co-indices of endomorphism rings of p-divisible groups, and finish the
proof of Theorem 1.2. Section 5 provides examples which particularly show that the
`-co-index of the endomorphism rings can be arbitrarily large for any prime ` 6= p. A
special case for the “arithmetic” refinement is treated there.

2. Reduction steps of Theorem 1.1

2.1. Co-Index. Let K be a number field, and OK the ring of integers. Denote by
Kv the completion of K at a place v of K, and OKv the ring of integers when v is
finite. Let B be a finite-dimensional semi-simple algebra over K, and let O be an
OK-order of B. The co-index of O, written as ci(O), is defined to be the index [R : O],
where R is a maximal order of B containing O. We define the co-index similarly for
an order of a finite-dimensional semi-simple algebra over a p-adic local field. For each
finite place v of K, we write Rv := R ⊗OK

OKv
and Ov := O ⊗OK

OKv
. From the

integral theory of semi-simple algebras (see Reiner [16]), each Rv is a maximal order
of B ⊗K Kv and we have R/O ' ⊕vRv/Ov, where v runs through all finite places of
K. It follows that

(2.1) ci(O) =
∏

v:finite

ci(Ov), ci(Ov) := [Rv : Ov].
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As the algebra B is determined by O, the co-index ci(O) makes sense without men-
tioning the algebra B containing it.

Lemma 2.1. The co-index ci(O) is independent of the choice of a maximal order
containing it.

Proof. Using the product formula (2.1), it suffices to show the local version of the
statement. Therefore, we may assume that K is a p-adic local field. If R′ is another
maximal order containing O, then R′ = gRg−1 for some element g ∈ B×. Since in
this case [R : O] = vol(R)/vol(O) for any Haar measure on B, the statement then
follows from the equality vol(R) = vol(gRg−1). �

2.2. Base change.

Lemma 2.2. Let A be an abelian variety over a field k and let k′ be a field extension
of k, then the inclusion Endk(A) → Endk′(A ⊗ k′) is co-torsion-free, that is, the
quotient is torsion free. Furthermore, we have

(2.2) ci[Endk(A)] | ci[Endk′(A⊗ k′)].

Proof. The first statement follows from Oort [13], Lemma 2.1. For the second
statement, we choose a maximal order O1 of End0

k(A) containing Endk(A). Let O2 be
a maximal order of End0

k′(A⊗k′) containing O1 and Endk′(A⊗k′). Since Endk(A) =
End0

k(A) ∩ Endk′(A ⊗ k′), we have the inclusion O1/ Endk(A) ⊂ O2/ Endk′(A ⊗ k′).
This proves the lemma. �

By Lemma 2.2, we can reduce Theorem 1.1 to the case where k is algebraically
closed.

2.3. Reduction to p-divisible groups.

Lemma 2.3. Let A be an abelian variety over a field k. Let ` be a prime, possibly
equal to char(k). The inclusion map Endk(A)⊗Z` → Endk(A[`∞]) is co-torsion-free.
Here A[`∞] denotes the associated `-divisible group of A.

Proof. When ` 6= char(k), this is elementary and well-known; see Tate [20], p. 135.
The same argument also shows the case when ` = char(k). �

We remark that for an arbitrary ground field k, the endomorphism algebra
End0

k(A[`∞]) := Endk(A[`∞]) ⊗Z`
Q` of the associated `-divisible group A[`∞] of

an abelian variety A over k, where ` is a prime 6= char(k), may not be semi-simple;
see Subsection 5.5. Therefore, the numerical invariant ci(Endk(A[`∞])) may not be
defined in general. Analogously, in the case where char(k) = p > 0, the endomor-
phism algebra End0

k(X) := Endk(X)⊗Zp Qp of a p-divisible group X over k may not
be semi-simple, and hence the numerical invariant ci(Endk(X)) may not be defined in
general, either. See Subsection 5.6. However, when the ground field k is algebraically
closed, both ci(End(A[`∞])) and ci(End(A[p∞])) are always defined for any abelian
variety A.

