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A UNIFORM PROOF OF THE MACDONALD-MEHTA-OPDAM
IDENTITY FOR FINITE COXETER GROUPS

PAVvEL ETINGOF

1. Introduction

In this note we give a new proof of the Macdonald-Mehta-Opdam integral identity
for finite Coxeter groups (in the equal parameter case). This identity was conjectured
by Macdonald and proved by Opdam in [O1, O2] using the theory of multivariable
Bessel functions, but in non-crystallographic cases the proof relied on a computer
calculation by F. Garvan. Our proof is somewhat more elementary (in particular,
it does not use multivariable Bessel functions), and uniform (does not refer to the
classification of finite Coxeter groups). '

2. Preliminaries

2.1. Coxeter groups. Let W be a finite Coxeter group of rank r with reflection
representation hg equipped with a Euclidean W -invariant inner product (,). 2 Denote
by b the complexification of hg. The reflection hyperplanes subdivide hg into |W]|
chambers; let us pick one of them to be the dominant chamber and call its interior D.
For each reflection hyperplane, pick the perpendicular vector a € hg with (o, ) = 2
which has positive inner products with elements of D, and call it the positive root
corresponding to this hyperplane. The walls of D are then defined by the equations
(i, v) = 0, where «; are simple roots. Denote by S the set of positive roots, and for
«a € S denote by s, the corresponding reflection. We will denote the set of reflections
also by S. Let
A@z) = [T (e, 2)
a€eS

be the corresponding discriminant polynomial. Let d;,i = 1,...,7, be the degrees of
the generators of the algebra C[h]"V. Note that |W| =], d;.

2.2. Cherednik algebras. For k € C, let Hy = Hy(W) be the corresponding ratio-
nal Cherednik algebra (see e.g. [E]). Namely, Hy is the quotient of C[W] x T'(h & h)
(with the two generating copies of h spanned by x4, Yo, a € §), by the defining relations

[T, Zp] = [Ya, 1) =0, [Ya, 2] = (a,b) + k Z(a, a)(a,b)sq.
acs
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We expect that this proof can be generalized to the case of non-equal parameters. Indeed, many
of the steps of our proof, including key Proposition 4.8, generalize without effort to this setting.

2As a basic reference on finite Coxeter groups, we use the book [Hul].
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Let a; be an orthonormal basis of . Consider the element

h = Zmayal—i— —|—st

a€sS
It satisfies [h, 4] = zq, [B, Ya] = —Ya-

Let My, = Hy, QCW xClya,] C, where y,, act in C by 0 and w € W by 1. Then we
have a natural vector spacé isomorphism M, = C[h]. For this reason My, is called
the polynomial representation of Hy. The elements y,, act in this representation by
Dunkl operators (see [E]).

Proposition 2.1. There exists a unique W-invariant symmetric bilinear form 3 on
M, such that B (1,1) = 1, which satisfies the contravariance condition

ﬂk(yavavl) = ﬂk(vaxavl)v U,UI € My,a €h.

Polynomials of different degree are orthogonal under ;. Moreover, the kernel of G
is the maximal proper submodule of My, so My, is reducible iff B is degenerate.

Proof. The proof is standard, see e.g. [E]. Namely, let M} be the dual space of
M, with the dual action of Hj twisted by the antiautomorphism of Hj given by
Ta = Yas Ya — T, and w — w™!, w € W. Then a symmetric W-invariant bilinear
form (B : My x My — C is the same thing as an Hi-homomorphism B s My, — M.
Since this homomorphism commutes with h, it must land in the graded dual space
M ,I C Mj and preserve the grading. But such a homomorphism clearly exists and
is unique up to scaling, as it is determined by B(l) This implies the existence and
uniqueness of G, and the fact that polynomials of different degrees are orthogonal
under Gg.

Now, it is clear from the definition that the kernel of §; is a submodule in My,
so it remains to show that the module My /Kerfy is irreducible. For this, let L
be the irreducible quotient of Mj; then we have a natural surjective homomorphism
M — Ll (defined up to scaling), which must factor through L. Thus we have a
diagram

MkHLk%LL—)M]I,

which implies that Bk factors through Ly, i.e. My /Kerfy = Ly, as desired. ([

3. The main theorem

The goal of this note is to give a uniform and self-contained proof of the following
theorem.

Theorem 3.1. (i) (The Macdonald-Mehta integral) For Re(k) > 0, one has

(1 + kd;)

—r/2 —(z,x)/2 2k
(2m) / [A@)de T +k)
(ii) Let b(k) := Br(A,A). Then

T difl

= W] [ (kdi +m).

i=1m=1
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For Weyl groups, this theorem was proved by E. Opdam [O1]. The
non-crystallographic cases were done by Opdam in [O2] using a direct computation
in the rank 2 case (reducing (i) to the beta integral), and a computer calculation by
F. Garvan for Hs and Hy,.

