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ESSENTIAL DIMENSIONS OF A; AND S,

ALEXANDER DUNCAN

ABSTRACT. We show that Y. Prokhorov’s “Simple Finite Subgroups of the Cremona
Group of Rank 3” implies that, over any field of characteristic 0, the essential dimensions
of the alternating group, A7, and the symmetric group, S7, are 4.

1. Introduction

Let k be a field of characteristic 0. In this note, a variety is an integral separated
scheme of finite type over k. We assume all actions and maps are defined over k.

Let G be a finite group. A compression is a dominant rational G-equivariant map
of faithful G-varieties. Let V' be a faithful linear representation of G viewed as a G-
variety. We define the essential dimension of G, denoted edy(G), to be the minimal
value of dim(X'), where X is taken from the set of all faithful G-varieties sitting under
a compression V' --» X. From [3, Theorem 3.1], we see that the essential dimension
depends only on k and G — the choice of linear representation V' does not matter.

The purpose of this note is to show that the essential dimension of the alternating
group A7 and the symmetric group S7 can be computed using the recent work of
Prokhorov [12] on the classification of rationally connected threefolds with faithful
actions of non-abelian simple groups. Our main result is the following:

Theorem 1. edy (A7) = edi(S7) = 4.

The essential dimension of a finite group was introduced by Buhler and Reichstein
in [3]. The concept has since been extended to much broader contexts (see [13] and
1)),

The results of this paragraph hold when £ contains all roots of unity. If G is an
abelian group then ed,(G) = rank(G) [3, Theorem 6.1]. We have ed;(G) = 1 if and
only if G is cyclic or odd dihedral [3, Theorem 6.2]; see also [10] and [5]. If G is a p-
group then edy (G) is equal to the minimal dimension of a faithful linear representation
of Gj this is a deep result of Karpenko and Merkurjev [9].

The values of edy(.S,,) are of special interest because they relate to classical questions
of simplifying degree n polynomials via Tschirnhaus transformations. In particular,
the degree 7 case features prominently in algebraic variants of Hilbert’s 13th problem.
In this language, several results for small n were established by Hermite, Joubert and
Klein in the 1800s. For more information, see the discussion in [3] or [4].

The values of edy(S,,) and edi(A,,) are known for all n < 6. Buhler and Reichstein
[3] establish bounds for symmetric groups when n > 5:

(1) n—3>edr(Sy) > [n/2].
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We note that these bounds tell us that edy(S7) is either 3 or 4. For the alternating
groups A, they found the following bounds when n > 5:

(2) n—3>edi(A,) >2|n/4].

From this edy(Ag) is either 2 or 3. Recently, Serre found the exact value:

Theorem 2 (Serre [15, Proposition 3.6]). edy(Ag) = 3.

Taking Theorems 1 and 2 into account we can improve some of the known bounds
in higher dimensions. From [3, Theorem 6.5], we have that edy(S,+2) > edg(S,) +1
for any n > 1. Similarly, from [3, Theorem 6.7], we have edg(Ap44) > edi(A4,) + 2 for
any n > 4. We have the following for n > 6:

1
(3) n—3>edp(Sn) > V‘; J ,
5 for n even
(4) n—3>edi(A,) > "T_l forn=1mod 4 .
"'2"1 for n = 3 mod 4

2. Proof of the main theorem

We first consider the case where the base field k is C. The general case will be
deduced from this specific case.

Our proof of Theorem 1 is in the same spirit as Serre’s proof of Theorem 2. For
Serre’s argument, it suffices to show edi(A4g) # 2 by the bounds (2). One must
show no Ag-surface sits under a compression from a linear Ag-variety. Serre uses
the Enriques-Manin-Iskovskikh classification of minimal rational G-surfaces (see [11]
and [7]) to reduce the problem to one surface with an Ag-action (P? with the linear
action). It is then shown that the group acting on this remaining surface has an
abelian subgroup without fixed points. This eliminates this last surface in view of the
following proposition of Reichstein and Youssin [14, Proposition 5.3] (a short proof,
due to Kolldr and Szabd, can be found in [14, Proposition A.2]).

Proposition 3 (Going Down). Let A be a finite abelian group and ¢ : V --+» X be
an A-equivariant rational map of A-varieties over C. If V' has a smooth A-fixed point
and X is proper then X has an A-fixed point.

