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LEMNISCATES DO NOT SURVIVE LAPLACIAN GROWTH

D. Khavinson, M. Mineev-Weinstein, M. Putinar, and R. Teodorescu

1. Introduction

Many moving boundary processes in the plane, e.g., solidification, electrodeposi-
tion, viscous fingering, bacterial growth, etc., can be mathematically modeled by the
so-called Laplacian growth [9, 13]. In a nutshell, it can be described by the equation

(1.1) V (z) = ∂ngΩ(t)(z, ζ),

where V is the normal component of the velocity of the boundary ∂Ω(t) of the moving

domain Ω(t) ⊂ R2 ' C, z ∈ ∂Ω(t), t is time,
∂

∂n
denotes the normal derivative on

∂Ω(t) and gΩ(t)(z, ζ) is the Green function for the Laplace operator in the domain Ω(t)
with a unit source at the point ζ ∈ Ω(t). Equation (1.1) can be elegantly rewritten
as the area-preserving diffeomorphism

(1.2) = (z̄tzθ) = 1,

where = denotes the imaginary part of a complex number, ∂Ω(t) := {z := z (t, θ)} is
the moving boundary parametrized by w = eiθ on the unit circle and the conformal
mapping from, say, the exterior of the unit disk D+ := {|w| > 1} onto Ω(t) with the
normalization z(∞) = ζ, z′(∞) > 0.

The equation (1.2), named Laplacian growth or the Polubarinova - Galin equation
in modern literature, was first derived by Polubarinova-Kochina [11] and Galin [7] in
1945, as a description of secondary oil recovery processes.

This equation is known to be integrable [10], and as such possesses an infinte
number of conserved quantities. More precisely, it admits conserved moments cn =∫
Ω(t)

zndx dy, where n runs over either all non-negative or all non-positive integers

depending on whether domains Ω(t) are finite or infinite. At the same time (1.2)
admits an impressive number of closed-form solutions.

For the background, history, generalizations, references, connections to the theory
of quadrature domains and other branches of mathematical physics we refer the reader
to [4, 8–10,12,13] and the references therein.

In section §2 of this paper, we show that any continuous chain of polynomial

lemniscates of order n: Γt := {|P (z, t)| = 1}, P (z, t) = a(t)
n∏

j=1

(z − λj(t)), where a(t)

is real-valued, is destroyed instantly under the Laplacian growth process described
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in (1.1), with Ω(t) = {|P (z, t)| > 1}, ζ = ∞, unless n = 1, λ1(t) = const and
{Γt = ∂Ω(t)} is simply a family of concentric circles. Here the roots λj(t) of P (z, t)
are all assumed to be inside Ω′

t := {|P (z, t)| < 1}, so Ω and Ω′ are simply connected.
This result shows that unlike quadrature domains (cf. [4, 12]) that are preserved

under the Laplacian growth process, lemniscates for which all the roots of the defining
polynomial are in Ω′

t are instantly destroyed, except for the trivial case of concentric
circles. This, incidentally, agrees with a well-known fact — cf. [5] — that lemniscates
which are also quadrature domains must be circles. The proof of the theorem for the
case of Laplacian growth is given in §2.

In §3 we extend the result of §2 to all the growth processes that are invariant under
time-reversal and for which the boundary velocity is given by

(1.3) V (z) = χ(z)∂ngΩ(t)(z, ζ),

with χ(z) is a bounded, real, positive function on Γt. Invariance under time-reversal
is defined here in the following way: if the boundary Γt+dt is the image of Γt under a
map f(t,dt) : zt ∈ Γt 7→ zt+dt ∈ Γt+dt, then f(t+dt,−dt) ◦ f(t,dt) = I.

We conclude with a few remarks in §4.

2. Destruction of Lemniscates

Theorem 2.1. Suppose that a family of moving boundaries Γt, (where t > 0 is
time), produced by a Laplacian growth process, is a family of polynomial lemniscates

{|P (z, t)| = 1}, where P (z, t) = a(t)
n∏

j=1

[z − λj(t)], and all λj(t) are assumed to be

inside Γt. Then, n = 1 and λ1 = const, i.e., Γt is a family of concentric circles.

Proof. Let Ωt = {z : |P (z, t)| > 1}, D+ = {|w| > 1}. The function ϕ(t) : Ωt → D+,
w = ϕ(z, t) = n

√
P (z, t), where we choose the branch for the n−th root so that

ϕ′(t,∞) > 0, maps Ωt conformally onto D+, ϕ(t,∞) = ∞. It is useful to note that
on Γt, P (z, t) = wn, |w| = 1 and does not depend on t. This is because for any
two moments of time t, τ , we have w(t)(.) = w(τ) ◦ κ(t, τ)(.), where κ is a Möbius
automorphism of the disk. In our case, κ(t, τ)(∞) = ∞, so κ(t, τ)(z) = eiαz, α ∈ R,
but since it also fixes the argument at ∞, κ is the identity.