In the next subsection, we give a uniform proof of Theorem 3.1. We emphasize that
many parts of this proof are borrowed from Opdam’s previous proof of this theorem.

4. Proof of the main theorem

Proposition 4.1. The function b is a polynomial of degree at most |S|, and the roots
of b are negative rational numbers.

Proof. Since A has degree |S]|, it follows from the definition of b that it is a polynomial
of degree < |S].

Suppose that b(k) = 0 for some k € C. Then [, (A, P) = 0 for any polynomial P.
Indeed, if deg(P) # |S|, this follows from Proposition 2.1, while if P has degree |S|,
this follows from the fact that A is the unique (up to scaling) polynomial of degree
|S] that is antisymmetric under W.

Thus, My, is reducible and hence has a singular vector, i.e. a nonzero homogeneous
polynomial f of positive degree d living in an irreducible representation 7 of W killed
by y.. Applying the element h to f, we get

d
k= ——

my’
where m; is the eigenvalue of the operator T':= (1 — s,) on 7. But it is clear

(by computing the trace of T') that m, > 0. This implies that any root of b is negative
rational. 0

Denote the Macdonald-Mehta integral by F (k).

Proposition 4.2. One has
F(k+1)=0bk)F(k).

Proof. Let f = % Zygl Introduce the Gaussian inner product on My, as follows:
Definition 4.3. The Gaussian inner product v, on My, is given by the formula
vk (v,0") = Br(exp(f)v, exp(f)v').
This makes sense because the operator f is locally nilpotent on Mj.

Note that A is a nonzero W-antisymmetric polynomial of the smallest possible
degree, so (3" y2 )A =0 and hence

(1) Te(A,A) = Br(A, A) = b(k).
Proposition 4.4. Up to scaling, 7, is the unique W-invariant symmetric bilinear
form on Mj, satisfying the condition

’Yk((xa - ya)v7vl) = ’Yk(vaaU,)a ac b
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Proof. We have
Ve((Za = Ya)v,v') = Br(exp(f)(za — ya)v, exp(f)v’) =
Br(xa exp(f)v, exp(f)v') = Br(exp(f)v, ya exp(f)v’) =
Br(exp(f)v, exp(£)yav”) = (v, yav').

Let us now show uniqueness. If v is any W-invariant symmetric bilinear form
satisfying the condition of the Proposition, then let 5(v,v") = y(exp(—f)v, exp(—£f)v’).
Then [ is contravariant, so by Proposition 2.1, it’s a multiple of (g, hence v is a
multiple of 7. (|

Now we will need the following known result (see [Du2], Theorem 3.10).

Proposition 4.5. For Re(k) > 0 we have

(2) w(f,9) = F(k)™" : f(@)g(z)dpc(z)
where

dpe(x) == e_(x””)/2|A(x)|2kda:.

Proof. 1t follows from Proposition 4.4 that v is uniquely, up to scaling, determined
by the condition that it is W-invariant, and y} = z, — y,. These properties are easy
to check for the right hand side of (2), using the fact that the action of y, is given by
Dunkl operators. O

Now we can complete the proof of Proposition 4.2. By Proposition 4.5, we have
F(k+1) = F(k)w(A, D),

so by (1) we have
F(k+1) = F(k)b(k).

Let
k) = bo [ J(k + ki)™
We know that k; > 0, and also by > 0 (because the inner product 3y on real polyno-
mials is positive definite).

Corollary 4.6. We have
g H ( (k+k;) )

Proof. Denote the right hand side by Fi(k) and let ¢(k) = F(k)/F.(k). Clearly,
¢(1) = 1. Proposition 4.2 implies that ¢(k) is a 1-periodic positive function on
[0,00). Also by the Cauchy-Schwarz inequality,

F(k)F(K') = F((k+k)/2)%,

so log F(k) is convex for k > 0. This implies that ¢ = 1, since (log Fi(k))” — 0 as
k — +oo0. g
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In particular, we see from Corollary 4.6 and the multiplication formulas for the I'
function that part (ii) of the main theorem implies part (i).
It remains to establish (ii).

Proposition 4.7. The polynomial b has degree exactly |S|.

Proof. By Proposition 4.1, b is a polynomial of degree at most |S|. To see that the
degree is precisely | S|, let us make the change of variable y = k/2z in the Macdonald-
Mehta integral and use the steepest descent method. We find that the leading term of
the asymptotics of log F((k) as k — 400 is |S|klog k. This together with the Stirling
formula and Corollary 4.6 implies the statement. O

Proposition 4.8. The function

"1 e2mikd,
G(k):=Fk) ][] T

J=1

analytically continues to an entire function of k.

