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JACOBIANS AMONG ABELIAN THREEFOLDS:
A FORMULA OF KLEIN AND A QUESTION OF SERRE

Gilles Lachaud, Christophe Ritzenthaler, and Alexey Zykin

Abstract. Let (A, a) be an indecomposable principally polarized abelian threefold de-
fined over a field k ⊂ C. Using a certain geometric Siegel modular form χ18 on the

corresponding moduli space, we prove that (A, a) is a Jacobian over k if and only if

χ18(A, a) is a square over k. This answers a question of J.-P. Serre. Then, via a natural
isomorphism between invariants of ternary quartics and Teichmüller modular forms of

genus 3, we obtain a simple proof of Klein formula, which asserts that χ18(Jac C, j) is

equal to the square of the discriminant of C.

Introduction

Let A3 be the moduli stack of principally polarized abelian schemes (A, a) of relative
dimension 3 and M3 be the moduli stack of smooth and proper curves of genus 3.
The first aim of this article is to answer the following question of Serre [20]: If k is
a subfield of C, and if (A, a) ∈ A3 ⊗ k, under what conditions is it isomorphic over
k to a polarized Jacobian ? If k = k̄, this is the case if and only if (A, a) is inde-
composable, according to Hoyt [9] and Oort and Ueno [18]. We henceforth assume
(A, a) indecomposable, and isomorphic over k̄ to the principally polarized Jacobian
(Jac C, j) of a curve C/k̄ of genus 3. For a general field k ⊂ C, the answer is given by
a particular Siegel modular form χ18 of genus 3. This form is actually defined up to a
multiplicative constant by the product of the 36 Thetanullwerte with even character-
istics. Our main result (Th. 1.3.3) is the following criterion: (A, a) is isomorphic over
k to (Jac C, j) if and only if χ18(A, a) is a square over k. This was suggested by Serre
in [20] and proved in [15] by the first two authors for a 3-dimensional family of abelian
varieties. This square appears due to the following fact: by taking the inverse image
under the Torelli morphism t : C 7→ (Jac C, j) (with j the canonical polarization), we
get an element t∗χ18 in the algebra of Teichmüller modular forms over k, which turns
out to be a square, according to Ichikawa [10]. The equivalence is then obtained by
the action of quadratic twists on geometric Siegel modular forms.

The second part of the article uses a natural isomorphism between the algebra of
invariants on the space of ternary quartic forms with non zero discriminant and the
algebra of Teichmüller modular forms on the space of non hyperelliptic curves of genus
3. Hence, the form t∗χ18, restricted to nonsingular non hyperelliptic curves, can be
interpreted as an invariant and this provides a simple proof of a formula of Klein,
which asserts that χ18(Jac C, j) is the square of the discriminant of C (Th. 2.2.3).
The original relevance of Klein’s formula for the above criterion was one of Serre’s

Received by the editors August 7, 2009.

323



324 GILLES LACHAUD, CHRISTOPHE RITZENTHALER, AND ALEXEY ZYKIN

insights.

This article is organized in two sections. In § 1.1, we review the necessary elements
from the theory of Siegel and Teichmüller modular forms, then in § 1.2 we introduce
the action of isomorphisms and see how the action of twists is reflected on the values of
modular forms, and we prove our main result in § 1.3. The second section deals with
invariants: in § 2.1, we give a geometric description of invariants of ternary forms,
and in § 2.2, we prove Klein’s formula. Finally, in § 2.3 we discuss the reasons be-
hind the failure of a straightforward generalization of the theory in higher dimensions.

We would like to thank J.-P. Serre and S. Meagher for fruitful discussions, and Y. F.
Bilu and X. Xarles for their help in § 2.3.

1. Modular forms and abelian threefolds

1.1. Siegel and Teichmüller modular forms. References for the following results
are [3], [4], [5], [7]. Let g ≥ 2 be an integer and Ag be the moduli stack of principally
polarized abelian schemes of relative dimension g. Let π : Vg −→ Ag be the universal
abelian scheme and π∗Ω1

Vg/Ag
−→ Ag the rank g bundle, usually called Hodge bundle,

induced by the relative regular differential forms of degree one on Vg over Ag. The
relative canonical bundle over Ag is the line bundle

ω =
g∧

π∗Ω1
Vg/Ag

.