Therefore, we have (where, as is customary, we denote the partial t-derivative by
a “dot”):

(2.1) Ṗ + P ′
z ż = 0.

Since ϕ(t) maps Γt onto the unit circle, we have z(t) = Ψ(t, w), where Ψ(t, w) =
ϕ−1(t, z). We also have on Γt, by differentiating P (z(w), t) = wn with respect to w,

(2.2) P ′
z · zw = nwn−1

or

(2.3) wzw =
nwn

P ′
z

=
nP

P ′
z

.

From (2.1), conjugating, we infer

(2.4) ż = − Ṗ

P ′
z

.
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Parametrize the unit circle by w = eiθ, 0 ≤ θ ≤ 2π. Then, from (2.3), it follows that
we have on Γt (since (z(t) = z(w, t) = z(w(θ, t)))),

(2.5)
1
i

zθ :=
∂z

i∂θ
= zww =

nP

P ′
z

.

Combining (2.4) and (2.5) yields (< stands for the real part):

(2.6) <
(

ż
1
i

zθ

)
= <

(
− Ṗ

P ′
z

· nP

P ′
z

)
.

Also,

(2.7) <
(

ż
∂z

i∂θ

)
= =

(
żzθ

)
= 1,

where in the last equality we used the hypothesis that the lemniscates Γt := {z(t, θ)}
satisfy the main equation (1.2) of Laplacian growth processes— cf. [8, §4]. Hence,
(2.7), (2.4) and (2.5) imply that

(2.8)
1
n
<

(
Ṗ

P ′
z

izθ

)
= <

(
Ṗ

P ′
z

P

P ′
z

)
=
−1
n

.

Or, we can rewrite (2.8) as

(2.9) <
(
ṖP
)

= − 1
n
|P ′

z|
2
.

Thus, we are finally arriving at

(2.10)
d

dt

(
|P |2

)
= − 1

2n
|P ′

z|
2
.

Therefore, (2.10) holds on the lemniscates Γt = {|P (z, t)| = 1} that are assumed to be
interfaces of a Laplacian growth process. Now the theorem follows from the following.

Lemma 2.1. Let t be the time variable, P (z, t) = a(t)
n∏
1

(z − λi(t)) , be a “flow”

of n-degree polynomials. Assume that the lemniscates Γt := {|P (z, t)| = 1} all have
connected interiors {|P (z, t)| < 1} and a generalized equation (2.10) holds on Γt; i.e.,

(2.11)
d

dt

(
|P (z, t)|2

)
− c(t) |P ′

z(z, t)|2 = 0,

where the function c(t) is real-valued, depends on t only and, hence, is a constant on
Γt. Then, n = 1, λ1 = λ1(t) = const and Γt is a family of concentric circles centered
at λ1.

Proof of the Lemma. Our hypothesis implies that all polynomials |P (z, t)|2 − 1 are
irreducible. Hence, using Hilbert’s Nullstellensatz (e.g., c.f. [2], Proposition 3.3.2), we
infer from (2.11) that

(2.12)
d

dt

(
|P (z, t)|2

)
− c(t) |P ′

z(z, t)|2 = B(t)
(
|P (z, t)|2 − 1

)
.

Equation (2.12) holds for all z ∈ C and for an interval of time t, and for each t, both
sides are real-analytic functions in z and z. Hence, we can “polarize” (2.12), i.e.,
replace z by an independent complex variable ξ. (This is due to a simple observation:
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real-analytic functions of two variables are nothing else but restrictions of holomorphic
functions in z, ξ-variables to the plane {ξ = z}. Hence, if two real-analytic functions
coincide on that plane, they coincide in C2 as well.) Denoting by P# the polynomial
whose coefficients are obtained from P by complex conjugation, we have (2.12) in a
“polarized” form holding for (z, ξ) ∈ C2:

(2.13)
d

dt

(
P (z, t)P#(ξ, t)

)
− c(t)

(
P ′

z(z, t) ·
(
P#
)′
ξ
(ξ, t)

)
= B(t)

(
P (z, t)P#(ξ, t)− 1

)
.