Proof. Let £ € D be an element. Consider the real hyperplane C; = it + bhg, t > 0.
Then C} does not intersect reflection hyperplanes, so we have a continuous branch
of A(z)?* on C; which tends to the positive branch in D as t — 0. Then, it is easy
to see that for any w € W, the limit of this branch in the chamber w(D) will be
>k (W)| A(x)|?*. Therefore, by letting t = 0, we get

) 1 )
(277)—7"/2/ e_(x,m)/QA(x)%dx _ 7F(k:)( Z ekal(w))
< |W| weWw
(as this integral does not depend on t). But it is well known that

r 1— e27rikdj

Z 627r7,'lcl(w) — H e

weWw j=1
([Hu], p.73), so
@n) W] [ em @D 2A()*dr = G(k).
Cy
Since fCt e~ @) /2 \(2)?*dz is clearly an entire function, the statement is proved. [

Corollary 4.9. For every kg € [—1,0] the total multiplicity of all the roots of b of
the form ky — p, p € Z4, equals the number of ways to represent kg in the form
—m/d;, m = 1,...,d; — 1. In other words, the roots of b are k; ,, = —m/d; — Di.m,
1<m <d; —1, where p; , € Zy.

Proof. We have
F(kj) 1’_[ 1— 627rz'kd]
bk —1)..b(k —p) 11 1 e2mik ’

j=1

G(k—p) =

Now plug in £k = 1 + ky and large positive integer p. Since by Proposition 4.8 the
left hand side is regular, so must be the right hand side, which implies the claimed
upper bound for the total multiplicity, as F/(1 + ko) > 0. The fact that the bound is
actually attained follows from the fact that the polynomial b has degree exactly |S]|
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(Proposition 4.7), and the fact that all roots of b are negative rational (Proposition
4.1). O

It remains to show that in fact in Corollary 4.9, p; ,, = 0 for all 4, m; this would
imply (ii) and hence (i).

Proposition 4.10. Identity (i) of the main theorem is satisfied in C[k]/k?.

Proof. Indeed, we clearly have F(0) = 1. Next, a rank 1 computation gives F'(0) =
—~|S], where « is the Euler constant, while the derivative of the right hand side of
(1) at zero equals to

—vZ(di —1).

But it is well known that
r

i=1
([Hu], p.62), which implies the result. O

Remark 4.11. In fact, Proposition 4.10 allows one to make Opdam’s original proof of
the main theorem given in [O2] classification independent and computer-free. Indeed,
the arguments of [O2] imply that (i) holds up to a factor of the form c*, where ¢ > 0,
and Proposition 4.10 implies that ¢ = 1.

Proposition 4.12. Identity (i) of the main theorem is satisfied in C[k]/k3.

Note that Proposition 4.12 immediately implies (ii), and hence the whole theorem.
Indeed, it yields that

r d;—1
(log F)"(0) =Y Y~ (logT)"(m/d),
i=1 m=1
so by Corollary 4.9
rodi—1 r odi—1
33 (ogT) (m/d; + pim) = (logT)" (m/d;).
i=1 m=1 i=1 m=1

which implies that p; ,, = 0 since (logI')” is strictly decreasing on [0, o).

Proof. (of Proposition 4.12) We will need the following result about finite Coxeter
groups. Let (W) = 3|52 = > I_,(dF — 1).
Lemma 4.13. One has

(3) W)= > W(G),

GePary (W)

where Pary (W) is the set of parabolic subgroups of W of rank 2.
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Proof. Let

Qla) = W [ 2

d;
i=1 q
It follows from Chevalley’s theorem that
Qlg) =1 —q)" > det(l—quly) "
weW

Let us subtract the terms for w = 1 and w € S from both sides of this equation,
divide both sides by (¢ — 1)?, and set ¢ = 1 (cf. [Hu], p.62, formula (21)). Let W5 be
the set of elements of W that can be written as a product of two different reflections.
Then by a straightforward computation we get

1 1
— (W) = _—.
24¢( ) 11)€ZW/2 r — Try (w)

In particular, this is true for rank 2 groups. The result follows, as any element
w € Wa belongs to a unique parabolic subgroup G,, of rank 2 (namely, the stabilizer
of a generic point h*, [Hu], p.22). O

Now we are ready to prove the proposition. By Proposition 4.10, it suffices to show
the coincidence of the second derivatives of (i) at k = 0. The second derivative of the
right hand side of (i) at zero is equal to

2 s
T
—) (@ -1 2182
5 ;( ;=1 +77S]
On the other hand, we have
F(0) = (2m)/2 30 / =@ /2105 02 (3) log F(x) dx.
a,BesS VIR

Thus, from a rank 1 computation we see that our job is to establish the equality

2
(2m)~"/2 Z /e*("”’m)/zlogaz(x)log62(x)dx
a#pes Ik a?(z)
2 &

2
T
= T - 1) - 3I8) = - T u ().
i=1
Since this equality holds in rank 2 (as in this case (i) reduces to the beta integral), in
general it reduces to equation (3) (as for any oo # 3 € S, s, and sg are contained in
a unique parabolic subgroup of W of rank 2). The proposition is proved. ([
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