SCHMIDT'S GAME, FRACTALS, AND NUMBERS NORMAL TO NO BASE

RYAN BRODERICK, YANN BUGEAUD, LIOR FISHMAN, DMITRY KLEINBOCK AND BARAK WEISS

ABSTRACT. Given b>1 and $y\in\mathbb{R}/\mathbb{Z}$, we consider the set of $x\in\mathbb{R}$ such that y is not a limit point of the sequence $\{b^nx \mod 1: n\in\mathbb{N}\}$. Such sets are known to have full Hausdorff dimension, and in many cases have been shown to have a stronger property of being winning in the sense of Schmidt. In this paper, by utilizing Schmidt games, we prove that these sets and their bi-Lipschitz images must intersect with 'sufficiently regular' fractals $K\subset\mathbb{R}$ (that is, supporting measures μ satisfying certain decay conditions). Furthermore, the intersection has full dimension in K if μ satisfies a power law (this holds for example if K is the middle third Cantor set). Thus it follows that the set of numbers in the middle third Cantor set which are normal to no base has dimension $\log 2/\log 3$.

1. Introduction

Let $b \geq 2$ be an integer. A real number x is said to be normal to base b if, for every $n \in \mathbb{N}$, every block of n digits from $\{0,1,\ldots,b-1\}$ occurs in the base-b expansion of x with asymptotic frequency $1/b^n$. Equivalently, let f_b be the self-map of $\mathbb{T} \stackrel{\text{def}}{=} \mathbb{R}/\mathbb{Z}$ given by $x \mapsto bx$, and denote by $\pi: x \to x \mod 1$ the natural projection $\mathbb{R} \to \mathbb{T}$. Then x is normal to base b iff for any interval $I \subset \mathbb{T}$ with b-ary rational endpoints one has

$$\lim_{n \to \infty} \frac{1}{n} \# \left\{ 0 \le k \le n - 1 : f_b^k \left(\pi(x) \right) \in I \right\} = \lambda(I),$$

where λ stands for Lebesgue measure. É. Borel established that λ -almost all numbers are normal to every integer base; clearly this is also a consequence of Birkhoff's Ergodic Theorem and the ergodicity of $(\mathbb{T}, \lambda, f_b)$.

Note that it is easy to exhibit many non-normal numbers in a given base b. For example, denote by E_b the set of real numbers with a uniform upper bound on the number of consecutive zeroes in their base-b expansion. Clearly those are not normal, and it is not hard to show that the Hausdorff dimension of E_b is equal to 1. Furthermore, it was shown by W. Schmidt [26] that for any b and any $0 < \alpha < 1/2$, the set E_b is an α -winning set of a game which later became known as Schmidt's game. This property implies full Hausdorff dimension but is considerably stronger; for example, the intersection of countably many α -winning sets is also α -winning (we describe the definition and features of Schmidt's game in §3). Thus it follows that the set of real numbers x such that for each $b \in \mathbb{Z}_{\geq 2}$ their base-b expansion does not contain more than C = C(x, b) consecutive zeroes has full Hausdorff dimension. Obviously, such numbers are normal to no base.

Received by the editors September 25, 2009. Revision received on February 3, 2010.

Now fix $y \in \mathbb{T}$ and a map $f : \mathbb{T} \to \mathbb{T}$, and, following notation introduced in [14], consider

(1.1)
$$E(f,y) \stackrel{\text{def}}{=} \left\{ x \in \mathbb{T} : y \notin \overline{\{f^n(x) : n \in \mathbb{N}\}} \right\},$$

the set of points with f-orbits staying away from y. For brevity we will write

(1.2)
$$E(b,y) = \left\{ x \in \mathbb{T} : y \notin \overline{\left\{ f_b^n(x) : n \in \mathbb{N} \right\}} \right\}.$$

for $E(f_b, y)$. Obviously E(b, 0) is a subset of $\pi(E_b)$ for any b. It is known that $\dim (E(b, y)) = 1$ for any b and any $y \in \mathbb{T}$, see e.g. [29, 7]. Moreover, these sets¹ have been recently proved by J. Tseng [28] to be α -winning, where α is independent of y but (quite badly) depends on b. In particular, it follows that for any bounded sequence $b_1, b_2, \ldots \in \mathbb{Z}_{\geq 2}$ and any $y_1, y_2, \ldots \in \mathbb{T}$, one has

(1.3)
$$\dim\left(\bigcap_{k=1}^{\infty} E(b_k, y_k)\right) = 1.$$

Another related result is that of S.G. Dani [6], who proved that for any $y \in \mathbb{Q}/\mathbb{Z}$ and any $b \in \mathbb{Z}_{\geq 2}$, the sets E(b,y) are $\frac{1}{2}$ -winning (in fact, his set-up is more general and involves semisimple endomorphisms of the d-dimensional torus). Consequently, (1.3) holds with no upper bound on b_k as long as points y_k are chosen to be rational (that is, pre-periodic for maps f_b).

The main purposes of the present note are to extend (1.3) by removing an upper bound² on b_k , and to consider intersections with certain fractal subsets of \mathbb{T} such as e.g. the middle third Cantor set. In fact it will be convenient to lift the problem from \mathbb{T} to \mathbb{R} and work with $\pi^{-1}(E(b,y))$; in other words, consider

(1.4)
$$\tilde{E}(b,y) \stackrel{\text{def}}{=} \left\{ x \in \mathbb{R} : y \notin \overline{\left\{ \pi(b^n x) : n \in \mathbb{N} \right\}} \right\}$$

Clearly this set is periodic (with period 1); however we are going to study its intersections with (not necessarily periodic) subsets $K \subset \mathbb{R}$, for example, with their bi-Lipschitz images. Another advantage of switching from (1.2) to (1.4) is that the latter makes sense even when b>1 is not an integer³. This set-up has been extensively studied; for example A. Pollington proved in [24] that the intersection $\bigcap_{k=1}^{\infty} \tilde{E}(b_k, y_k)$ has Hausdorff dimension at least 1/2 for any choices of $y_k \in \mathbb{T}$ and $b_k > 1$, $k \in \mathbb{N}$. More generally, there are similar results with (b^n) in (1.4) replaced by an arbitrary lacunary sequence $\mathcal{T}=(t_n)$ of positive real numbers (recall that \mathcal{T} is called lacunary if $\inf_{n\in\mathbb{N}}\frac{t_{n+1}}{t_n}>1$). Namely, generalizing (1.4), fix \mathcal{T} as above and a sequence $\mathcal{Y}=(y_n)$ of points in \mathbb{T} , and define

$$\tilde{E}(\mathcal{T}, \mathcal{Y}) \stackrel{\text{def}}{=} \left\{ x \in \mathbb{R} : \inf_{n \in \mathbb{N}} d(\pi(t_n x), y_n) > 0 \right\}.$$

¹The results of [29, 7, 28], are more general, with f_b replaced by an arbitrary sufficiently smooth expanding self-map of \mathbb{T} .

