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THE CALABI FLOW ON TORIC FANO SURFACES

Xiuxiong Chen and Weiyong He

1. Introduction

This is a continuation of the earlier work by the authors on the Calabi flow [9, 10].
We follow the setup of [10]; in particular we shall use the results concerning the
formation of singularities along the Calabi flow on Kähler surfaces which appear in
[10]. Readers are encouraged to consult [10] for the setup and for references on this
topic. The search for extremal Kähler metrics is a very hot topic in Kähler geometry
and many people have been contributing in this effort; we list here a few relevant
references [6, 21, 20, 2, 1, 3, 16].

We believe that the Calabi flow is an effective tool for exploring the existence of
extremal metrics on compact Kähler manifolds. One of the main problems arising in
the study of the Calabi flow is longtime existence. In [9], we proved that the Calabi
flow exists as long as the Ricci curvature tensors of the evolving metrics stay bounded.
This is the first attempt to understand a conjecture by the first author: starting from
any smooth Kähler metric on a compact Kähler manifold (complex dimension of
n ≥ 2), the Calabi flow exists for all positive time. In [10], we focused on the study
of the Calabi flow on Kähler surfaces with the assumption that the Sobolev constants
of the evolving metrics are uniformly bounded. First we [10] studied the formation
of singularities on Kähler surfaces. If the curvature tensor blows up along the Calabi
flow, we could then construct a singular model, which is a complete asymptotically
locally Euclidean (ALE) scalar flat Kähler surface; as in [11], we call such a singular
model a deepest bubble (it was called a maximal bubble in [10]; but it seems that the
word “maximal” is a bit confusing). Then we studied some examples where such a
bubble cannot be formed; in particular, we considered a family of Kähler classes on
Kähler surfaces of the differential type of CP2]kCP2(1 ≤ k ≤ 3). These surfaces are
known as del Pezzo surfaces with toric symmetry. We then followed the approach
in [11] to analyze all possible deepest bubbles. Actually a deepest bubble can only
be formed in a fairly restricted way; in particular with the toric symmetry. With
the aid of the special geometry of manifolds we considered, in particular the toric
symmetry and the discrete symmetry that those Kähler classes admit, we could rule
out the formation of deepest bubbles. Hence we [10] could prove longtime existence
and convergence of the Calabi flow for those examples. However, the analysis there
is quite delicate, complicated and sometimes very challenging. It is also very hard
to push these ideas beyond the examples we considered in [10]; for example, for the
Kähler classes without discrete symmetry.

In this note we shall adopt a different strategy to rule out possible bubbles; in
particular we shall use the toric condition in a more essential way. This allows us
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to prove some longtime existence and convergence results in a fairly large family of
Kähler classes on toric Fano surfaces.

Let (M,J) be a compact Kähler surface and let [ω] be a fixed Kähler class on M .
We shall use c1 to denote the first Chern class of (M,J). We may define a functional

B([ω]) = 32π2

(
c2
1 +

1
3

(c1 · [ω])2

[ω]2

)
+

1
3
‖F‖2,

where ‖F‖2 is the norm of Calabi-Futaki invariant [17, 8]. Our main result is

Theorem 1.1. Let (M, [ω], J) be a toric Fano surface with positive extremal Hamil-
tonian potential. If the Calabi flow has a Kähler metric with toric symmetry for initial
data which satisfies

(1.1)
∫

M

R2dVg < B([ω]),

then the Calabi flow exists for all time and converges in subsequence to an extremal
metric in [ω] in the Cheeger-Gromov sense.

The definition of extremal Hamiltonian potential will be given in Section 2. An
immediate corollary of Theorem 1.1 is

Corollary 1.2. Let (M, [ω], J) be a toric Fano surface with positive extremal Hamil-
tonian potential. If there is a toric metric ω0 ∈ [ω] such that the Calabi energy of ω0

is less than B([ω]), then there exists an extremal metric in [ω].

Remark 1.3. In [13, 15], Donaldson uses a continuity method to deform metrics
to seek extremal metrics on toric surfaces and has made striking progress on the
existence of constant scalar curvature metrics. His approach uses convex analysis,
which depends on the fact that, one can express a toric metric on a toric surface in
terms of a convex function in a convex polytope in R2.