Lemma 2.4. Let A be an abelian variety over an algebraically closed field k of char-
acteristic p > 0. Then one has

(2.3) vp(ci(Endk(A))) ≤ vp(ci(Endk(A[p∞]))).
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Proof. Let R be a maximal order of End(A)⊗Qp containing End(A)⊗ Zp. Then
there is an isogeny ϕ : A → A′ of p-power degree over k such that End(A′)⊗Zp = R.
We may assume that the degree of this isogeny is minimal among isogenies with this
property. Then we have End(A[p∞]) ⊂ End(A′[p∞]). As End(A)⊗Qp∩End(A[p∞]) =
End(A)⊗Zp, we have the inclusion R/(End(A)⊗Zp) ⊂ End(A′[p∞])/(End(A[p∞])).
This yields the inequality (2.3). �

By Lemmas 2.2 and 2.4, Theorem 1.1 follows from the following theorem.

Theorem 2.5. Let k be an algebraically closed field of characteristic p > 0 and let
h ≥ 1 be a fixed integer. Then there is an integer N > 1, depending only on h, such
that for any p-divisible group X of height h over k, one has vp(ci(End(X))) ≤ N .

3. Minimal Dieudonné modules

3.1. Notation. In Sections 3 and 4, we let k denote an algebraically closed field of
characteristic p > 0. Let W := W (k) be the ring of Witt vectors over k, and B(k) be
the fraction field of W (k). Let σ be the Frobenius map on W and B(k), respectively.
For each W -module M and each subset S ⊂ M , we denote by 〈S〉W the W -submodule
generated by S. Similarly, 〈S〉B(k) ⊂ M ⊗Qp denotes the vector subspace over B(k)
generated by S. In this paper we use the covariant Dieudonné theory. Dieudonné
modules considered here are assumed to be finite and free as W -modules. Let DM
denote the category of Dieudonné modules over k.

To each rational number 0 ≤ λ ≤ 1, one associates coprime non-negative integers
a and b so that λ = b/(a + b). For each pair (a, b) 6= (0, 0) of coprime non-negative
integers, write M(a,b) for the Dieudonné module W [F, V ]/(F a − V b).

We write a Newton polygon or a slope sequence β as a finite formal sum:∑
i

riλi or
∑

i

ri(ai, bi),

where each 0 ≤ λi ≤ 1 is a rational number, ri ∈ N is a positive integer, and (ai, bi) is
the pair associated to λi (By convention, the multiplicity of the slope λi is biri). The
Manin-Dieudonné Theorem ([9], Chap. II, “Classification Theorem”, p. 35) asserts
that for any Dieudonné module M over k, there are distinct coprime non-negative
pairs (ai, bi) 6= (0, 0), and positive integers ri, for i = 1, . . . , s, such that there is an
isomorphism of F -isocrystals

(3.1) M ⊗Qp '
s⊕

i=1

(M(ai,bi) ⊗Qp)⊕ri .

Moreover, the pairs (ai, bi) and integers ri are uniquely determined by M . The
Newton polygon of M is defined to be

∑s
i=1 ri(ai, bi); the rational numbers λi =

bi/(ai +bi) are called the slopes of M . The Newton polygon of the Dieudonné module
M(a,b) above has single slope λ = b/(a + b).

The F -subisocrystal Nλi
of M⊗Qp that corresponds to the factor (M(ai,bi)⊗Qp)⊕ri

in (3.1) is unique and is called the isotypic component of M ⊗ Qp of slope λi =
bi/(ai + bi). A Dieudonné module or an F -isocrystal is called isoclinic if it has single
slope, or equivalently M ⊗Qp is an isotypic component of itself.
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If M is a Dieudonné module over k, the endomorphism ring End(M) = EndDM(M)
is the ring of endomorphisms on M in the category DM; we write End0(M) :=
End(M)⊗Zp Qp for the endomorphism algebra of M . If the Newton polygon of M is∑s

i=1 ri(ai, bi), then the endomorphism algebra of M is isomorphic to the product of
the matrix algebras Mri(End0(M(ai,bi))).

Lemma 3.1.

(1) The endomorphism algebra End0(M(a,b)) is isomorphic to

(3.2) B(Fpn)[Π′], (Π′)n = pb, cΠ′ = Π′σ(c), ∀ c ∈ B(Fpn).

Therefore, End0(M(a,b)) is a central division algebra over Qp of degree n2 with
Brauer invariant b/n.

(2) The maximal order of the division algebra B(Fpn)[Π′] is W (Fpn)[Π], where
Π = (Π′)mpm′

for some integers m and m′ such that bm + nm′ = 1, subject
to the following relations

(3.3) Πn = p, and cΠ = Πσm(c) ∀ c ∈ W (Fpn)

Proof. This is certainly well-known; we provide a proof for the reader’s convenience.
Note that using (Π′)n = pb one sees that the element Π in (2) independent of the
choice of the integers m and m′.