Let R be a commutative ring and h be a positive integer. A geometric Siegel modular
form of genus g and weight h over R is an element of the R-module

Sg,h(R) = Γ(Ag ⊗R,ω⊗h).

One proceeds similarly with curves. Let Mg denote the moduli stack of smooth and
proper curves of genus g. Let π : Cg −→ Mg be the universal curve, and let λ be the
invertible sheaf associated to the Hodge bundle on Mg, namely

λ =
g∧

π∗Ω1
Cg/Mg

.

A Teichmüller modular form of genus g and weight h over R is an element of

Tg,h(R) = Γ(Mg ⊗R,λ⊗h).

Assume now that R = k is a field. For a projective nonsingular variety X defined
over k, we denote by Ω1

k[X] = H0(X, Ω1
X ⊗ k) the finite dimensional k-vector space

of regular differential forms on X defined over k. Let (A, a) ∈ Ag ⊗ k be a principally
polarized abelian variety of dimension g defined over k (resp. C ∈ Mg ⊗ k a genus g
curve defined over k). We denote by

ωk[A] '
g∧

Ω1
k[A] (resp. λk[C] '

g∧
Ω1

k[C])

the k-vector space of sections of ω (resp. λ) over (A, a) (resp. C). For f ∈ Sg,h(k)
(resp. f ∈ Tg,h(k)), and ω a basis of ωk[A] (resp. λ a basis of λk[C]), we put

(1) f((A, a), ω) = f(A, a)/ω⊗h ∈ k, (resp. f(C, λ) = f(C)/λ⊗h ∈ k).
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In this way a modular form defines a rule which assigns the element f((A, a), ω) ∈ k
(resp. f(C, λ)) to every such pair ((A, a), ω) (resp. (C, λ)) which depends only on
k̄-isomorphism class of the pair. With this definition, the following proposition holds,
see for instance [11]:

Proposition 1.1.1. The Torelli map t : Mg −→ Ag, associating to a curve C its
Jacobian Jac C with the canonical polarization j, satisfies t∗ω = λ, and induces for
any field k a linear map

t∗ : Sg,h(k) = Γ(Ag ⊗ k,ω⊗h) −−−−→ Tg,h(k) = Γ(Mg ⊗ k,λ⊗h),

For any curve C/k of genus g and any f ∈ Sg,h(k), one has

[t∗f ](C) = t∗[f(Jac C, j)],

i.e. for any basis ω of ωk[Jac C],

f((Jac C, j), ω) = [t∗f ](C, λ) if t∗ω = λ. �

Assume now that R = k = C. Let Rg,h(C) be the vector-space of analytic Siegel
modular forms of weight h on Hg = {τ ∈ Mg(C) | tτ = τ, Im τ > 0}, consisting of
complex holomorphic functions φ(τ) on Hg satisfying

φ(M.τ) = det(cτ + d)h · φ(τ) if M =
(

a b
c d

)
∈ Sp2g(Z).

To a point τ ∈ Hg we associate the abelian variety Aτ = Cg/(Zg+τZg) with its natural
principal polarization j. Since the tangent space to Aτ is canonically isomorphic to
Cg, dz1 ∧ · · · ∧ dzg is a section of ω ⊗ C ' OHg

⊗
∧g(Cg). Thus, it induces a map

from Rg,h(C) to Sg,h(C). More precisely, the following result holds [5, p. 141]:

Proposition 1.1.2. If f ∈ Sg,h(C) and τ ∈ Hg, let

f̃(τ) = (2iπ)−ghf(Aτ , j)/(dz1 ∧ · · · ∧ dzg)⊗h

where (z1, . . . zg) is the canonical basis of Cg. The map f 7→ f̃ is an isomorphism
Sg,h(C) ∼−→Rg,h(C). �

In the sequel we shall need some specific Siegel modular forms. We recall the definition
of Thetanullwerte with characteristics

ε =
[
ε1

ε2

]
∈ {0, 1}g ⊕ {0, 1}g,

given, for τ ∈ Hg, by

θ[ε](τ) =
∑

n∈Zg

exp(iπ(n + ε1/2)τ t(n + ε1/2) + 2iπ(n + ε1/2)t(ε2/2)).