2. Sobolev Constant

In this section we shall prove that the Sobolev constants of the evolving metrics
along the Calabi flow are uniformly bounded under certain natural geometric condi-
tions. We shall first define an extremal Hamiltonian potential of an invariant Käher
metric in a fixed Kähler class (M, [ω]), which is essentially defined by [17, 22]. Recall
that an extremal vector field for (M, [ω]) is a priori determined [17] up to conjugation.
Let X be the extremal vector field and let XR be the real part of X . Define KX to be
the set of all invariant metrics in [ω] which satisfy

KX = {ω : LXRω = 0}.
For any Kähler metric ω ∈ KX , one can define the real potential θω [22] by

∇ωθω = XR

which satisfies the normalized condition∫
M

θωωn = 0.

We have the L2 orthogonal decomposition [19, 8]

Rω = R + θω + θ⊥ω ,
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where the average of the scalar curvature R is determined by (M, [ω]). We can then
define the extremal Hamiltonian potential as

Definition 2.1. Let ω ∈ KX ; the extremal Hamiltonian potential of ω is given by

ρω = R + θω.

An extremal metric ω then satisfies Rω = ρω. By definition, the maximum and
the minimum of θω are the invariants of (M, [ω]) (c.f. [22]). We may denote

θ− = min
ω∈KX

θω, θ+ = max
ω∈KX

θω.

We can also denote
ρ− = R + θ−, ρ+ = R + θ+.

It is clear that ρ− and ρ+ are the minimum and the maximum of the scalar curvature
of an extremal metric respectively if it exists in [ω]. If (M, [ω]) is a Fano surface and
the Futaki invariant of [ω] is zero, then θ− = θ+ = 0 and so ρ− = ρ+ = R is positive.
Hence ρ− is positive for Fano surfaces of differential type of CP2]kCP2(4 ≤ k ≤ 8).
An interesting question is

Question 2.2. Let (M, [ω]) be a toric Fano surface; is ρ− positive?

Note that ρ− is an invariant of (M, [ω]) and it is computable; in particular when
(M,J) is a toric Fano surface. Hence one can check numerically whether ρ− is positive
or not for any given Kähler class on M . However, in general it seems not easy to
verify that it is positive since its expression is quite complicated. Without giving
a detailed argument, S. Simanca claimed the answer to Question 2.2 yes (cf. [24]).
Since no detailed computation is given in [23, 24], we believe that there is a real
need for definitive clarification of this issue. Note that the average of the scalar
curvature on (M, [ω]) is positive when M is a Fano surface. Intuitively, if there is an
extremal metric, then the scalar curvature of the extremal metric should be positive
since it minimizes the Calabi energy. To verify this, one needs to consider the case of
M ∼ CP2]kCP2 (k = 1, 2, 3). When k = 1, one can check that the scalar curvatures
of all the extremal metrics constructed by E. Calabi [6] are positive. LeBrun-Simanca
[21] computed the Futaki invariant and the extremal vector field of a Kähler class
explicitly for Kähler surfaces with a semi-free C∗ action. In particular their results
can be applied to toric Fano surfaces and one can compute further ρ−. For example
some explicit formulas are given in [28]. However, it seems that only when (M, [ω])
admits some additional discrete symmetry, the formula of ρ− is simple enough and
one can check directly that it is actually positive. For example, when k = 2, it is
proved that ρ− is positive for the bilaterally symmetric Kähler classes [11].

We shall then show how to bound the Sobolev constants on Fano surfaces under
natural geometric conditions. The idea dates back to Tian [26] for Kähler metrics of
constant scalar curvature (see [27] also) and it is generalized to extremal metrics in
Chen-Weber [12].

Lemma 2.3. Let (M, [ω]) be a Fano surface such that ρ− > 0 and let g be a Kähler
metric in [ω]. If g is invariant (g ∈ KX ) and if

(2.1)
∫

M

R2dVg < B([ω]),
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then the Sobolev constant is bounded a priori as in (2.19).