²After this paper was finished we learned of an alternative approach [10, 11] showing that sets E(b,y) are $\frac{1}{4}$ -winning for any $y \in \mathbb{T}$ and any $b \in \mathbb{Z}_{\geq 2}$; also, in a sequel [3] to the present paper it is explained that $\frac{1}{4}$ can be replaced by $\frac{1}{2}$.

³To make sense of (1.2) when $b \notin \mathbb{Z}$ some efforts are required, see §5.4.

Here and hereafter d stands for the usual distance on \mathbb{T} or \mathbb{R} . We will write $\tilde{E}(\mathcal{T}, y)$ when $\mathcal{Y} = (y)$ is a constant sequence, that is,

$$\tilde{E}(\mathcal{T}, y) \stackrel{\text{def}}{=} \left\{ x \in \mathbb{R} : y \notin \overline{\left\{ \pi(t_n x) : n \in \mathbb{N} \right\}} \right\}.$$

It is a result of Pollington [25] and B. de Mathan [19] that the sets $E(\mathcal{T},0)$ have Hausdorff dimension 1 for any lacunary sequence \mathcal{T} ; see also [4, Theorem 3] for a multi-dimensional generalization. Moreover, one can show, as mentioned by N. Moshchevitin in [22], that those sets are $\frac{1}{2}$ -winning.

Our main theorem extends the aforementioned results in several directions. We will allow arbitrary sequences \mathcal{Y} , and will study intersection of sets $\tilde{E}(\mathcal{T},\mathcal{Y})$ with certain fractals $K \subset \mathbb{R}$. Namely, if K is a closed subset of the real line, following [12], we will play Schmidt's game on the metric space K with the induced metric. We will say that a subset S of \mathbb{R} is α -winning on K if $S \cap K$ is an α -winning set for the game played on K. See §3 for more detail. Further, in §2 we define and discuss so-called (C, γ) -absolutely decaying measures – a notion introduced in [15]. Here is our main result:

Theorem 1.1. Let K be the support of a (C, γ) -absolutely decaying measure on \mathbb{R} , and let

(1.5)
$$\alpha \le \frac{1}{4} \left(\frac{1}{3C} \right)^{\frac{1}{\gamma}}.$$

Then for every bi-Lipschitz map $\varphi : \mathbb{R} \to \mathbb{R}$, any sequence \mathcal{Y} of points in \mathbb{T} , and any lacunary sequence \mathcal{T} , the set $\varphi(\tilde{E}(\mathcal{T},\mathcal{Y}))$ is α -winning on K.

We also show in §3 that when K is as in the above theorem and S is winning on K, one has $\dim(S \cap K) \geq \gamma$. Furthermore, $\dim(S \cap K) = \dim(K)$ if μ satisfies a power law. Consequently, in view of the countable intersection property of winning sets, for any choice of lacunary sequences \mathcal{T}_k , sequences \mathcal{Y}_k of points in \mathbb{T} , and bi-Lipschitz maps $\varphi_k : \mathbb{R} \to \mathbb{R}$, one has

(1.6)
$$\dim \left(K \cap \bigcap_{k=1}^{\infty} \varphi_k \left(\tilde{E}(\mathcal{T}_k, \mathcal{Y}_k) \right) \right) \ge \gamma,$$

where γ is as in Theorem 1.1 (see Corollary 4.2). Thus on any K as above it is possible to find a set of positive Hausdorff dimension consisting of numbers which are normal to no base.

Another consequence of the generality of Theorem 1.1 is a possibility to consider orbits of affine expanding maps of the circle, that is,

(1.7)
$$f_{b,c}: x \mapsto bx + c$$
, where $b \in \mathbb{Z}_{\geq 2}$ and $c \in \mathbb{T}$.

It then follows that whenever K, α and φ are as in Theorem 1.1 and $y \in \mathbb{T}$, the set $\varphi\left(\pi^{-1}\left(E(f_{b,c},y)\right)\right)$ is α -winning on K (see Corollary 4.3). In particular, $E(f_{b,c},y)$ itself is α -winning on any subset of \mathbb{T} supporting a measure which can be lifted to a (C,γ) -absolutely decaying measure on \mathbb{R} .

Also, as is essentially proved in [12], a bi-Lipschitz image of the set

$$\mathbf{BA} \stackrel{\text{def}}{=} \left\{ x \in \mathbb{R} : \exists \, c = c(x) > 0 \text{ s. t. } \left| x - \frac{p}{q} \right| > \frac{c}{q^2} \quad \forall (p, q) \in \mathbb{Z} \times \mathbb{N} \right\}$$

of badly approximable numbers is also α -winning on K under the same assumptions on K (see also [16, 18]). We discuss this in §4 (see Theorem 4.1). Thus the intersection of the set in the left hand side of (1.6) with $\varphi(\mathbf{BA})$, where $\varphi: \mathbb{R} \to \mathbb{R}$ is bi-Lipschitz, will still have Hausdorff dimension at least γ . This significantly generalizes V. Jarník's [13] result on the full Hausdorff dimension of \mathbf{BA} , as well as its strengthening by Schmidt [26]. Note that \mathbf{BA} is a nonlinear analogue of $\tilde{E}(b,0)$, with f_b replaced by the Gauss map; this naturally raises a question of extending our results to more general self-maps of \mathbb{T} , see §5.4.

As a straightforward consequence of our results, we get

Corollary 1.2. Given $K \subset \mathbb{R}$ supporting an absolutely decaying measure μ , the set of real numbers $x \in K$ that are badly approximable and such that, for every $b \geq 2$, their base-b expansion does not contain more than C(x,b) consecutive identical digits, has positive Hausdorff dimension. In particular, if μ satisfies a power law (for example, if K is the middle third Cantor set), then the dimension of this set is full.

The structure of the paper is as follows. In $\S 2$ we describe the class of absolutely decaying measures on $\mathbb R$, giving examples and highlighting the connections between absolute decay and other properties. In $\S 3$ we discuss Schmidt's game played on arbitrary metric spaces X, and then specialize to the case when X=K is a subset of $\mathbb R$ supporting an absolutely decaying measure. Then in $\S 4$ we prove the main theorem. The last section is devoted to some extensions of our main result and further open questions.