Let Sg be the set of even characteristics, that is, ε1
tε2 ≡ 0 (mod 2). For g ≥ 2 and

τ ∈ Hg, we put h = |Sg|/2 = 2g−2(2g + 1) and

χ̃h(τ) =
(−1)gh/2

22g−1(2g−1)
·

∏
ε∈Sg

θ[ε](τ).
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In [13], Igusa proves that if g ≥ 3, then χ̃h ∈ Rg,h(C). Starting from the analytic
Siegel modular form χ̃h, we define, thanks to Prop. 1.1.2, a geometric Siegel modular
form

χh(Aτ ) = (2iπ)gh · χ̃h(τ)(dz1 ∧ · · · ∧ dzg)⊗h ∈ Sg,h(C).

Ichikawa proved several important results on this modular form that we summarize
in the following proposition, see [11, Prop.3.4] and [12]:

Proposition 1.1.3. The geometric Siegel modular form χh belongs to Sg,h(Z). More-
over, there exists a Teichmüller modular form µh/2 ∈ Tg,h/2(Z) such that

(2) t∗(χh) = (µh/2)2. �

1.2. Action of isomorphisms. Let k be any field and φ : (A′, a′) −→ (A, a) a
k̄-isomorphism of principally polarized abelian varieties. Choose a basis (ω1, . . . , ωg)
of Ω1

k̄
[A] and put ω = ω1∧· · ·∧ωg ∈ ωk[A]. If γi = φ∗(ωi), then (γ1, . . . , γg) is a basis

of Ω1
k̄[A′] and by invariance under k̄-isomorphisms

f((A, a), ω) = f((A′, a′), γ) where γ = γ1 ∧ · · · ∧ γg ∈ ωk̄[A′].

If (ω′1, . . . , ω
′
g) is another basis of Ω1

k̄[A′] and ω′ = ω′1 ∧ · · · ∧ ω′g, we denote by
Mφ ∈ GLg(k̄) the matrix of the basis (γi) in the basis (ω′i). Then one proves easily:

Proposition 1.2.1. In the above notation,

f((A, a), ω) = det(Mφ)h · f((A′, a′), ω′). �

First of all, from this formula applied to the action of −1, we deduce that, if k is a
field of characteristic different from 2, then Sg,h(k) = {0} if gh is odd. From now on
we assume that gh is even and char k 6= 2.

Corollary 1.2.2. Let (A, a) be a principally polarized abelian variety of dimension
g defined over k and f ∈ Sg,h(k). Let ω1, . . . , ωg be a basis of Ω1

k[A], and let ω =
ω1 ∧ · · · ∧ ωg ∈ ωk[A]. Then

f̄(A, a) = f((A, a), ω) mod× k×h ∈ k/k×h

does not depend on the choice of the basis of Ω1
k[A]. In particular f̄(A, a) is an

invariant of the k-isomorphism class of (A, a). �

Corollary 1.2.3. Assume g odd. Let f ∈ Sg,h(k) and φ : (A′, a′) −→ (A, a) be a non
trivial quadratic twist. There exists c ∈ k\k2 such that f̄(A, a) = ch/2f̄(A′, a′). Thus,
if f̄(A, a) 6= 0 then f̄(A, a) and f̄(A′, a′) do not belong to the same class in k×/k×h.

Proof. Assume that φ is given by a quadratic character ε of Gal(k̄/k). Then

dσ = ε(σ)g · d, where d = det(Mφ) ∈ k̄, σ ∈ Gal(k̄/k).

Since g is odd, by our assumption, h is even. Moreover d2 = ε(σ)ddσ ∈ k. But d /∈ k
since there exists σ such that ε(σ) = −1. Using Prop. 1.2.1 we find that

f((A, a), ω) = (d2)h/2f((A′, a′), ω′).

Since d2 is not a square in k, if f̄(A, a) 6= 0 then f̄(A, a) and f̄(A′, a′) belong to two
different classes. �
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Let (A, a) be a principally polarized complex abelian variety of dimension g defined
over k ⊂ C. The period matrix of (A, a) defined by a basis ω1, . . . , ωg of Ω1

k[A] and a
symplectic basis γ1, . . . , γ2g of H1(A, Z) for the polarization a, is the Riemann matrix

Ω = [Ω1 Ω2] =


∫

γ1
ω1 · · ·

∫
γ2g

ω1

...
...∫

γ1
ωg · · ·

∫
γ2g

ωg

 .