When g is not invariant, Lemma 2.3 still holds with stronger restriction on the
Calabi energy. But we shall not need this. We define the Sobolev constant for a
compact 4 manifold (M, g) to be the smallest constant Cs such that the estimate

(2.2) ‖f‖2L4 ≤ Cs

(
‖∇f‖2L2 + V −1/2‖f‖2L2

)
holds, where V is the volume of the manifold (M, g). Note that the Sobolev inequality
(2.2) is scaling-invariant. When the Yamabe constant is positive, the Sobolev constant
is essentially bounded by the Yamabe constant [4]. Recall that the Yamabe constant
for a conformal class [g] of Riemannian metrics on a compact 4 manifold is given by

Y[g] = inf
g̃∈[g]

∫
M

Rg̃dVg̃√∫
M

dVg̃

.

By the celebrated work of Trudinger, Aubin and Schoen [5, 25], for any conformal
class [g] the infimum is achieved by the so-called Yamabe minimizer gY ∈ [g] which
necessarily has constant scalar curvature. If g̃ = u2g, the scalar curvature is given by

Rg̃ = u−3(64gu + Rgu),

so the Yamabe constant is given by the formula

(2.3) Y[g] = inf
u 6=0

∫
M

(6|∇u|2 + Rgu
2)dVg

(
∫

M
u4dVg)1/2

.

Now we are in the position to prove Lemma 2.3.

Proof. We can rewrite (2.1) as

(2.4) 96π2c2
1 − 2

∫
M

R2dVg >

∫
M

(R−R)2dVg − ‖F‖2.

Following computations in [26, 11] (for example, see Section 5 [11]), we have

(2.5) Y 2
[g] ≥ 96π2c2

1 − 2
∫

M

R2dVg.

It then follows from (2.4) and (2.5) that

(2.6) Y 2
[g] >

∫
M

(R−R)2dVg − ‖F‖2.

We shall also need a decomposition formula of the Calabi energy [19, 8],

(2.7)
∫

M

(R−R)2dVg − ‖F‖2 =
∫

M

(R−R− θω)2dVg.

First we show that Y[g] has to be positive. Choose a sequence of functions ui (ui 6= 0)
which minimizes the expression in (2.3). Hence we have

(2.8) Y[g] + εi =

∫
M

(6|∇ui|2 + Rgu
2
i )dVg

(
∫

M
u4

i dVg)1/2
,

such that εi → 0 as i →∞. We can rewrite (2.8) as

(2.9) (Y[g] + εi)‖ui‖2L4 = 6
∫

M

|∇ui|2dVg +
∫

M

Ru2
i dVg,
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where we write R = Rg for simplicity. It then follows from (2.9) that

(2.10) (Y[g] + εi)‖ui‖2L4 −
∫

M

(R−R− θω)u2
i dVg = 6‖∇ui‖2L2 + (R + θω)‖ui‖2L2 .

By the Cauchy-Schwarz inequality, we compute

(2.11)
∣∣∣∣∫

M

(R−R− θω)u2
i dVg

∣∣∣∣ ≤ (∫
M

(R−R− θω)2dVg

)1/2 (∫
M

u4
i dVg

)1/2

.

Then we compute, by (2.11),

(2.12) (Y[g] +εi)‖ui‖2L4−
∫

M

(R−R−θω)u2
i dVg ≤ (Y[g] +εi +‖R−R−θω‖L2)‖ui‖2L4 .

If Y[g] < 0, then by (2.6) and (2.7), we know that

(2.13) Y[g] + ‖R−R− θω‖L2 < 0.

Since g is fixed, then by (2.13), Y[g]+‖R−R−θω‖L2 +εi is less than zero for sufficiently
large i; hence by (2.12), we can get that for i large enough,

(2.14) (Y[g] + εi)‖ui‖2L4 −
∫

M

(R−R− θω)u2
i dVg < 0.

However R + θω ≥ ρ− > 0, the right hand side of (2.10) is then positive, which
contradicts (2.14). Hence Y[g] > 0; it then follows from (2.6) that

(2.15) Y[g] > ‖R−R− θω‖L2 .