Now let us denote by kj the multiplicity of the root λj(t) of the polynomial P (z, t),
so that there are m ≤ n distinct roots and

∑m
j=1 kj = n. Since

P (z, t) = a(t)
m∏
1

(z − λj(t))
kj ,

P#(ξ, t) = ā(t)
m∏
1

(
ξ − λj(t)

)kj

,

dividing by P (z, t)P#(ξ, t) we obtain:

(2.14) 2<
(

ȧ

a

)
−

m∑
1

(
kj λ̇j(t)

z − λj(t)
+

kj λ̇j(t)
ξ − λj(t)

)

− c(t)

[
m∑
1

kj

z − λj(t)

]
·

[
m∑
1

kj

ξ − λj(t)

]

= B(t)
(

1− 1
P (z, t)P#(ξ, t)

)
.

Integrating (2.14) along a small circle centered at λj(t), so that it does not enclose
other zeros of P , yields for all ξ:

(2.15) −kj λ̇j(t)− c(t)

(
m∑
1

kikj

ξ − λ̄i(t)

)
= − B(t)

P#(ξ, t)
qj ,

where qj = 1
(kj−1)!

(
∂
∂z

)kj−1
[

(z−λj)
kj

P (z,t)

]
z=λj

. Letting ξ → ∞ in (2.15) implies that

λ̇j(t) = 0 for all j = 1, . . . , n. In other words, the “nodes” λj(t) of all the lemniscates
Γt are fixed, i.e. do not move with time. So,

(2.16) P (z, t) = a(t)
n∏
1

(z − λj) = a(t) Q(z).

Substituting (2.16) into (2.13), we obtain

(2.17)
d

dt

(
|a|2
)
Q(z)Q#(ξ)− c(t)|a|2Q′

z

(
Q#
)′
ξ

= B(t)
(
|a|2Q(z)Q#(ξ)− 1

)
.
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Comparing the leading terms (i.e., the coefficients at znξn) in (2.17) yields

(2.18)
d

dt

(
|a|2
)

= B(t) |a|2.

Therefore,

(2.19) c(t) |a|2Q′
z

(
Q#
)′
ξ

= B(t),

and thus deg Q′
z = 0, i.e., n = deg P = 1. The proofs of the Lemma and the Theorem

are now complete. �

3. Extending the theorem to growth processes invariant under time
reversal

First, let us note that any boundary Γt is an equipotential line of the logarithmic
potential

(3.1) Φ(z) = log |Pn(z, λi(t))|2.

The boundary velocity of the general growth process defined in (1.3) can now be
expressed as ~V (z) = χ(z)~∇Φ, z ∈ Γt, χ(z) ∈ R+.

As indicated in the Introduction, invariance under time-reversal is defined here in
the following way: if the boundary Γt+dt is the image of Γt under a map f(t,dt) : zt ∈
Γt 7→ zt+dt ∈ Γt+dt, then f(t+dt,−dt) ◦ f(t,dt) = I. That means that the normal at
zt+dt ∈ Γt+dt must be parallel to the normal at zt ∈ Γt, which shows that Γt+dt is
perpendicular at every point to gradient lines of Φ, and is therefore a level line of Φ.
The displacement of the point zt becomes

zt+dt − zt = χ(z)~∇Φ(zt)dt.

Denoting by

~E = ~∇Φ = 2∂̄Φ = 2 · P ′
n(z, λi(t))

Pn(z, λi(t))
the gradient of the logarithmic potential and by ~r = zt, conservation of the normal
(or gradient) direction becomes

~E(~r + χ~E(~r)dt) = µ(z) ~E(~r),

where µ(z) = 1 + m(z)dt,m(z) = O(1),m(z) ∈ R, so after expanding in the infinites-
imal time interval dt,

( ~E · ~∇) ~E(~r) =
m(z)
χ(z)

~E(~r).

Remark 3.1. The proportionality relation indicated above carries also the following
physical significance: the dynamical system that we study is of frictional type, where
the acceleration field (proportional to the force, or gradient of Green’s function) is
also proportional to the velocity. In other words, the transport derivative (or Lie
derivative) of the velocity field must be parallel to the velocity itself:

L~V
~V = [i~V ◦ d− d ◦ i~V ]~V = (~V · ~∇)~V = χ[χ( ~E · ~∇) ~E + ( ~E · ~∇χ) ~E]

is parallel to ~V and therefore, to ~E.
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In complex notation, using the fact that ( ~E · ~∇) = Ē∂̄ + E∂, we obtain

P ′
n(z, λi(t))

Pn(z, λi(t))
= δ(z)

P ′
n(z, λi(t))

Pn(z, λi(t))
·
(

P ′
n(z, λi(t))

Pn(z, λi(t))

)′

, δ(z) ∈ R,

which (after multiplying both sides by E(z)) reduces to[
P ′

n(z, λi(t))
Pn(z, λi(t))

]−2(
P ′

n(z, λi(t))
Pn(z, λi(t))

)′

∈ R,

or

(3.2) =

{[
Pn(z, λi(t))
P ′

n(z, λi(t))

]′}
= 0, (∀)z ∈ Γt.