One puts τ := Ω−1
2 Ω1 ∈ H3 in such a way that (A, a) is C-isomorphic to Aτ . If C is

a complex curve of genus g, one uses the same notation for the period matrix of C
defined by a basis ω1, . . . , ωg of Ω1

k[C], and a symplectic basis γ1, . . . γ2g of H1(C, Z)
for the intersection pairing. By the canonical identifications

Ω1[C] = Ω1[Jac C], H1(C, Z) = H1(Jac C, Z),

the period matrix of C is also the period matrix of (Jac C, j) defined by the corre-
sponding bases. Applying Prop. 1.2.1 with the isomorphism z 7→ Ω−1

2 z, we get the
following lemma.

Proposition 1.2.4. In the above notation, let ω = ω1 ∧ · · · ∧ ωg ∈ ωk[A]. Then

f((A, a), ω) = (2iπ)gh f̃(τ)
detΩh

2

. �

1.3. Jacobian among abelian threefolds. Serre stated in [16] and [20] the fol-
lowing precise form of Torelli’s theorem:

Theorem 1.3.1. Let (A, a) be a principally polarized abelian variety of dimension
g ≥ 1 over a field k, and assume that (A, a) is isomorphic over k̄ to the Jacobian of
a nonsingular curve C. Then C can be defined over k, and:

(i) If C is hyperelliptic, there is an isomorphism, defined over k, from (A, a) to
(Jac C, j).

(ii) If C is not hyperelliptic, there exists a quadratic character

ε : Gal(ksep/k) −−−−→ {±1}
and an isomorphism, defined over k, from the twisted abelian variety (A, a)ε

to (Jac C, j). Hence, (A, a) is k-isomorphic to a Jacobian if and only if ε is
trivial.

We restrict to the case where k ⊂ C and we now give a formula for ε. In order to do
so, we need to recall some geometric results by Igusa. Denote by Σ̃140 the modular
form defined by the thirty-fifth elementary symmetric function of the eighth power
of the even Thetanullwerte. Recall that a principally polarized abelian variety (A, a)
is decomposable if it is a product of principally polarized abelian varieties of lower
dimension, and indecomposable otherwise. In his beautiful paper [13], Igusa proves
the following result [loc. cit., Lem. 10 and 11].

Theorem 1.3.2. If τ ∈ H3, then:
(i) (Aτ , j) is decomposable if χ̃18(τ) = Σ̃140(τ) = 0.
(ii) (Aτ , j) is a hyperelliptic Jacobian if χ̃18(τ) = 0 and Σ̃140(τ) 6= 0.
(iii) (Aτ , j) is a non hyperelliptic Jacobian if χ̃18(τ) 6= 0. �
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We are now able to prove our main result which can be seen as an arithmetic analogue
of Igusa’s result.

Theorem 1.3.3. Let (A, a) be a principally polarized abelian threefold defined over
k ⊂ C. Let (ω1, ω2, ω3) be any basis of Ω1

k[A] and (γ1, . . . , γ6) a symplectic basis of
H1(A, Z) for the polarization a. Let Ω = [Ω1 Ω2] be the period matrix defined by these
bases, and τ = Ω−1

2 Ω1.

(i) If Σ̃140(τ) = 0 and χ̃18(τ) = 0 then (A, a) is decomposable over k̄. In partic-
ular it is not a Jacobian.

(ii) If Σ̃140(τ) 6= 0 and χ̃18(τ) = 0 then there exists a hyperelliptic curve C/k
such that (Jac C, j) ' (A, a).

(iii) If χ̃18(τ) 6= 0 then (A, a) is isomorphic to a non hyperelliptic Jacobian if and
only if

χ18 := χ18((A, a), ω) = (2iπ)54
χ̃18(τ)
detΩ18

2

is a square in k, with ω = ω1 ∧ ω2 ∧ ω3 ∈ ωk[A].