For our proof, will need to show that edc (A7) # 3. Serre looked at rational surfaces;
we consider unirational threefolds. Our analog of Serre’s reduction to P2 is Prokhorov’s
classification for the group Az:

Theorem 4 (Prokhorov [12, Theorem 1.5]). Let X be a rationally connected threefold
over C with a faithful action of A7. Then X is equivariantly birationally equivalent to
one of the following:
(i) The subvariety of P®, with the standard permutation Ay action, cut out by
symmetric polynomials of degrees 1, 2 and 3.
(i) P3 with a linear action of A;.

Proof of Theorem 1. First, we prove the theorem in the case where & = C.
We have the following string of inequalities:

4> edc(57) > edc(A7) > ed(c(AG) =3.
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Indeed, the first inequality follows from the bound (1). The second and third inequal-
ities follow from the standard fact that ed;(G) > edy(H) for any subgroup H of a
finite group G. The last inequality follows from the Theorem 2. Thus it suffices to
prove that edc(A7) # 3.

Suppose edc (A7) = 3. Then there exists a dominant rational Az-equivariant map
1V --» X from a linear Az-variety V to a 3-dimensional Az-variety X. From this,
X is unirational and, thus, rationally connected. We may assume that X is one of the
threefolds from Prokhorov’s Theorem.

Note that V has an Ar-fixed point (the origin) and X is proper. Thus all abelian
subgroups of A7 have fixed points by Proposition 3. For each threefold, we will exhibit
an abelian subgroup of A; without fixed points on X. This leads to a contradiction
and, so, edc(A7) # 3 as desired.

Case (i): Consider A = ((12 3), (4 5 6)), an abelian subgroup of A7. Let ¢ be a third
root of unity. Consider the following points in PS:

()\12/\12)\1:)\21/\23)\25/\3)

(1:¢:¢%:0:0:0:0)
(1:¢2:¢:0:0:0:0)
(0:0:0:1:¢:¢%:0)
(0:0:0:1:¢2:¢:0)

where A1, Ag, A3 € C are not all 0. These correspond to the eigenspaces of a lift of
A acting on C”. Thus these are all the A-fixed points on PS.

We claim that none of these points lie on X. For points of the first form, there are
only two solutions of z1 + ...+ x7 =0 and 27 + ... + 22 = 0:

)\1:71:&\/77, )\2:71:F\/*7, )\3:6

One then checks that 23 + ... + 23 # 0 for these two points and for the remaining
points. We have an abelian subgroup without fixed points — a contradiction.

Case (ii): In this case A; acts linearly on P? and can be viewed as a subgroup of
PGL4(C). Let

A=((12)(34),(12)(56))

be an abelian subgroup of A7. Let B be the inverse image of A in GL4(C). We have
the following exact sequence of groups:

1-C*—>B—-A—1

where C* is the set of scalar matrices in GL4(C). Recall that A has a fixed point on
P3. This is equivalent to saying that the action of B (viewed as a 4-dimensional linear
representation) has a 1-dimensional subrepresentation x : B — C*. This gives us a
splitting B ~ A x C*. In particular, B is abelian.

From [6, page 10], there are two distinct projective representations of A inside
PGL4(C) which are quotients of representations of the double cover 2.A7 in GL4(C).
There is only one element of order 2 in 2.A7 (namely the generator of the center).
Thus any lift in B of the abelian subgroup A ~ Cs x C5 cannot be abelian. Thus B
is not abelian — a contradiction.

We have proved the theorem in the case where k = C. Now we use this to show the
general case where k is any field of characteristic 0.
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First, note that ed;(G) > ed i (G) for K an algebraic closure of k (see [1, Proposition
1.5]). Next, we have edx(G) = edc(G) since K and C both contain an algebraic
closure of Q (see [2, Proposition 2.14(1)]). Recalling the bounds (1) and (2) we have
the general theorem. (I

Remark 1. The bounds (1) and (2) hold for any field of characteristic # 2; in char-
acteristic 2 only the upper bound is known to hold (see [1] and [8]). We note also that
Proposition 3 holds for algebraically closed fields of arbitrary characteristic. Thus, for
some fields of positive characteristic, an analog of Prokhorov’s theorem may suffice to
prove a generalisation of Theorem 1 using the same techniques as this paper.
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