We can then rewrite (2.3) as, for u > 0,

(2.16) ‖u‖2L4 ≤
6

Y[g]
‖∇u‖2L2 +

1
Y[g]

∫
M

Ru2dVg.

It is easy to see that (2.16) holds for any u since |∇|u|| ≤ |∇u| at u 6= 0. Now we
rewrite (2.16) as

(2.17) ‖u‖2L4 −
1

Y[g]

∫
M

(R−R− θω)u2dVg ≤
6

Y[g]
‖∇u‖2L2 +

1
Y[g]

∫
M

(R + θω)u2dVg.

Note that R + θω ≤ ρ+. It follows from (2.17) and the Cauchy-Schwarz inequality
that

(2.18)
(

1− 1
Y[g]

‖R−R− θω‖L2

)
‖u‖2L4 ≤

6
Y[g]

‖∇u‖2L2 +
ρ+

Y[g]
‖u‖2L2 .

It then follows from (2.18) that the Sobolev constant of g is bounded a priori. In
other words, we have

(2.19) Cs ≤ max

{
6

Y[g] − ‖R−R− θω‖L2
,

√
V ρ+

Y[g] − ‖R−R− θω‖L2

}
.

�
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3. Proof of Theorem 1.1

In this section we shall prove Theorem 1.1. First let us recall the formation of
singularities along the Calabi flow on Kähler surfaces. Let (M, [ω]) be a toric Fano
surface as in Theorem 1.1. Suppose that the Calabi flow exists on [0, T ), 0 < T ≤ ∞
and that the curvature tensor blows up when t → T . Note that under the assumption
in Theorem 1.1, the Sobolev constants of the evolving metrics are uniformly bounded
by Lemma 2.3, since the Calabi energy is decreasing along the flow. Hence the result
(Theorem 1.1, [10]) is applicable. Since the blowing up process is required in the
following argument, we shall state the result as follows.

Proposition 3.1. Assume the hypotheses in Theorem 1.1. If the curvature blows up
when t → T , there exists a sequence of points (xi, ti) ∈ (M, [0, T )) where ti → T and
Qi = maxt≤ti

|Rm| = |Rm(xi, ti)| → ∞ such that the pointed manifolds

(M,xi, Qig(ti + t/Q2
i ))

converge locally smoothly to an ancient solution of the Calabi flow

(M∞, x∞, g∞(t)), t ∈ (−∞, 0].

Moreover, g∞(t) ≡ g∞(0) and g∞ := g∞(0) is a complete scalar flat ALE Kähler
metric on M∞.

One of the key points in [11] is that (M∞, g∞), as a limit of pointed manifolds
(M, gi), is toric since gi := Qig(ti) is toric. Moreover (M∞, g∞) contains holomorphic
cycles. The result (Proposition 16, [11]) is only stated for M ∼ CP2]2CP2, but the
result and the proof hold for all toric Fano surfaces without any change. We shall
state the result as follows.

Proposition 3.2. Assume the hypotheses in Theorem 1.1. Suppose the curvature
tensor blows up along the Calabi flow and let (M∞, g∞) be a deepest bubble. Then
(M∞, g∞) is toric and H2(M∞, Z) is generated by holomorphically embedded CP1s in
M∞.

On the other hand, we show that a holomorphic cycle cannot be formed in such a
blowup process. The idea is more lucid when the cohomology class [ω] is rational.

Proposition 3.3. Assume the hypotheses in Theorem 1.1. Let [ω] ∈ H2(M, Q).
Then (M∞, g∞) cannot contain a holomorphic CP1.