Proof. Only the third point is new. Indeed, the first and second points directly follow
from Th. 1.3.2 and Th. 1.3.1. Suppose now that (A, a) is isomorphic over k to the
Jacobian of a non hyperelliptic genus 3 curve C/k. Using successively Prop. 1.1.1
and Prop. 1.1.3, we get

χ18((A, a), ω) = t∗(χ18)(C, λ) = µ9(C, λ)2 ∈ k×2,

with λ = t∗ω. Hence, the desired expression is a square in k×. Its analytic expression
on the right hand side of (iii) is a direct application of Prop. 1.2.4.
On the contrary, Cor. 1.2.3 shows that if (A, a) is a quadratic twist of a Jacobian
(A′, a′) then there exists a non square c ∈ k such that

χ̄18(A, a) = c9 · χ̄18(A′, a′).

As we have just proved that χ̄18(A′, a′) is a square in k×/k×18, this implies that
χ18((A, a), ω) is not. �

Corollary 1.3.4. In the notation of Th. 1.3.3, the quadratic character ε of Gal(k̄/k)
introduced in Th. 1.3.1 is given by ε(σ) = dσ/d, with d =

√
χ18, and with an arbitrary

choice of the square root. �

2. Invariants and Klein’s formula

Let d > 0 be an integer. In this section k is an algebraically closed field of character-
istic coprime with d.

2.1. Geometric invariants for nonsingular plane curves. We first review some
classical invariant theory. Let E be a vector space of dimension n over k. The left
regular representation r of GL(E) on the vector space Xd = Symd(E∗) of forms of
degree d on E is given by

r(u) : F (x) 7→ (u · F )(x) = F (ux)
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for u ∈ GL(E), F ∈ Xd and x ∈ E. If U is an open subset of Xd stable under r, we
still denote by r the left regular representation of GL(E) on the k-algebra O(U) of
regular functions on U , in such a way that

r(u) : Φ(F ) 7→ (u · Φ)(F ) = Φ(u · F ),

if u ∈ GL(E), Φ ∈ O(U) and F ∈ U . If h ∈ Z, we denote by Oh(U) the subspace,
stable under r, of homogeneous elements of degree h. An element Φ ∈ Oh(U) is an
invariant of degree h on U if u ·Φ = Φ for every u ∈ SL(E), and we denote by Invh(U)
the subspace of invariants of degree h on U . Hence, if Φ ∈ O(U), and if w and n are
two integers such that hd = nw, then Φ ∈ Invh(U) if and only if

u · Φ = (det u)wΦ for every u ∈ GL(E),

and we call w the weight of Φ. Let F ∈ Xd, and denote by q1, . . . , qn the partial
derivatives of F . The discriminant of F is

Disc F = c−1
n,d Res(q1, . . . , qn), with cn,d = d((d−1)n−(−1)n)/d,

where Res(q1, . . . , qn) is the multivariate resultant of the forms q1, . . . qn [6, p. 426],
the coefficient cn,d being chosen according to [20]. We refer to [15] for a detailed study
of the discriminant of a ternary form, and the computation of the discriminant of a
Ciani quartic.
From now on we assume dim E = n = 3. The universal curve over Xd is the variety

Yd =
{
(F, x) ∈ Xd × P2 | F (x) = 0

}
.

The nonsingular locus of Xd is the principal open set

X0
d = (Xd)Disc = {F ∈ Xd | Disc(F ) 6= 0} .

If Y0
d is the universal curve over the nonsingular locus X0

d, the projection is a smooth
surjective k-morphism

π : Y0
d −−−−→ X0

d

whose fibre over F is the non singular plane curve CF . If F ∈ X0
d(k), we recall the

usual way to write down explicitly the classical basis of Ω1
k[CF ] = H0(CF ,Ω1

CF
⊗ k),

see [2, p. 630]. Let

η(1) =
f(x2dx3 − x3dx2)

q1
, η(2) =

f(x3dx1 − x1dx3)
q2

, η(3) =
f(x1dx2 − x2dx1)

q3
,

where q1, q2, q3 are the partial derivatives of F , and where f ∈ Xd−3. The forms η(i)

glue together and define a regular differential form ηf (F ) ∈ Ω1
k[CF ]. Since dim Xd−3 =

(d− 1)(d− 2)/2 = g, the linear map f 7→ ηf (F ) defines an isomorphism

Xd−3
∼−−−−→ Ω1

k[CF ].