2. Absolutely decaying measures

The next definition describes a property of measures first introduced in [15]. In this paper we only consider measures on the real line; however see §5.5 for a situation in higher dimensions. In what follows, we denote by $B(x, \rho)$ the closed ball in a metric space (X, d) centered at x of radius ρ ,

$$(2.1) B(x,\rho) \stackrel{\mathrm{def}}{=} \left\{ y \in X : d(x,y) \le \rho \right\}.$$

Definition 2.1. Let μ be a locally finite Borel measure on \mathbb{R} , and let $C, \gamma > 0$. We say that μ is (C, γ) -absolutely decaying if there exists $\rho_0 > 0$ such that for all $0 < \rho \le \rho_0$, $x \in \text{supp } \mu$, $y \in \mathbb{R}$ and $\varepsilon > 0$,

(2.2)
$$\mu(B(x,\rho) \cap B(y,\varepsilon\rho)) < C\varepsilon^{\gamma}\mu(B(x,\rho)).$$

We say μ is absolutely decaying if it is (C, γ) -absolutely decaying for some positive C, γ .

Many examples of measures satisfying this property are constructed⁴ in [15, 16]. For example, limit measures of finite systems of contracting similarities [15, $\S 8$] satisfying the open set condition and without a global fixed point are absolutely decaying. See also [30, 31, 32, 27] for other examples.

⁴The terminology in [15] is slightly different; there, μ is called absolutely decaying if μ -almost every point has a neighborhood U such that the restriction of μ to U is (C, γ) -absolutely decaying for some C, γ ; however in all examples considered in [15, 16] a stronger uniform property is in fact established.

In what follows we highlight the connections between absolute decay and other conditions introduced earlier in the literature.

Definition 2.2. Let μ be a locally finite Borel measure on a metric space X. One says that μ is Federer (resp., efd) if there exists $\rho_0 > 0$ and $0 < \varepsilon, \delta < 1$ such that for every $0 < \rho \le \rho_0$ and for any $x \in \text{supp } \mu$, the ratio

(2.3)
$$\mu(B(x,\varepsilon\rho))/\mu(B(x,\rho))$$

is at least (resp., at most) δ .

Federer property is usually referred to as 'doubling': see e.g. [20] for discussions and examples. The term 'efd' (an abbreviation for exponentially fast decay) was introduced by Urbanski; see [30, 32] for many examples and [33, 34] for other equivalent formulations. The next lemma provides another way to state these properties:

Lemma 2.3. Let μ be a locally finite Borel measure on a metric space X. Then μ is Federer (resp., efd) if and only if there exist $\rho_0 > 0$ and $c, \gamma > 0$ such that for every $0 < \rho \le \rho_0$, $0 < \varepsilon < 1$, and $x \in \text{supp } \mu$, the ratio (2.3) is not less (resp., not greater) than $c\varepsilon^{\gamma}$.

Proof. The 'if' part is clear, one simply needs to choose ε such that $c\varepsilon^{\gamma} < 1$. Now suppose μ is Federer, and let ε_0, δ be such that

(2.4)
$$\mu(B(x,\varepsilon_0\rho)) \ge \delta\mu(B(x,\rho))$$

for every $0 < \rho \le \rho_0$ and $x \in \operatorname{supp} \mu$. We are going to put $c = \delta$ and $\gamma = \frac{\log \delta}{\log \varepsilon_0}$. Take $0 < \varepsilon < 1$, and let n be the largest integer such that $\varepsilon \le \varepsilon_0^n$. Then

$$c\varepsilon^{\gamma} = \delta\varepsilon^{\frac{\log\delta}{\log\varepsilon_0}} = \delta\delta^{\frac{\log\varepsilon}{\log\varepsilon_0}} \leq \delta^{n+1} \,.$$

Hence

$$c\varepsilon^{\gamma}\mu\big(B(x,\rho)\big) \leq \delta^{n+1}\mu\big(B(x,\rho)\big) \underset{(2.4) \text{ applied } n \text{ times}}{\leq} \mu\big(B(x,\varepsilon_0^{n+1}\rho)\big),$$

which, in view of the definition of n, implies $\mu(B(x, \varepsilon \rho)) \geq c\varepsilon^{\gamma} \mu(B(x, \rho))$. Similarly, from the fact that $\mu(B(x, \varepsilon_0 \rho)) \leq \delta \mu(B(x, \rho))$ for every $0 < \rho \leq \rho_0$ and $x \in \text{supp } \mu$ one can deduce the inequality

(2.5)
$$\mu(B(x,\varepsilon\rho)) \le c\varepsilon^{\gamma}\mu(B(x,\rho))$$

for every
$$x, \rho$$
 and ε , with $c = 1/\delta$ and $\gamma = \frac{\log \delta}{\log \varepsilon_0}$.

Now we can produce an alternative description of absolutely decaying measures on \mathbb{R} :

Proposition 2.4. Let μ be a locally finite Borel measure on \mathbb{R} . Then μ is absolutely decaying if and only if it is Federer and efd.

The 'if' part is due to Urbanski, see [32, Lemma 7.1]; we include a proof to make the paper self-contained.

Proof. Let μ be (C, γ) -absolutely decaying, and let ρ_0 be as in Definition 2.1. Taking x = y and c = C in (2.2) readily implies (2.5), i.e. the efd property. To show Federer, take $0 < \rho \le \rho_0$ and $x \in \text{supp } \mu$, and let $\varepsilon < 1/4$ satisfy $C\varepsilon^{\gamma} < 1/2$. Choose y_1 and y_2 to be the two distinct points satisfying $|x - y_i| = (1 - \varepsilon)\rho$, i = 1, 2. It clearly follows from Definition 2.1 that μ is non-atomic; thus we can write

 $\mu(B(x,\rho)) = \mu(B(x,\rho) \cap B(y_1,\varepsilon\rho)) + \mu(B(x,(1-2\varepsilon)\rho)) + \mu(B(x,\rho) \cap B(y_2,\varepsilon\rho)).$ Therefore, by (2.2),

$$\mu(B(x,\rho)) \le \mu(B(x,(1-2\varepsilon)\rho)) + 2C\varepsilon^{\gamma}\mu(B(x,\rho)).$$

Setting $\varepsilon_0 = 1 - 2\varepsilon$ and $\delta = 1 - 2C\varepsilon^{\gamma}$ we get (2.4).

Conversely, suppose that μ is both Federer and efd. In view of Lemma 2.3, for some $\rho_0 > 0$ and $c_1, c_2, \gamma_1, \gamma_2 > 0$ one has

$$c_1 \varepsilon^{\gamma_1} \mu(B(x,\rho)) \le \mu(B(x,\varepsilon\rho)) \le c_2 \varepsilon^{\gamma_2} \mu(B(x,\rho))$$

for all $0 < \rho \le \rho_0$, $x \in \text{supp } \mu$ and $0 < \varepsilon < 1$. Now take $\rho < \rho_0/3$ and $y \in B(x,\rho)$. If $\mu(B(x,\rho) \cap B(y,\varepsilon\rho)) = 0$, we are done. Otherwise, there exists $y' \in \text{supp } \mu \cap B(y,\varepsilon\rho) \cap B(x,\rho)$. Then

$$\mu(B(x,\rho) \cap B(y,\varepsilon\rho)) \leq \mu(B(y',2\varepsilon\rho)) \leq c_2 \varepsilon^{\gamma_2} \mu(B(y',2\rho))$$

$$\leq c_2 \varepsilon^{\gamma_2} \mu(B(x,3\rho)) \leq c_2 c_1^{-1} 3^{\gamma_1} \varepsilon^{\gamma_2} \mu(B(x,\rho)),$$
which gives (2.2) with $C = c_2 c_1^{-1} 3^{\gamma_1}$ and $\gamma = \gamma_2$.