(1) The F -isocrystal N := M(a,b) ⊗ Qp is generated by the element e0 := 1. Put
ei := F ie0 for i = 1, . . . , n−1; the vectors e0, . . . , en−1 form a B(k)-basis for N . Since
N is generated by e0 (as an F -isocrystal) and (Fn − pb)e0 = 0, any endomorphism
ϕ ∈ End(N) is determined by the vector ϕ(e0) and this vector lies in the subspace
〈e0, . . . , en−1〉B(Fpn ). Let Π′ be the element in End(N) such that Π′(e0) = e1, and
for each element c ∈ B(Fpn), let ϕc be the endomorphism such that ϕc(e0) = ce0. It
is not hard to see that the endomorphism algebra End(N) is generated by elements
Π′ and ϕc for all c ∈ B(Fpn). One checks that ϕcΠ′ = Π′ϕσ(c) for all c ∈ B(Fpn).
This proves the first part of (1). One extends the valuation vp on Qp naturally to the
division algebra B(Fpn)[Π′]. According to the definition (we use the normalization
in [15], see p. 338), the Brauer invariant is given by vp(Π′), which is equal to b/n.
Therefore, the statement (1) is proved.

(2) It is straightforward to check the relations (3.3). Using these, any element c in
the division algebra B(Fpn)[Π′] can be written uniquely as

c = Πr(c0 + c1Π + · · ·+ cn−1Πn−1),

for some r ∈ Z and some elements ci ∈ W (Fpn) for i = 0, . . . , n− 1 such that c0 is a
unit in W (Fpn). The valuation vp(c) is r/n. This shows that the subring W (Fpn)[Π]
consists of elements c with vp(c) ≥ 0. Since any order of B(Fpn)[Π′] is contained in
the subring of elements c with vp(c) ≥ 0, the order W (Fpn)[Π] is maximal. �

According to Lemma 3.1, a Dieudonné module M or an F -isocrystal is isoclinic if
and only if its endomorphism algebra is a (finite-dimensional) central simple algebra
over Qp. A Dieudonné module M or M ⊗Qp is called isosimple if its endomorphism
algebra is a (finite-dimensional) central division algebra over Qp, that is, the F -
isocrystal M ⊗Qp is isomorphic to M(a,b) ⊗Qp for some pair (a, b).
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3.2. Minimal Dieudonné modules. Let (a, b) be a pair as above, and let n := a+b.
Denote by M(a,b) the Dieudonné module over Fp as follows: it is generated by elements
ei, for i ≥ 0 ∈ Z, with relation ei+n = pei, as a Zp-module, and with operations
Fei = ei+b and V ei = ei+a for all i ∈ Z≥0. One extends the maps F and V on
M(a,b) ⊗ W by σ-linearity and σ−1-linearity, respectively, so that M(a,b) ⊗ W is a
Dieudonné module over k.

Let β =
∑

i ri(ai, bi) be a Newton polygon. We put M(β) :=
∑

i M
⊕ri

(ai,bi)
. Note

that the Dieudonné module M(β) has Newton polygon β. Write βt :=
∑

i ri(bi, ai)
for the dual of β. Denote by H(β) the p-divisible group over Fp corresponding to the
Dieudonné module M(βt) (This is because we use the covariant theory; the Newton
polygon of a p-divisible group G is equal to the dual of that of its Dieudonné module
M(G)).

Definition 3.2. ([3], Section 5)
(1) A Dieudonné module M over k is called minimal if it is isomorphic to M(β)⊗W

for some Newton polygon β. In this case β is the Newton polygon of M .
(2) A p-divisible group X over k is called minimal if its associated Dieudonné

module is so.

Let Mλ be an isoclinic Dieudonné module of slope λ = b
a+b (in reduced form).