We denote η1, . . . , ηg the sequence of sections obtained by substituting for f in ηf the
g members of the canonical basis of Xd−3, enumerated according to the lexicographic
order. Then η = η1 ∧ · · · ∧ ηg is a section of

α =
g∧

π∗Ω1
Y0

d/X0
d
,

the Hodge bundle on X0
d. The map u : x 7→ ux induces an isomorphism

u : Cu·F
∼−−−−→ CF
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Hence, it has a natural action u∗ : Ω1
k[CF ] → Ω1

k[Cu·F ] on the differentials and
therefore, on the sections of αh, for h ∈ Z. More specifically, if s ∈ Γ(X0

d,α
⊗h), one

can write s = Φ · η⊗h with Φ ∈ O(X0
d); for F ∈ X0

d, one has

u∗s(F ) = Φ(F ) · (u∗η(F ))⊗h.

The proof of the following lemma is left to the reader.

Lemma 2.1.1. For any u ∈ G and any F ∈ X0
d, the section η ∈ Γ(X0

d,α) satisfies,

u∗η(F ) = det(u)w0 · η(u · F ), with w0 =
(

d

3

)
=

dg

3
∈ N. �

For any h ∈ Z, we denote by Γ(X0
d,α

⊗h)G the subspace of sections s ∈ Γ(X0
d,α

⊗h)
such that u∗s(F ) = s(u · F ) for every u ∈ G and F ∈ X0

d.

Proposition 2.1.2. Let h ≥ 0 be an integer. The linear map

Φ 7→ ρ(Φ) = Φ · η⊗h

is an isomorphism
ρ : Invgh(X0

d)
∼−−−−→ Γ(X0

d,α
⊗h)G.

Proof. Let Φ ∈ Invgh(X0
d), s = ρ(Φ) = Φ ·η⊗h, and w = dgh/3, the weight of Φ. Then

using Lem. 2.1.1,

u∗s(F ) = Φ(F ) · (u∗η(F ))⊗h = Φ(F ) · det(u)w0h · η(u · F )⊗h

= det(u)wΦ(F ) · η(u · F )⊗h = Φ(u · F ) · η(u · F )⊗h = s(u · F ).

Hence, ρ(Φ) ∈ Γ(X0
d,λ

⊗h)G. Conversely, the inverse of ρ is the map s 7→ s/η⊗h, and
this proves the proposition. �

2.2. Modular forms as invariants. Let d > 2 be an integer and g =
(
d−1
2

)
. Since

the fibres of Y0
d −→ X0

d are nonsingular non hyperelliptic plane curves of genus g, by
the universal property of Mg we get a morphism

p : X0
g −−−−→ Mg.

and p∗λ = α by construction. This induces a linear map

p∗ : Tg,h(k) −−−−→ Γ(X0
d,α

⊗h).

Moreover, for u ∈ G, since u : Cu·F → CF is an isomorphism, we get the following
commutative diagram

λ[CF ] u∗−−−−→ λ[Cu·F ]

p∗
y p∗

y
α[F ] u∗−−−−→ α[u · F ].

For any f ∈ Tg,h(k), the modular invariance of f means that

u∗f(CF ) = f(Cu·F ).

Then

u∗[(p∗f)(F )] = u∗[p∗(f(CF ))] = p∗[u∗f(CF )] = p∗[f(Cu·F )] = (p∗f)(u · F ),
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and this means that p∗f ∈ Γ(X0
d,α

⊗h)G. If g = 3 then p∗ is a linear isomorphism.
Combining this result with Prop. 2.1.2, we obtain:

Proposition 2.2.1. For any integer h ≥ 0, the linear map σ = ρ−1 ◦ p∗ is a homo-
morphism:

Tg,h(k) −−−−→ Invgh(X0
d)

such that
σ(f)(F ) = f(CF , λ)

with λ = (p∗)−1η, for any F ∈ X0
d and any section f ∈ Tg,h(k). If g = 3, then σ is

an isomorphism. �

We finally make a link between invariants and analytic Siegel modular forms. Let
F ∈ X0

d(C) and (η1, . . . , ηg) the basis of regular differentials on CF defined in § 2.1.
Let (γ1, . . . γ2g) be a symplectic basis of H1(C, Z) for the intersection pairing. Let
Ω = [Ω1 Ω2] the period matrix of CF defined by these bases, and τ = Ω−1

2 Ω1.