In particular, suppose that μ satisfies a power law, i.e. there exist positive γ , k_1 , k_2 , ρ_0 such that for every $x \in \text{supp } \mu$ and $0 < \rho < \rho_0$ one has

$$k_1 \rho^{\gamma} \leq \mu(B(x,\rho)) \leq k_2 \rho^{\gamma};$$

then μ is clearly efd and Federer, hence absolutely decaying. However there exist examples of absolutely decaying measures without a power law, see [16, Example 7.5]. Also, recall that the *lower pointwise dimension* of μ at x is defined as

$$\underline{d}_{\mu}(x) \stackrel{\text{def}}{=} \liminf_{\rho \to 0} \frac{\log \mu(B(x,\rho))}{\log \rho}$$
,

and, for an open U with $\mu(U) > 0$ let

(2.6)
$$\underline{d}_{\mu}(U) \stackrel{\text{def}}{=} \inf_{x \in \text{supp } \mu \cap U} \underline{d}_{\mu}(x).$$

Then it is known, see e.g. [9, Proposition 4.9], that (2.6) constitutes a lower bound for the Hausdorff dimension of supp $\mu \cap U$ (this bound is sharp when μ satisfies a power law). It is easy to see that $\underline{d}_{\mu}(x) \geq \gamma$ for every $x \in \text{supp } \mu$ whenever μ is (C, γ) -absolutely decaying: indeed, let ρ_0 be as in Definition 2.1 and take $\rho < \rho_0$ and $x \in \text{supp } \mu$; then, letting $\varepsilon = \frac{\rho}{\rho_0}$, one has

$$\mu(B(x,\rho)) \le C\left(\frac{\rho}{\rho_0}\right)^{\gamma} \mu(B(x,\rho_0)),$$

thus, for $\rho < 1$,

$$\frac{\log \mu(B(x,\rho))}{\log \rho} \ge \gamma + \frac{\log C - \gamma \log \rho_0 + \log \mu(B(x,\rho_0))}{\log \rho},$$

and the claim follows.

In the next section we will show that sets supporting absolutely decaying measures on \mathbb{R} work very well as playing fields for Schmidt's game. The aforementioned lower estimate for $\underline{d}_{\mu}(x)$ will be used to provide a lower bound for the Hausdorff dimension of winning sets of the game.

3. Schmidt's game

In this section we describe the game, first introduced by Schmidt in [26]. Let (X, d) be a complete metric space. Consider $\Omega \stackrel{\text{def}}{=} X \times \mathbb{R}_+$, and define a partial ordering

$$(x_2, \rho_2) \le_s (x_1, \rho_1) \text{ if } \rho_2 + d(x_1, x_2) \le \rho_1.$$

We associate to each pair (x, ρ) a ball in (X, d) via the 'ball' function $B(\cdot)$ as in (2.1). Note that $(x_2, \rho_2) \leq_s (x_1, \rho_1)$ clearly implies (but is not necessarily implied by) $B(x_2, \rho_2) \subset B(x_1, \rho_1)$. However the two conditions are equivalent when X is a Euclidean space.

Schmidt's game is played by two players, whom, following a notation used in [17], we will call⁵ Alice and Bob. The two players are equipped with parameters α and β respectively, satisfying $0 < \alpha, \beta < 1$. Choose a subset S of X (a target set). The game starts with Bob picking $x_1 \in X$ and $\rho > 0$, hence specifying a pair $\omega_1 = (x_1, \rho)$. Alice and Bob then take turns choosing $\omega'_k = (x'_k, \rho'_k) \leq_s \omega_k$ and $\omega_{k+1} = (x_{k+1}, \rho_{k+1}) \leq_s \omega'_k$ respectively satisfying

(3.1)
$$\rho'_k = \alpha \rho_k \text{ and } \rho_{k+1} = \beta \rho'_k.$$

As the game is played on a complete metric space and the diameters of the nested balls

$$B(\omega_1) \supset \ldots \supset B(\omega_k) \supset B(\omega'_k) \supset \ldots$$

tend to zero as $k \to \infty$, the intersection of these balls is a point $x_{\infty} \in X$. Call Alice the winner if $x_{\infty} \in S$. Otherwise Bob is declared the winner. A strategy consists of specifications for a player's choices of centers for his or her balls given the opponent's previous moves.

If for certain α , β and a target set S Alice has a winning strategy, i.e., a strategy for winning the game regardless of how well Bob plays, we say that S is an (α, β) -winning set. If S and α are such that S is an (α, β) -winning set for all β in (0, 1), we say that S is an α -winning set. Call a set winning if such an α exists.

Intuitively one expects winning sets to be large. Indeed, every such set is clearly dense in X; moreover, under some additional assumptions on the metric space winning sets can be proved to have positive, and even full, Hausdorff dimension. For example, the fact that a winning subset of \mathbb{R}^n has Hausdorff dimension n is due to Schmidt [26, Corollary 2]. Another useful result of Schmidt [26, Theorem 2] states that the intersection of countably many α -winning sets is α -winning.

Schmidt himself used the machinery of the game he invented to prove that certain subsets of \mathbb{R} or \mathbb{R}^n are winning, and hence have full Hausdorff dimension. For example, he showed [26, Theorem 3] that **BA** is α -winning for any $0 < \alpha \le 1/2$. The same conclusion, according to [26, §8], holds for the sets E_b defined in the introduction.

 $^{^{5}}$ The players were referred to as 'white' and 'black' by Schmidt, and as A and B in some subsequent literature; a suggestion to use the Alice/Bob nomenclature is due to Andrei Zelevinsky.

Now let K be a closed subset of X. We will say that a subset S of X is (α, β) -winning on K (resp., α -winning on K, winning on K) if $S \cap K$ is (α, β) -winning (resp., α -winning, winning) for Schmidt's game played on the metric space K with the metric induced from (X,d). In the present paper we let $X=\mathbb{R}$ and take K to be the support of an absolutely decaying measure. In other words, since the metric is induced, playing the game on K amounts to choosing balls in \mathbb{R} according to the rules of a game played on \mathbb{R} , but with an additional constraint that the centers of all the balls lie in K.