There exist integers x and y such that xa + yb = 1. Put Nλ := Mλ ⊗ Qp and let
Π0 := F yV x be an operator on Nλ; it is σy−x-linear and it depends on the choice of
the integers x and y. Let

(3.4) Ñλ := {m ∈ Nλ |Fnm = pbm }
be the skeleton of Nλ; it is a B(Fpn)-subspace that has the same dimension as Nλ,
equivalently Ñλ generates Nλ over B(k). Since Π0F = FΠ0, the operator Π0 leaves
the subspace Ñλ invariant. The restriction of Π0 to Ñλ has the following properties:

• Π0 (on Ñλ) is independent of the choice of the integers x and y, and
• Πn

0 = p, Πb
0 = F and Πa

0 = V on Ñλ.

Lemma 3.3. Notation as above. An isoclinic Dieudonné module Mλ of slope λ is
minimal if and only if (i) FnMλ = pbMλ, and (ii) Π0(Mλ) ⊂ Mλ.

Proof. It is clear that a minimal isoclinic Dieudonné module satisfies the conditions
(i) and (ii). Conversely, suppose Mλ satisfies the conditions (i) and (ii). The condition
(i) implies that Mλ is generated by the skeleton M̃λ over W . Since Π0M̃λ ⊃ Πn

0 M̃λ =
pM̃λ, the quotient M̃λ/Π0(M̃λ) is a finite-dimensional vector space over Fpn . Choose
elements f1, . . . , fd in M̃λ such that they form an Fpn -basis in M̃λ/Π0(M̃λ). For each
i = 1, . . . , d, the W -submodule 〈fi,Π0(fi), . . . ,Πn−1

0 (fi)〉 is a Dieudonné submodule of
M . Since F sends Πj

0(fi) to Πj+b
0 (fi) and V sends Πj

0(fi) to Πj+a
0 (fi), this Dieudonné

module is isomorphic to W ⊗ M(a,b) by sending Πj
0(fi) to ej . Therefore, Mλ '

W ⊗M⊕d
(a,b). This proves the lemma. �

Let M be a Dieudonné module. Put N := M ⊗Qp. Let

N =
⊕

λ

Nλ
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be the decomposition into isotypic components. Put Mλ := M ∩Nλ.

Lemma 3.4.
(1) A Dieudonné module M is minimal if and only if its endomorphism ring

End(M) is a maximal order of End0(M).
(2) A Dieudonné module M is minimal if and only if it is isomorphic to the direct

sum of its isotypic components Mλ and each factor Mλ is minimal.

Proof. (1) To prove the only if part, it suffices to show when M = M(a,b) (for
simplicity we write M(a,b) for M(a,b) ⊗ W here). Let n := a + b and m ∈ Z such
that mb ≡ 1 mod n. For each element c ∈ W (Fpn), we define an endomorphism
ϕc ∈ EndDM(M(a,b)) by ϕc(ei) = σmi(c)ei for all i ≥ 0. Let Π ∈ EndDM(M(a,b)) be
the endomorphism which sends ei to ei+1. The endomorphism ring EndDM(M(a,b))
is generated by elements Π and ϕc for all c ∈ W (Fpn), subject to the relations
Πn = p and Πϕc = ϕσ−m(c)Π. Hence, EndDM(M(a,b)) ' W (Fpn)[Π] with relations
Πn = p and ΠcΠ−1 = σ−m(c) for c ∈ W (Fpn). This is the maximal order in the
endomorphism algebra End0

DM(M(a,b)); see Lemma 3.1.
We prove the if part. First of all, a maximal order is isomorphic to a product of

matrix rings Md(OD), where D is a division central algebra over Qp and OD is its
maximal order. Using the Morita equivalence, we can assume that End0

DM(M) is
a division algebra D and EndDM(M) = OD. Let [D : Qp] = n2. One chooses a
presentation for OD = W (Fpn)[Π] with relations Πn = p and ΠcΠ−1 = σ−m(c) for
a ∈ W (Fpn), for some m ∈ Z. Let b be the integer such that bm ≡ 1 mod n and
0 ≤ b < n. Using Lemma 3.1, the division algebra D has invariant b/n, and hence
the Dieudonné module M has single slope b/n. Put M̃ := {x ∈ M ;Fnx = pbx} and
Ñ := M̃ ⊗Qp be the skeleton of M ⊗ Qp. It follows from FΠ = ΠF that Π is an
automorphism on Ñ . It follows from Ñ ∩M = M̃ that for x ∈ M , one has x ∈ M̃

if and only if Πx ∈ M̃ ; this implies M̃ 6⊂ ΠM . Choose an element e0 ∈ M̃ r ΠM .
Then elements e0,Π(e0), . . . ,Πn−1(e0) generate M over W . Using FΠ = ΠF and
Fn = pb on M̃ , one can show that F (e0) = αΠb(e0) for some α ∈ W (Fpn)× with
NW (Fpn )/Zp

(α) = 1. By Hilbert’s 90, one may replace e0 by λe0 so that F (e0) =
Πb(e0). This shows M ' M(a,b).