We note that, since E(z) = 2P̄ ′
n/P̄n is the gradient of the Green’s function for Ωt

and Ωt is simply connected, it cannot vanish anywhere in Ωt ∪ Γt, so all the zeros of
P ′

n(z), denoted by ξk, k = 1, 2, . . . , n− 1, are found inside the domain Ω′
t. Then[

Pn(z, λi(t))
P ′

n(z, λi(t))

]′
=

1
n

+
n−1∑
k=1

Ak

(z − ξk)2
, ξk ∈ Ω′

t,

with Ak constants. The imaginary part of this expression coincides with the imaginary
part of an analytic function in Ωt, that is bounded there, so the condition (3.2) can
only be satisfied if the function is a constant. Since at z → ∞ it vanishes, it follows
that [

Pn(z, λi(t))
P ′

n(z, λi(t))

]′
=

1
n

,

which means that boundaries Γt can only be concentric circles.

4. Concluding Remarks

(1) It is plausible that the result can be extended to rational lemniscates Γt :=
{|R (z, t)| = 1}, where R (z, t) are rational functions of degree n where all the
zeros are inside Γ, while all poles are in the unbounded component of C \ Γt.

(2) It is well-known that arbitrary “shapes”, i.e. Jordan curves can be arbitrarily
close approximated by both lemniscates (Hilbert’s theorem – cf. [14]) and
quadrature domains [1]. At the same time our results imply that there are
fundamental differences between these two classes of curves. We think it is
interesting to pursue these observations in greater depth.

(3) From the argument in §3 we can extract more. Suppose a family of Jordan
curves, {Γt}t>0 evolves by the flow along the velocity field V (z) according to
(1.3). Assuming the invariance under time-reversal, the argument of §3 can
be used to prove that χ = const, i.e. the process is that of Laplacian growth.
Invoking now well-known results on standard Hele-Shaw flows, we can at once
conclude, e.g., that the process (1.3) continues for all times t > 0, i.e., the
curves {Γt} move out to infinity such that ∪t>t0Γt = C\Ωt0 , if and only if the
initial curve Γ0 is an ellipse and all the curves {Γt} are also ellipses homotetic
with Γ0 - cf. [3], also cf. [6].
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Basel (2005).
[5] P. Ebenfelt, D. Khavinson, and H. S. Shapiro, An inverse problem for the double layer potential,

Comput. Methods Funct. Theory 1 (2001), no. 2, 387–401.

[6] A. Friedman and M. Sakai, A characterization of null quadrature domains in RN , Indiana Univ.
Math. J. 35 (1986), no. 3, 607–610.

[7] L. A. Galin, Dokl. Acad. Nauk SSSR 47 (1945), no. 1-2, 250–3.

[8] D. Khavinson, M. Mineev-Weinstein, and M. Putinar, Planar elliptic growth, Compl. Anal.
Oper. Theory 3 (2009), no. 2, 425–451.

[9] M. Mineev-Weinstein, M. Putinar, and R. Teodorescu, Random matrices in 2D, Laplacian

growth and operator theory, Journal of Physics A Mathematical General 41 (2008), no. 26,
263001.

[10] M. Mineev-Weinstein, P. Wiegmann, and A. Zabrodin, Integrable Structure of Interface Dy-

namics, Physical Review Letters 84 (2000) 5106.
[11] P. Y. Polubarinova-Kochina, Dokl. Acad. Nauk SSSR 47 (1945) 254–7.

[12] H. S. Shapiro, The Schwarz function and its generalization to higher dimensions, Vol. 9 of

University of Arkansas Lecture Notes in the Mathematical Sciences, John Wiley & Sons Inc.,
New York (1992).

[13] A. N. Varchenko and P. I. Ètingof, Why the boundary of a round drop becomes a curve of

order four, Vol. 3 of University Lecture Series, American Mathematical Society, Providence, RI

(1992).
[14] J. L. Walsh, Interpolation and approximation by rational functions in the complex domain,

Vol. XX of Amer. Math. Soc. Colloquium Publ., American Mathematical Society, Providence,

R.I. (1965).

Department of Mathematics & Statistics, University of South Florida, Tampa, FL
33620-5700, USA

Los Alamos National Laboratory, MS-365, Los Alamos, NM 87545, USA

Department of Mathematics, University of California, Santa Barbara, CA 93106, USA

Department of Mathematics & Statistics, University of South Florida, Tampa, FL
33620-5700, USA

E-mail address: razvan@cas.usf.edu