Proof. (M∞, g∞) is the limit of pointed manifolds (M, gi). Hence there is a sequence
of compact sets Ki, Ki ⊂ Ki+1, ∪Ki = M∞, and a sequence of diffeomorphisms
Φi : Ki → Φi(Ki) ⊂ M ,

Φ∗i (gi) → g∞,

where the convergence is smooth in Ki−1. Let S be an embedded holomorphic CP1 in
M∞. There is a sequence of compact two spheres, which are denoted as Si = Φi(S)
and Si ⊂ {M,Qig(ti)}. Let ω∞ be the Kähler form of g∞ and let ωi = Qiω(ti) be the
Kähler form of gi. Since Φ∗i gi converges to g∞ smoothly, then for any fixed positive
constant ε we have

(3.1)
∣∣∣∣∫

Si

ωi −
∫

S

ω∞

∣∣∣∣ =
∣∣∣∣∫

S

Φ∗i ωi −
∫

S

ω∞

∣∣∣∣ < ε
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when i is sufficiently large. Hence
∫

Si
ωi is uniformly bounded and then

(3.2)
∫

Si

ω(ti) =
1
Qi

∫
Si

ωi → 0.

On the other hand, we know that∫
Si

ω(ti) =
∫

Si

ω = [ω][Si] = ai

is a constant depending only on [ω], [Si]. Since [ω] ∈ H2(M, Q), there exists some
k ∈ N such that [kω] ∈ H2(M, Z). It then follows that

∫
Si

kω is an integer, hence
kai is an integer for any i. By (3.2), ai → 0, hence kai has to be zero when i large
enough. It then follows that ai = 0 when i is sufficiently large. If ai = 0, by (3.1), it
follows that ∫

S

ω∞ = 0.

This contradicts the fact that S is a holomorphic embedded CP1 in M∞. �

When [ω] is not a rational class, the proof is more involved. The key is then to
show that {[Si]} can only contain finitely many homology classes, which rely on (3.1),
(3.2) and on positivity of a Kähler class.

Proposition 3.4. Assume the hypotheses in Theorem 1.1. (M∞, g∞) cannot contain
a holomorphic CP1.

Proof. We use the same notations as in Proposition 3.3. It is clear that we can still
get (3.1) and (3.2) and when i →∞,

(3.3) [ω][Si] = ai → 0.

We show that any such sequence {[Si]} contains only finite homology classes in
H2(M, Z). Recall that the self-intersection of S ∈ H2(M∞, Z) is a negative inte-
ger [11]. Let [S][S] = −k, for some fixed integer k ≥ 1. Since the self-intersection is
invariant under diffeomorphism, hence for any i,

(3.4) [Si][Si] = −k.

The toric Fano surfaces are described as CP2, CP1 × CP1, CP2]CP2, CP2]2CP2 (CP2

blowup at two distinct points), CP2]3CP2 (CP2 blowup at three non-linear points).
We only exhibit the example when M ∼ CP2]3CP2, all other examples are similar
(and simpler). Let H be a hyperplane in CP2. M can be obtained by blowing
up at three generic points on CP2. After blowup, we still use H to denote the
corresponding hypersurface on M and Ei, i = 1, 2, 3 to denote the exceptional divisors.
For simplicity, we use [H], [Ei] to denote the homology classes and their Poincaré
duals—the cohomology classes. The Kähler classes on M can be expressed as

[ω]x,y,z = 3[H]− x[E1]− y[E]2 − z[E3].

Since [ω] is a positive class, then x, y, z have to satisfy that

(3.5) 0 < x, y, z; and x + y, y + z, x + z < 3.

We can see (3.5) as follows: for example, x = [E1][ω]x,y,z > 0 and H − E1 − E2 is a
holomorphic curve which has area 3− x− y with respect to [ω]x,y,z, hence x + y < 3.



238 XIUXIONG CHEN AND WEIYONG HE

And H2(M, Z) can be generated by {[H], [Ei], i = 1, 2, 3}. We can then express [Si]
as

[Si] = m[H] + n[E1] + j[E2] + l[E3],

for some integers m,n, j, l. We can write (3.3) and (3.4) as, when i →∞,

(3.6) 3m− nx− jy − lz → 0

and

(3.7) m2 − n2 − j2 − l2 = −k.

We can compute, by (3.6),

(3.8) n2 + j2 + l2 ≥ (nx + jy + lz)2

x2 + y2 + z2
→ 9m2

x2 + y2 + z2
.