(2) This is clear. �

4. Construction of minimal isogenies

4.1. Minimal isogenies.

Definition 4.1. (cf. [8], Section 1) Let X be a p-divisible group over k. The minimal
isogeny of X is a pair (X0, ϕ) where X0 is a minimal p-divisible group over k, and
ϕ : X0 → X is an isogeny over k such that for any other pair (X ′

0, ϕ
′) as above there

exists an isogeny ρ : X ′
0 → X0 such that ϕ′ = ϕ ◦ ρ. Note that the morphism ρ is

unique if it exists.

Lemma 4.2. Let M be a Dieudonné module over k. Then there exists a unique
biggest minimal Dieudonné submodule Mmin contained in M . Dually there is a unique
smallest minimal Dieudonné module Mmin containing M .
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Proof. Suppose that M1 is a minimal Dieudonné module contained in M . Then
M1,λ ⊂ Mλ (see Section 3). Therefore we may assume that M is isoclinic of slope λ. If
M1 and M2 are two minimal Dieudonné modules contained M , then M1+M2 satisfies
the conditions (i) and (ii) in Lemma 3.3, and hence it is minimal. This completes the
proof. �

The minimal Dieudonné module Mmin is called the minimal Dieudonné submodule
of M ; the module Mmin is called the minimal Dieudonné overmodule of M . By
Lemma 4.2, we have

Corollary 4.3. For any p-divisible group X over k, the minimal isogeny exists.

Remark 4.4. For the reader who might question about ground fields, we mention that
the notion of minimal isogenies can be generalized over any field of characteristic p as
follows. Let X be a p-divisible group over a field K of characteristic p > 0. We call
a K-isogeny ϕ : X0 → X minimal if

(i) (stronger form) X0 is isomorphic to H(β) ⊗Fp
K, for some Newton polygon

β, and ϕ satisfies the universal property as in Definition 4.1, or
(ii) (weaker form) the base change over its algebraic closure ϕK̄ : X0,K̄ → XK̄ is

the minimal isogeny of XK̄ .
Suppose that X is an etale p-divisible group over K. Then XK̄ is a minimal

p-divisible group, and the identity map id : X → X is a minimal isogeny in the
sense of the weaker form. However, if X is not isomorphic to the constant etale
p-divisible group, then X is not isogenous over K to the constant etale p-divisible
group. Therefore, X does not admit a minimal isogeny in the sense of the stronger
form.

We need the following finiteness result due to Manin. This follows immediately
from [9], Theorems III.3.4 and III.3.5.

Theorem 4.5. Let h ≥ 1 be a positive integer. Then there is an integer N only
depending on h such that for all p-divisible groups X of height h over k, the degree of
the minimal isogeny ϕ of X is less than pN .

Remark 4.6. Let E be the (unique up to isomorphism) supersingular p-divisible group
of height two over k, and let X0 := Eg. Let X be a supersingular p-divisible group
of height 2g over k. Nicole and Vasiu showed that the kernel of the minimal isogeny
ϕ : X0 → X is annihilated by pd(g−1)/2e; see [11], Remark 2.6 and Corollary 3.2.
Moreover, this is optimal, that is, there is a supersingular p-divisible group X of
height 2g such that ker ϕ is not annihilated by pd(g−1)/2e−1; see [11], Example 3.3.

4.2. Construction of minimal isogenies. Let M be a Dieudonné module over k.
Put N := M ⊗Qp and let

N =
⊕

λ

Nλ

be the isotypic decomposition. Let Ñλ be the skeleton of Nλ (see (3.4)) and put
M̃λ := Mλ ∩ Ñλ. Let (a, b) be the pair associated to λ and put n = a + b. Write
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W0 for the ring W (Fpn) of Witt vectors over Fpn . Let Q̃λ := W0[Π0]M̃ t
λ, the W0[Π0]-

submodule of Ñ t
λ generated by M̃ t

λ. Let P̃λ := Q̃t
λ and let

(4.1) P (M) :=
⊕

λ

〈P̃λ〉W .