Corollary 2.2.2. Let f ∈ Sg,h(C) be a geometric Siegel modular form, f̃ ∈ Rg,h(C)
the corresponding analytic modular form, and Φ = σ(t∗f) the corresponding invariant.
In the above notation,

Φ(F ) = (2iπ)gh f̃(τ)
detΩh

2

.

Proof. Let λ = (p∗)−1(η) and ω = (t∗)−1(λ). From Prop. 1.1.1 and 2.2.1, we deduce

Φ(F ) = (t∗f)(CF , λ) = f(Jac CF , ω),

and Prop. 1.2.4 give the result, since Ω is also the period matrix of Jac CF . �

We are now ready to give a proof of the following result [14, Eq. 118, p. 462]:

Theorem 2.2.3 (Klein’s formula). Let F ∈ X0
4(C) and CF be the corresponding

smooth plane quartic. Let (η1, η2, η3) be the classical basis of Ω1
C[CF ] and (γ1, . . . γ6)

be a symplectic basis of H1(CF , Z) for the intersection pairing. Let Ω = [Ω1 Ω2] the
period matrix of CF defined by these bases, and τ = Ω−1

2 Ω1. Then

Disc(F )2 = (2π)54
χ̃18(τ)

det(Ω2)18
.

Proof. Cor. 2.2.2 shows that for any F ∈ X0
4 the invariant I = σ ◦ t∗(χ18) satisfies

I(F ) = (2iπ)54
χ̃18(τ)
detΩ18

2

.

Moreover Th. 1.3.2(iii) shows that I(F ) 6= 0 for all F ∈ X0
4. Since the discriminant is

an irreducible polynomial, as immediate consequence of Hilbert’s Nullstellensatz we
get that I = cDiscn with c ∈ C× a constant and n ∈ N. Since I is an invariant of
weight 54 and Disc an invariant of weight 27, n = 2. Finally, it is proven in [15, Cor.
4.2] that Klein’s formula holds true for any Ciani quartic with c = 1. �

Remark 2.2.4. Th. 2.2.3 implies that

µ9(CF , λ) = ±Disc F.

This might be deduced from the definition of µ9, although it seems that this fact was
not observed before.
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2.3. Beyond genus 3. First of all, note that an analogue of Klein’s formula has
been derived in the hyperelliptic case by Lockhart [17] and also by Guàrdia [8]. Their
formula is a direct consequence of Thomae’s formula [21]. Now, it is natural to try to
extend the preceding results to the case g > 3. For Klein’s formula and g = 4, Klein
himself, in the footnote of p. 462 in [14], gives the amazing formula

(3)
χ̃68(τ)

det(Ω2)68
= c ·∆(C)2 · T (C)8.

Here τ = Ω−1
2 Ω1, with Ω = [Ω1 Ω2] a period matrix of a genus 4 non hyperelliptic

curve C given in P3 as an intersection of a quadric Q and a cubic surface E. The
elements ∆(C) and T (C) are defined in classical invariant theory as, respectively, the
discriminant of Q and the tact invariant of Q and E (see [19, p.122]). No such formula
seems to be known in the non hyperelliptic case for g > 4.
Let us now look at what happens when we try to apply Serre’s approach for g > 3. To
begin with, when g is even, we cannot use Cor. 1.2.2 to distinguish between quadratic
twists. Let us assume that g is odd. Cor. 1.2.3 shows that there exists c ∈ k \k2 such
that

χ̄h(A′, a′) = ch/2 · χ̄h(A, a)
for a Jacobian (A, a) and a quadratic twist (A′, a′). What enabled us to distinguish
between the two when g = 3 is that h/2 = 9 is odd. However as soon as g > 3, the
2-valuation of h/2 is g − 3 > 0, so it is not enough for χ̄h(A) to be a square in k to
make a distinction between A and A′. It must rather be a 2g−2-th power in k. It
can be easily seen from the proof of [22, Th.1] that t∗(χh) does not admit a fourth
root. According to [1] or [23] this implies χ̄h(A, a) is not a 2g−2-th power in k for
infinitely many Jacobians (A, a) defined over number fields k. So we can no longer
use the modular form χh to characterize Jacobians over k.
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Institut de Mathématiques de Luminy

E-mail address: ritzent@iml.univ-mrs.fr

Alexey Zykin
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