It turns out, as was observed in [12], that the decay property (2.2) is very helpful for playing Schmidt's game on K. Moreover, as demonstrated by the following proposition proved in [17], the decay conditions are important for estimating the Hausdorff dimension of winning sets:

Proposition 3.1. [17, Proposition 5.1] Let K be the support of a Federer measure μ on a metric space X, and let S be winning on K. Then for any open $U \subset X$ with $\mu(U) > 0$ one has

$$\dim(S \cap K \cap U) \ge \underline{d}_{\mu}(U)$$
.

In particular, in the above proposition one can replace $\underline{d}_{\mu}(U)$ with γ if μ is (C, γ) absolutely decaying. Note that this generalizes estimates for the Hausdorff dimension
of winning sets due to Schmidt [26] for μ being Lebesgue measure on \mathbb{R}^n , and to
Fishman [12, §5] for measures satisfying a power law.

The next lemma is another example of the absolute decay of a measure being helpful for playing Schmidt's game on its support:

Lemma 3.2. Let K be the support of a (C, γ) -absolutely decaying measure on \mathbb{R} , and let α be as in (1.5). Then for every $0 < \rho < \rho_0, x_1 \in K$ and $y_1, \ldots, y_N \in \mathbb{R}$, there exists $x'_1 \in K$ with

$$(3.2) B(x_1', \alpha \rho) \subset B(x_1, \rho)$$

and, for at least half of the points y_i ,

(3.3)
$$d(B(x_1', \alpha \rho), y_i) > \alpha \rho.$$

Proof. If $B(x_1, 2\alpha\rho)$ contains not more than half of the points y_i , then clearly we can take $x_1' = x_1$. Otherwise, $B(x_1, 2\alpha\rho)$ contains at least half of the points y_i . Let x_0 and x_2 be the endpoints of $B(x_1, \rho)$. By (2.2)

$$\mu(B(x_i, 4\alpha\rho)) < C(4\alpha)^{\gamma} \mu(B(x_1, \rho)) < \frac{1}{3} \mu(B(x_1, \rho)),$$

for i = 0, 1, 2, so there is a point $x_1' \in K$ which is not in $B(x_i, 4\alpha\rho)$ for i = 0, 1, 2, and hence satisfies both (3.2) and (3.3) for all y_i contained in $B(x_1, 2\alpha\rho)$.

We note that (3.2) in particular implies that $(x'_1, \alpha \rho) \leq_s (x_1, \rho)$; thus it would be a valid choice of Alice in an (α, β) -game played on K in response to $B(x_1, \rho)$ chosen by Bob. Therefore the above lemma can be used to construct a winning strategy for Alice choosing balls which stay away from some prescribed sets of 'bad' points y_1, \ldots, y_N . This idea is motivated by the proof of Lemma 1 in [23].

Furthermore, the above lemma immediately implies

Corollary 3.3. Let K be the support of a (C, γ) -absolutely decaying measure on \mathbb{R} , let α be as in (1.5), let $S \subset \mathbb{R}$ be α -winning on K, and let $S' \subset S$ be countable. Then $S \setminus S'$ is also α -winning on K.

Proof. In view of the countable intersection property, it suffices to show that $\mathbb{R} \setminus \{y\}$ is (α, β) -winning on K for any y and any β . We let Alice play arbitrarily until the radius of a ball chosen by Bob is not greater than ρ_0 . Then apply Lemma 3.2 with N=1 and $y_1=y$, which yields a ball not containing y. Afterwards she can keep playing arbitrarily, winning the game.

We note that such a property is demonstrated in [26, Lemma 14] for games played on a Banach space of positive dimension.

4. Proofs

Proof of Theorem 1.1. Let α be as in (1.5) and let $0 < \beta < 1$. Suppose K supports a (C, γ) -absolutely decaying measure, $\varphi : \mathbb{R} \to \mathbb{R}$ is bi-Lipschitz, $\mathcal{T} = (t_n)$ is a sequence of positive reals satisfying

(4.1)
$$\inf_{n} \frac{t_{n+1}}{t_n} = M > 1,$$

and $\mathcal{Y} = (y_n)$ is a sequence of points in \mathcal{T} . Our goal is to specify a strategy for Alice allowing to zoom in on $\varphi(\tilde{E}(\mathcal{T},\mathcal{Y})) \cap K$.

Choose N large enough so that

(4.2)
$$(\alpha\beta)^{-r} \leq M^N$$
, where $r \stackrel{\text{def}}{=} |\log_2 N| + 1$.

Here and hereafter $\lfloor \cdot \rfloor$ denotes the integer part.

Note that without loss of generality one can replace the sequence \mathcal{T} with its tail $\mathcal{T}' \stackrel{\text{def}}{=} (t_n : n \ge n_0)$; indeed, it is easy to see that

$$\tilde{E}(\mathcal{T}, \mathcal{Y}) \setminus \tilde{E}(\mathcal{T}', \mathcal{Y}')$$
,

where $\mathcal{Y}' \stackrel{\text{def}}{=} (y_n : n \geq n_0)$, is at most countable; therefore the claim follows from Corollary 3.3. Consequently, one can assume that $t_n > 1$ for all n.

Let L be a bi-Lipschitz constant for φ ; in other words,

(4.3)
$$\frac{1}{L} \le \frac{|\varphi(x) - \varphi(y)|}{|x - y|} \le L \quad \forall x \ne y \in \mathbb{R}.$$

The game begins with Bob choosing $(x_1, \rho') \in \Omega = K \times \mathbb{R}_+$. Let k_0 be the minimal positive integer satisfying

(4.4)
$$\rho \stackrel{\text{def}}{=} (\alpha \beta)^{k_0 - 1} \rho' < \min \left(\frac{1}{2L} (\alpha \beta)^{-r + 1}, \rho_0 \right),$$

where ρ_0 is as in Definition 2.1. Alice will play arbitrarily until her k_0 th turn. Then $\omega_{k_0} = (x_2, \rho)$ for some $x_2 \in K$. Reindexing, set $\omega_1 = \omega_{k_0}$. Let

$$c \stackrel{\text{def}}{=} \frac{\rho}{L} (\alpha \beta)^{3r}.$$

⁶The same argument shows that the assumption of the lacunarity of \mathcal{T} in Theorem 1.1 can be weakened to eventual lacunarity, that is, to $\liminf_{n\to\infty}\frac{t_{n+1}}{t_n}>1$.

For an arbitrary $k \in \mathbb{N}$, define

$$I_k \stackrel{\text{def}}{=} \{ n \in \mathbb{N} : (\alpha \beta)^{-r(k-1)} \le t_n < (\alpha \beta)^{-rk} \};$$

note that $\#I_k \leq N$ in view of (4.1) and (4.2).