We claim that

Lemma 4.7. The Dieudonné module P (M) constructed as above is the minimal
Dieudonné submodule Mmin of M .

Proof. It is clear that Mmin = ⊕Mmin,λ and Mmin,λ is the minimal Dieudonné sub-
module of Mλ. Therefore, it suffices to check P̃λ = M̃min,λ. As M̃min,λ ⊂ M̃λ, M̃min,λ

is the minimal Dieudonné submodule of M̃λ. Taking dual, it suffices to show that Q̃λ

is the minimal Dieudonné overmodule of M̃ t
λ. This then follows from Lemma 3.3. �

Let O be an order of a finite-dimensional semi-simple algebra over Qp. A p-divisible
O-module is a pair (X, ι), where X is a p-divisible group and ι : O → End(X) is a
ring monomorphism.

Proposition 4.8. Let (X, ι) be a p-divisible O-module over k and let ϕ : X0 → X
be the minimal isogeny of X over k. Then there is a unique ring monomorphism
ι0 : O → End(X0) such that ϕ is O-linear.

Proof. Let M be the Dieudonné module of X and let φ ∈ EndDM(M) be an
endomorphism. It suffices to show that φ(Mmin) ⊂ Mmin. It is clear that φ(Ñλ) ⊂
Ñλ. It follows from the construction of the minimal Dieudonné submodule that
φ(Mmin) ⊂ Mmin. This proves the proposition. �

4.3. Proof of Theorem 2.5. Let M be the Dieudonné module of X. Let Mmin be
the minimal Dieudonné overmodule of M . By Theorem 4.5, there is a positive integer
N1 only depending on the rank of M such that the length length(Mmin/M) as a W -
module is less than N1. Let N2 be a positive integer so that pN2Mmin ⊂ M ⊂ Mmin.
Let φ ∈ EndDM(M) be an element. By Proposition 4.8, one has φ ∈ EndDM(Mmin).
Therefore, we have showed

(4.2) EndDM(M) = {φ ∈ EndDM(Mmin) ; φ(M) ⊂ M}.

We claim that pN2 EndDM(Mmin) ⊂ EndDM(M). Indeed, if φ ∈ EndDM(Mmin),
then

pN2φ(M) ⊂ pN2Mmin ⊂ M.

Therefore, there is an positive integer N only depending on the rank of M such
that vp(ci(EndDM(M))) < N . This completes the proof of Theorem 2.5, and hence
completes the proof of Theorem 1.1.
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4.4. Proof of Theorem 1.2. By a theorem of Tate [20], we have

[End0(A)⊗Qp : Qp] ≤ 4g2.

Since there are finitely many finite extensions of Qp of bounded degree, and finitely
many Brauer invariants with bounded denominator, there are finitely many semi-
simple algebras End0(A)⊗Qp, up to isomorphism, of abelian varieties A of dimension
g. It follows from Theorem 1.1 that in each isogeny class there are finitely many endo-
morphism rings End(A)⊗ Zp, up to isomorphism. Therefore, there are finitely many
isomorphism classes of the endomorphism rings End(A) ⊗ Zp for all g-dimensional
abelian varieties A of a field of characteristic p > 0. This completes the proof.

5. Examples

5.1. We start with a trivial example. Suppose the abelian variety A0 over a field k
has the property Endk(A0) = Z. Then for any member A ∈ [A0]k, the endomorphism
ring Endk(A) is always a maximal order. Therefore, there is an isogeny class [A0]k
such that the endomorphism rings Endk(A) are maximal for all A ∈ [A0]k.

5.2. Let p be any prime number. Let K be an imaginary quadratic field such that
p splits in K. Let OK be the ring of integers. For any positive integer m, let E(m)

be the elliptic curve over C so that E(m)(C) = C/Z + mOK . It is easy to see that
EndC(E(m)) = Z + mOK , and hence ci(End(E(m))) = m. By the theory of complex
multiplication [19], each elliptic curve E(m) is defined over Q̄ and has good reduction
everywhere over some number field. Let E

(m)
p be the reduction of E(m) over Fp;

this is well-defined. Since OK ⊗ Zp has non-trivial idempotent and hence it is not
contained in the division quaternion Qp-algebra, E

(m)
p is ordinary. Therefore, we have

End(E(m)
p )⊗Zp = Zp×Zp is maximal (see [4], cf. [7], Chapter 13, Theorem 5, p. 175).

Clearly we have E(m) ∈ [E(1)]Q and E
(m)
p ∈ [E(1)

p ]Fp
. Using [13], Lemma 2.1, we show

that for (m, p) = 1, ci(End(E(m)
p )) = ci(End(E(m)) = m. These give examples over a

field characteristic zero or p > 0 in Proposition 1.5.
Note that not all of elliptic curves E(m) (resp. E

(m)
p ) above are defined over a fixed

number field (resp. a fixed finite field). Therefore, we did not exhibit an example for
Proposition 1.5 when the ground k is of finite type over its prime subfield. In the case
where k is a finite field or a number field, there are only finitely many isomorphism
classes over k in an isogeny class [A0]k (see Milne [10], Chap. I, Corollary 13.13, p.
61 and Chap. VI, Theorem 1.1, p. 131). In particular, the co-index ci(End(A)) is
bounded for A ∈ [A0]k. One might expect that the latter is true when k is finitely
generated over its prime subfield.

5.3. Description of S2. Let n ≥ 3 be a prime-to-p positive integer. Let A2,1,n ⊗
Fp denote the Siegel 3-fold over Fp with level n-structure, and let S2 denote the
supersingular locus. Let Λ∗ be the set of isomorphism classes of superspecial polarized
abelian surfaces (A, λ, η) over Fp with polarization degree deg λ = p2 and a level
n-structure η. For each member ξ = (A1, λ1, η1) ∈ Λ∗, let Sξ be the space that
parametrizes degree p isogenies ϕ : (A1, λ1, η1) → (A, λ, η) preserving polarizations
and level structures. The variety Sξ is isomorphic to P1 over Fp; we impose the
Fp2-structure on P1 defined by F 2 = −p on M1, where M1 is the Dieudonné module
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of A1 and F is the Frobenius map on M1. For this structure, the superspecial points
are exactly the Fp2-valued points on V . It is known (see Katsura-Oort [6]) that
the projection pr : Sξ → S2 induces an isomorphism pr : Sξ ' Vξ ⊂ S2 onto one
irreducible component. Conversely, any irreducible component V is of the form Vξ for
exact one member ξ ∈ Λ∗. Two irreducible components V1 and V2, if they intersect,
intersect transversally at some superspecial points.

5.4. “Arithmetic” refinement of S2. We describe the arithmetic refinement on
one irreducible component V = P1 of S2. For any point x, we write cp(x) for
vp(ci(End(Ax))), where Ax is the underlying abelian surface of the object (Ax, λx, ηx)
corresponding to the point x. Let D be the division quaternion algebra over Qp

and let OD be the maximal order of D. The endomorphism ring of a superspecial
Dieudonné module is (isomorphic to) M2(OD). For non-superspecial supersingular
Dieudonné modules, one can compute their endomorphism rings using (4.2). Let
π : M2(OD) → M2(Fp2) be the natural projection. We compute these endomorphism
rings and get (see [23], Proposition 3.2):

Proposition 5.1. Let x be a point in V = P1 and let Mx be the associated Dieudonné
module.

(1) If x ∈ P1(Fp2), then EndDM(Mx) = M2(OD).
(2) If x ∈ P1(Fp4)−P1(Fp2), then

EndDM(Mx) ' {φ ∈ M2(OD) ;π(φ) ∈ B′
0 },

where B′
0 ⊂ M2(Fp2) is a subalgebra isomorphic to Fp2(x).

(3) If x ∈ P1(k)−P1(Fp4), then

EndDM(Mx) '
{

φ ∈ M2(OD) ;π(φ) =
(

a 0
0 a

)
, a ∈ Fp2

}
.

We remark that Proposition 5.1 was also known to Ibukiyama.
For each integer m ≥ 0, let

Vm := {x ∈ V ; cp(x) ≤ m}.
The collection {Vm}m≥0 forms an increasing sequence of closed subsets of V = P1.
We apply Proposition 5.1 and get

V0 = · · · = V3 ⊂ V4 = V5 ⊂ V6 = V,

and
V0 = P1(Fp2), V4 = P1(Fp4).

This provides more information on S2 not just superspecial and non-superspecial
points.