Our goal now is to describe Alice's strategy for choosing $\omega_i' \in \Omega$, $i \in \mathbb{N}$, to ensure that for any $k \in \mathbb{N}$,

(4.5)
$$d\left(\pi(t_n\varphi^{-1}(x)), y_n\right) \ge c \text{ whenever } x \in B(\omega'_{r(k+2)-1}) \text{ and } n \in I_k.$$

Then if we let

$$x_{\infty} \stackrel{\text{def}}{=} \bigcap_{i} B(\omega'_{i}) = \bigcap_{k} B(\omega'_{r(k+2)-1}),$$

which is clearly an element of K, we will have $\varphi^{-1}(x_{\infty}) \in \tilde{E}(\mathcal{T}, \mathcal{Y})$; in other words, (4.5) enforces that $x_{\infty} \in \varphi(\tilde{E}(\mathcal{T}, \mathcal{Y})) \cap K$, as required.

To achieve (4.5), Alice may choose ω_i' arbitrarily for i < 2r. Now fix $k \in \mathbb{N}$ and observe that whenever $n \in I_k$ and $m_1 \neq m_2 \in \mathbb{Z}$, one has

$$\left| \frac{y_n + m_1}{t_n} - \frac{y_n + m_2}{t_n} \right| \ge t_n^{-1} > (\alpha \beta)^{rk},$$

so, by (4.3),

(4.6)
$$\left| \varphi \left(\frac{y_n + m_1}{t_n} \right) - \varphi \left(\frac{y_n + m_2}{t_n} \right) \right| > \frac{1}{L} (\alpha \beta)^{rk}.$$

Because of (4.4), the diameter of $B(\omega_{r(k+1)})$ is

$$2(\alpha\beta)^{r(k+1)-1}\rho < \frac{1}{L}(\alpha\beta)^{rk},$$

so by (4.6) the set

$$Z \stackrel{\text{def}}{=} \left\{ \varphi \left(\frac{y_n + m}{t_n} \right) : m \in \mathbb{Z}, \ n \in I_k \right\}$$

has at most N elements in $B(\omega_{r(k+1)})$. Applying Lemma 3.2 r times, Alice can choose $\omega'_{r(k+1)}, \ldots, \omega'_{r(k+2)-1} \in \Omega$ in such a way that

$$d(B(\omega'_{r(k+2)-1}), Z) \ge (\alpha\beta)^{r(k+2)}\rho$$
.

Therefore, again by (4.3), for any $x \in B(\omega'_{r(k+2)-1})$, $m \in \mathbb{Z}$ and $n \in I_k$ one has

$$\left|t_n\varphi^{-1}(x)-(y_n+m)\right|\geq \frac{t_n}{L}\left|x-\varphi\left(\frac{y_n+m}{t_n}\right)\right|\geq \frac{t_n}{L}(\alpha\beta)^{r(k+2)}\rho\geq \frac{\rho}{L}(\alpha\beta)^{3r}=c\,,$$

which implies (4.5).

Recall that it was shown in [26] that **BA** is a winning subset of \mathbb{R} . In [12], this set, and its nonsingular affine images, was shown to be α -winning on the support of any (C, γ) -absolutely decaying measure on \mathbb{R} , where α depends only on C and γ . In what follows we prove a slight generalization of this result for bi-Lipschitz images. The technique used is similar to the one used in the proof of the main theorem. We include it for the sake of completeness.

Theorem 4.1. Let K be the support of a (C, γ) -absolutely decaying measure on \mathbb{R} , and let α be as in (1.5). Then for every bi-Lipschitz map $\varphi : \mathbb{R} \to \mathbb{R}$, the set $\varphi(\mathbf{B}\mathbf{A})$ is α -winning on K.

Proof. Again, take an arbitrary $0 < \beta < 1$, and let L be as in (4.3). Let $R = (\alpha \beta)^{-\frac{1}{2}}$. The game begins with Bob choosing $(x_1, \rho') \in \Omega$. Let k_0 be the minimal positive integer satisfying

$$(\alpha\beta)^{k_0-1}\rho' < \min\left(\frac{\alpha\beta}{2L}, \rho_0\right),\,$$

where ρ_0 is as in Definition 2.1, and denote $\rho \stackrel{\text{def}}{=} (\alpha \beta)^{k_0 - 1} \rho'$. Alice will play arbitrarily until her k_0 th turn. Then $\omega_{k_0} = (x_2, \rho)$ for some $x_2 \in K$. Reindexing, set $\omega_1 = \omega_{k_0}$. Let $c = \frac{R^2 \alpha \rho}{L}$.

Fix an arbitrary $k \in \mathbb{N}$. We will describe Alice's strategy for choosing ω'_k such that

(4.8)
$$\left| \varphi^{-1}(x) - \frac{p}{q} \right| > \frac{c}{q^2} \text{ for all } x \in B(\omega_k'), R^{k-1} \le q < R^k.$$

Clearly the existence of such strategy implies that she can play so that $\bigcap_k B(\omega'_k)$ lies in $K \cap \varphi(\mathbf{BA})$.

Note that for any distinct $\frac{p_1}{q_1}, \frac{p_2}{q_2} \in \mathbb{R}$ with $R^{k-1} \leq q_1, q_2 < R^k$,

$$\left| \frac{p_1}{q_1} - \frac{p_2}{q_2} \right| = \left| \frac{p_1 q_2 - p_2 q_1}{q_1 q_2} \right| > \frac{1}{R^{2k}}.$$

Hence, $\left| \varphi \left(\frac{p_1}{q_1} \right) - \varphi \left(\frac{p_2}{q_2} \right) \right| \ge \frac{1}{L} R^{-2k}$. But

$$\operatorname{diam}(B(\omega_k)) \le 2\rho(\alpha\beta)^{k-1} < \frac{1}{L}R^{-2k},$$

so $B(\omega_k)$ contains at most one point $\varphi\left(\frac{p}{q}\right)$ with $R^{k-1} \leq q < R^k$. In view of Lemma 3.2, where we put N=1, Alice can choose $\omega_k' \in \Omega$ such that, for every $x \in B(\omega_k')$ and $(p,q) \in \mathbb{Z} \times \mathbb{N}$ with $R^{k-1} \leq q < R^k$, one has

$$\left| x - \varphi\left(\frac{p}{q}\right) \right| > \alpha \rho(\alpha \beta)^k = \alpha \rho R^{-2k} > \frac{R^2 \alpha \rho}{q^2}.$$

Again by (4.3), we obtain

$$\left| \varphi^{-1}(x) - \frac{p}{q} \right| > \frac{R^2 \alpha \rho}{Lq^2} = \frac{c}{q^2},$$

and (4.8) is established.

As an immediate consequence of Proposition 3.1 and the countable intersection property of winning sets, we obtain the following

Corollary 4.2. Let K be the support of a (C, γ) -absolutely decaying measure on \mathbb{R} , and let α be as in (1.5). Then given lacunary sequences \mathcal{T}_k , sequences $\mathcal{Y}_k \in \mathbb{T}$, bi-Lipschitz maps $\varphi_k, \psi_k : \mathbb{R} \to \mathbb{R}$, and an open set $U \subset \mathbb{R}$ with $U \cap K \neq \emptyset$, one has

$$\dim \left(\bigcap_{k=1}^{\infty} K \cap U \cap \varphi_k(\mathbf{B}\mathbf{A}) \cap \psi_k(\tilde{E}(\mathcal{T}_k, \mathcal{Y}_k)) \right) \ge \gamma.$$

In particular we can have $\gamma = \dim(K)$ when the measure satisfies a power law (e.g. when K is equal to \mathbb{R} or to the middle third Cantor set).

We conclude the section with an application of Theorem 1.1 to affine expanding maps $f_{b,c}$ as defined in (1.7):

Corollary 4.3. Let K be the support of a (C, γ) -absolutely decaying measure on \mathbb{R} , and let α be as in (1.5). Then for every bi-Lipschitz map $\varphi : \mathbb{R} \to \mathbb{R}$, $b \in \mathbb{Z}_{\geq 2}$ and $c, y \in \mathbb{T}$, the set $\varphi \left(\pi^{-1}(E(f_{b,c}, y))\right)$ is α -winning on K.

Proof. Since $f_{b,c}$ is a composition of f_b with an isometry of \mathbb{T} , it is easy to construct a sequence of points $\mathcal{Y} = (y_n)$ of \mathbb{T} such that, with $\mathcal{T} = (b^n)$, one has $x \in \tilde{E}(\mathcal{T}, \mathcal{Y})$ if and only if $\pi(x) \in E(f_{b,c}, y)$.

5. Applications, related results and further questions

5.1. Trajectories avoiding intervals. Recently a quantitative modification of Schmidt's proof of abundance of numbers normal to no base was introduced in the work of R. Akhunzhanov. To describe it, let us define

$$\hat{E}(b,A) = \bigcap_{y \in A} \tilde{E}(b,y) = \left\{ x \in \mathbb{R} : A \cap \overline{\{\pi(b^nx) : n \in \mathbb{N}\}} = \varnothing \right\}$$

for a subset A of \mathbb{T} . Clearly when $A=B(0,\delta)$ is a δ -neighborhood of 0 in \mathbb{T} , every number $x\in \hat{E}(b,A)$ has a uniform (depending on δ) upper bound on the number of consecutive zeros in the b-ary expansion. It is easy to see that whenever A contains an interval, $\hat{E}(b,A)$ is nowhere dense and has positive Hausdorff codimension. Nevertheless it was proved in [1,2] that for any $\varepsilon>0$ and any integer $b\geq 2$ there exists a positive (explicitly constructed) $\delta=\delta_{b,\varepsilon}$ such that the set

$$\bigcap_{b\in\mathbb{Z}_{\geq 2}} \hat{E}(b, B(0, \delta_{b,\varepsilon}))$$

has Hausdorff dimension at least $1-\varepsilon$. The proof is based on Schmidt's game, namely on so-called (α, β, ρ) -winning sets of the game. This technique readily extends to playing on supports of absolutely decaying measures. Namely, one can show that given $C, \gamma, \varepsilon > 0$ and integer $b \geq 2$, there exists $\delta = \delta_{C,\gamma,b,\varepsilon}$ such that

$$\dim \left(\bigcap_{b \in \mathbb{Z}_{\geq 2}} K \cap \hat{E}(b, B(0, \delta_{C, \gamma, b, \varepsilon})) \right) > \gamma - \varepsilon$$

whenever K supports a (C, γ) -absolutely decaying measure. Details will be described elsewhere.

5.2. Are these sets null? It is not hard to construct examples of absolutely decaying measures μ such that $K = \text{supp } \mu$ lies entirely inside a set of the form $\tilde{E}(b,y)$ for some $b \in \mathbb{Z}_{\geq 2}$, or inside the set of badly approximable numbers. However in many cases, under some additional assumptions on μ one can show that those sets, proved to be winning on K in the present paper, have measure zero. For example, it is proved in [5] that almost all x in the middle third Cantor set, with respect to the coin-flipping measure, are normal to base b whenever b is not a power of 3. And in a recent work

- [8] of M. Einsiedler, U. Shapira and the third-named author it is established that $\mu(\mathbf{B}\mathbf{A}) = 0$ whenever μ is f_b -invariant for some $b \in \mathbb{Z}_{\geq 2}$ and has positive dimension. It seems interesting to ask for general conditions on a measure on \mathbb{R} , possibly stated in terms of invariance under some dynamical system, which guarantee that whenever $y \in \mathbb{T}$, sets $\tilde{E}(b,y)$ for a fixed $b \geq 2$ have measure zero.
- **5.3.** Strong winning sets. In a recent preprint [21] C. McMullen introduced a modification of Schmidt's game, where condition (3.1) is replaced by

(5.1)
$$\rho_k' \ge \alpha \rho_k \text{ and } \rho_{k+1} \ge \beta \rho_k',$$

and $S \subset X$ is said to be (α, β) -strong winning if Alice has a winning strategy in the game dened by (5.1). Analogously, we define α -strong winning and strong winning sets. It is straightforward to verify that (α, β) -strong winning implies (α, β) -winning, and that a countable intersection of α -strong winning sets is α -strong winning. Furthermore, this class has stronger invariance properties, e.g. it is proved in [21] that strong winning subsets of \mathbb{R}^n are preserved by quasisymmetric homeomorphisms. Mc-Mullen notes that many examples of winning sets arising naturally in dynamics and Diophantine approximation seem to also be strong winning. The sets considered in this paper are no exception: it is not hard to modify our proofs to show that, under the assumptions of Theorems 1.1 and 4.1, the sets $\tilde{E}(\mathcal{T}, \mathcal{Y})$ and \mathbf{BA} are α -strong winning on K.

- **5.4.** More general self-maps of \mathbb{T} . It would be interesting to unify Theorems 1.1 and 4.1 by describing a class of maps $f: \mathbb{T} \to \mathbb{T}$ for which one can prove sets of the form E(f,y) to be winning on K whenever $K \subset \mathbb{T}$ supports an absolutely decaying measure. An important special case is a map f given by multiplication by b when b>1 is not an integer; that is, constructed by identifying \mathbb{T} with [0,1) and defining $f(x)=bx\mod 1$. With this definition, the set (1.4) does not coincide with the π -preimage of E(f,y), and the methods of the present paper do not seem to yield any information. Some results along these lines have been obtained recently in [10,11].
- **5.5.** A generalization to higher dimensions. The method developed in the present paper has been extended in [3] to a multi-dimensional set-up, that is, with a lacunary sequence of real numbers acting on \mathbb{R} replaced by a sequence of $m \times n$ matrices, whose operator norms form a lacunary sequence, acting on \mathbb{R}^n . This, among other things, generalizes a result of Dani [6] on orbits of toral endomorphisms. A higher-dimensional analogue of Theorem 1.1 can be established for absolutely decaying measures on \mathbb{R}^n . Note that the definition of absolutely decaying measures on \mathbb{R}^n [15] is the same as Definition 2.1 but with balls $B(y, \varepsilon \rho)$ being replaced by $\varepsilon \rho$ -neighborhoods of affine hyperplanes. Also, Proposition 2.4 does not extend to n > 1, that is, absolute decay does not imply Federer, and a combination of efd and Federer does not imply absolute decay.