5.5. Semi-simplicity of Tate modules. Let A be an abelian variety over a field
k. Let ksep a separable closure of k and let G := Gal(ksep/k) be the Galois group.
To each prime ` 6= char(k), one associates the `-adic Galois representation

ρ` : G → Aut(T`(A)),

where T`(A) is the Tate module of A. According to Faltings [5] and Zarhin [24],
under the condition that the ground field k is of finite type over its prime field, the
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Tate module V` := T`(A)⊗Q` is semi-simple as a Q`[G]-module. We show that this
condition is necessary.

Let A0 be an abelian variety over a field k0 which is finitely generated over its
prime field. We write G0 := Gal(ksep

0 /k0) and Galg
0 for the algebraic envelope of

G` := ρ`(G0); that is, Galg
0 is the Zariski closure of G` in Aut(V`(A0)) that is regarded

as algebraic groups over Q`. Assume that the algebraic group Galg
0 is not a torus;

for example let A0 be an elliptic curve without CM. We shall choose an intermediate
subfield k0 ⊂ k ⊂ ksep

0 so that the Tate module V`(A) associated to the base change
A := A0⊗k is not semi-simple as a G := Gal(ksep/k)-module. We can choose a closed
subgroup H ⊂ G` such that V`(A0) is not a semi-simple Q`[H]-module. To see this,
by Bogomolov’s theorem (see [1]), G` is an open compact subgroup of Galg

0 (Q`). We
choose a Borel subgroup of B of Galg

0 and let H be the the intersection G` ∩ B(Q`).
Then H is a closed non-commutative solvable group and V`(A0) is not a semi-simple
Q`[H]-module. Using the Galois theory, let k correspond the closed subgroup ρ−1

` (H).
Then the abelian variety A := A0 ⊗ k gives a desired example.

In this example, the endomorphism algebra End0
k(A[`∞]) = EndQ`[H](V`(A)) is not

semi-simple.

5.6. Semi-simplicity of endomorphism algebras of p-divisible groups. Let k
be a field of characteristic p > 0. Consider the following two questions:

(1) Is the category of p-divisible groups of finite height up to isogeny over k semi-
simple?

(2) Is the endomorphism algebra Endk(X) ⊗ Qp of a p-divisible group X over k
semi-simple?

We show that the answers to both questions are negative. Indeed etale p-divisible
groups already provide such examples. Note that the category of etale p-divisible
groups of finite height up to isogeny is equivalent to the category of continuous linear
representations of Gal(ksep/k) on finite-dimensional Qp-vector spaces. For instance,
one can have a 2-dimensional Galois representation whose image is the set of all
upper-triangular unipotent matrices in GL2(Zp). It gives a counter-example for both
questions.
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(1983), 349–366.

[6] T. Katsura and F. Oort, Families of supersingular abelian surfaces, Compositio Math. 62 (1987),

107–167.

[7] S. Lang, Elliptic functions. Second edition. Graduate Texts in Mathematics, 112. Springer-

Verlag, New York, 1987.

[8] K.-Z. Li and F. Oort, Moduli of Supersingular Abelian Varieties. Lecture Notes in Math., vol.

1680, Springer-Verlag, 1998.

[9] Yu. Manin, Theory of commutative formal groups over fields of finite characteristic, Russian

Math. Surveys 18 (1963), 1–80.

[10] J. Milne, Abelian varieties. Available in http://www.jmilne.org.

[11] M.-H. Nicole and A. Vasiu, Minimal truncations of supersingular p-divisible groups, Indiana

Univ. Math. J. 56 (2007), 2887–2897.

[12] F. Oort, The isogeny class of a CM-type abelian variety is defined over a finite extension of the

prime field, J. Pure Appl. Algebra 3 (1973), 399–408.

[13] F. Oort, Endomorphism algebras of abelian varieties, Algebraic geometry and commutative

algebra, in honor of M. Nagata (1988), 469–502.

[14] F. Oort, Minimal p-divisible groups, Ann. Math. 161 (2005), 1021–1036.

[15] R. S. Pierce, Associative algebras. Graduate Texts in Mathematics, 88. Springer-Verlag, New

York-Berlin, 1982. 436 pp.

[16] I. Reiner, Maximal orders. London Mathematical Society Monographs, No. 5. Academic Press,

London-New York, 1975. 395 pp.

[17] V. Rotger, Which quaternion algebras act on a modular abelian variety? Math. Res. Lett. 15

(2008), no. 2, 251–263.
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