Acknowledgments

Yann Bugeaud would like to thank Ben Gurion University at Beer-Sheva, where part of this work has been done. This research was supported in part by NSF grant DMS-0801064, ISF grant 584/04 and BSF grant 2004149.

References

- R. K. Akhunzhanov, On nonnormal numbers, Mat. Zametki 72 (2002), 150–152 (in Russian); translation in Math. Notes 72 (2002), 135–137.
- [2] _____, On the distribution modulo 1 of exponential sequences, Mat. Zametki 76 (2004), 163–171 (in Russian); translation in Math. Notes 76 (2004), 153–160.
- [3] R. Broderick, L. Fishman and D. Kleinbock, Schmidt's game, fractals, and orbits of toral endomorphisms, Preprint, arXiv:1001.0318.
- [4] Y. Bugeaud, S. Harrap, S. Kristensen and S. Velani, On shrinking targets for Z^m actions on tori, To appear in Mathematika.
- [5] J.W.S. Cassels, On a problem of Steinhaus about normal numbers, Colloq. Math. 7 (1959), 95–101.
- [6] S.G. Dani, On orbits of endomorphisms of tori and the Schmidt game, Ergod. Theory Dynam. Systems 8 (1988), 523-529.
- D. Dolgopyat, Bounded orbits of Anosov flows, Duke Math. J. 87 (1997), no. 1, 87–114.
- [8] M. Einsiedler, L. Fishman and U. Shapira, Diophantine approximation on fractals, Preprint, arXiv:0908.2350.
- [9] K. Falconer, Fractal geometry. Mathematical foundations and applications, John Wiley & Sons, Inc., Hoboken, NJ, 2003.
- [10] D. Färm, Simultaneously Non-dense Orbits Under Different Expanding Maps, Preprint, arXiv:0904.4365v1.
- [11] D. Färm, T. Persson and J. Schmeling, Dimension of Countable Intersections of Some Sets Arising in Expansions in Non-Integer Bases, To appear in Fundamenta Math.
- [12] L. Fishman, Schmidt's game on fractals, Israel J. Math. 171 (2009), no. 1, 77–92.
- [13] V. Jarník, Zur metrischen Theorie der Diophantischen Approximationen, Prace Math-fiz. 36 2. Heft (1928).
- [14] D. Kleinbock, Nondense orbits of flows on homogeneous spaces, Ergodic Theory Dynam. Systems 18 (1998), 373-396.
- [15] D. Kleinbock, E. Lindenstrauss and B. Weiss, On fractal measures and diophantine approximation, Selecta Math. 10 (2004), 479–523.
- [16] D. Kleinbock and B. Weiss, Badly approximable vectors on fractals, Israel J. Math. 149 (2005), 137–170.
- [17] ______, Modified Schmidt games and Diophantine approximation with weights, Advances in Mathematics 223 (2010), 1276–1298.
- [18] S. Kristensen, R. Thorn, S.L. Velani, Diophantine approximation and badly approximable sets, Advances in Math. 203 (2006), 132–169.
- [19] B. de Mathan, Numbers contravening a condition in density modulo 1, Acta Math. Acad. Sci. Hungar. 36 (1980), 237–241.
- [20] D. Mauldin and M. Urbanski, The doubling property of conformal measures of infinite iterated function systems, J. Number Th. 102 (2003), 23–40.
- [21] C. McMullen, Winning sets, quasiconformal maps and Diophantine approximation, Preprint (2010).
- [22] N.G. Moshchevitin, Sublacunary sequences and winning sets, Mat. Zametki 77 (2005), no. 6, 803–813 (in Russian); translation in Math. Notes 78 (2005), no. 4, 592–596.
- [23] ______, A note on badly approximable affine forms and winning sets, Preprint (2008), arXiv:0812.3998v2.
- [24] A.D. Pollington, On nowhere dense Θ -sets, Groupe de travail d'analyse ultramtrique. 10 (1982-1983), no. 2, Exp. No. 22, 2 p.
- [25] _____, On the density of sequence $\{\eta_k \xi\}$, Illinois J. Math. 23 (1979), no. 4, 511–515.
- [26] W.M. Schmidt, On badly approximable numbers and certain games, Trans. A.M.S. 123 (1966), 27–50.
- [27] B. Stratmann and M. Urbanski, Diophantine extremality of the Patterson measure, Math. Proc. Cambridge Phil. Soc. 140 (2006), 297–304.
- [28] J. Tseng, Schmidt games and Markov partitions, Nonlinearity 22 (2009), no. 3, 525-543.
- [29] M. Urbanski, The Hausdorff dimension of the set of points with non-dense orbit under a hyperbolic dynamical system, Nonlinearity 4 (1991), 385–397.

- [30] ______, Diophantine approximation of self-conformal measures, J. Number Th. 110 (2005), 219–235.
- [31] ______, Diophantine approximation of conformal measures of one-dimensional iterated function systems, Compositio Math. **141** (2005), 869–886.
- [32] _____, Finer Diophantine and regularity properties of 1-dimensional parabolic IFS, Real Anal. Exchange **31** (2005/06), no. 1, 143–163.
- [33] W.A. Veech, Measures supported on the set of uniquely ergodic directions of an arbitrary holomorphic 1-form, Ergodic Theory Dynam. Systems 19 (1999), 1093–1109.
- [34] B. Weiss, Almost no points on a Cantor set are very well approximable, Proc. R. Soc. Lond. A 457 (2001), 949–952.

Department of Mathematics, Brandels University, Waltham MA 02454-9110, USA $E\text{-}mail\ address$: ryanb@brandels.edu

Département de Mathématiques, Université de Strasbourg, 67084 Strasbourg, France $E\text{-}mail\ address$: bugeaud@math.u-strasbg.fr

Department of Mathematics, Brandeis University, Waltham MA 02454-9110, USA $E\text{-}mail\ address$: lfishman@brandeis.edu

Department of Mathematics, Brandeis University, Waltham MA 02454-9110, USA $E\text{-}mail\ address$: kleinboc@brandeis.edu

Department of Mathematics, Ben Gurion University, Be'er Sheva, Israel 84105 $E\text{-}mail\ address:}$ barakw@math.bgu.ac.il