Hence, by (3.7) and (3.8),

m2 + k + 1 = n2 + j2 + l2 + 1 ≥ 9m2

x2 + y2 + z2
.

But by (3.5), it is easy to see that

x2 + y2 + z2 < 9.

For any fixed x, y, z, it then follows that

m2

(
9

x2 + y2 + z2
− 1

)
≤ k + 1.

It follows that m has at most finitely many solutions. So there are at most finitely
many m,n, j, l such that (3.6) and (3.7) are satisfied. It then follows that the homology
classes of [Si] are finite. Hence we can find a subsequence Sī of Si, such that [Sī] ∈
H2(M, Z) has the same homology class for any ī. Hence aī = [ω][Sī] is a constant
independent of ī. By (3.3), aī ≡ 0. It then follows that [S][ω∞] = 0 by (3.1). This
contradicts the fact that S is a holomorphic cycle in M∞. �

Remark 3.5. Similar idea can be applied to the Calabi flow on toric surfaces, if one
assumes that the Sobolev constants of the evolving metrics are uniformly bounded.

Now we shall state a convergence result for the Calabi flow.

Proposition 3.6. Let (M,J) be a Kähler manifold. Suppose (M, g(t), J), 0 ≤ t < ∞
is a solution of the Calabi flow such that the Sobolev constants and the curvature
tensors of the evolving metrics are uniformly bounded. Then for every sequence ti →
∞, there is a subsequence tik

and a sequence of diffeomorphisms Φik
: M → M such

that,
Φ∗ik

g(tik
) → g∞,Φ−1

ik ∗ ◦ J ◦ Φik∗ → J∞,

under a fixed gauge, where the convergence is in C∞ topology and (M, g∞, J∞) is an
extremal Kähler manifold with complex structure J∞.

Proof. Since we have assumed that the Sobolev constants and curvature tensors are
bounded, then it is clear that all higher derivatives of curvature tensors are uniformly
bounded; for example, see Lemma 4.2 in [10]. We then use the standard ideas in Ricci
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flow (see Hamilton [18]) to get similar compactness results for the Calabi flow. For a
sequence ti →∞, there is a subsequence tik

→∞ such that

{M, g(t + tik
),−tik

≤ t ≤ 0} → {M∞, g∞(t),−∞ ≤ t ≤ 0}

in Cheeger-Gromov sense. The argument is well-known in geometric flows and we shall
skip the details. Let g∞ = g∞(0), gik

= g(tik
). In particular, (M, gik

) → (M∞, g∞).
Namely, there exists a sequence of diffeomorphisms Φik

: M → M∞ such that

Φ∗ik
gik

→ g∞.

If necessary, by taking a subsequence, we can get that Jik
= Φ−1

ik ∗ ◦ J ◦ Φik∗ → J∞.
Since ∇gik

Jik
= 0, it follows that ∇g∞J∞ = 0. Hence J∞ is still a complex structure

which is compatible with g∞. We then show g∞ is an extremal metric. This follows
from the fact that the Calabi flow is the gradient flow of the Calabi energy. For any
t0 ∈ (−∞, 0], we choose a sequence {tik

} such that tik
< tik+1 + t0. Let C(g) be the

Calabi energy of g. Since the Calabi energy is decreasing along the Calabi flow, we
have

C(g∞) = lim
tik
→∞

C(g(tik
)) ≥ lim

tik+1→∞
C(g(t0 + tik+1)) = C(g∞(t0)).

It then follows that g∞(t) is an extremal metric for any t ∈ (−∞, 0]. �

Remark 3.7. In general J∞ does not have to be the same as J .

Now we are in the position to prove Theorem 1.1. We argue by contradiction.

Proof. By Lemma 2.3, the Sobolev constants of the evolving metrics are uniformly
bounded under the assumption in Theorem 1.1. If the curvature tensors are not
uniformly bounded, there is a contradiction by Proposition 3.1, 3.2 and 3.4. Hence
the curvature tensors have to be uniformly bounded and the Calabi flow exists for all
time. It then follows that (M, g(t), J) converges to an extremal metric (M, g∞, J∞)
in subsequence in the Cheeger-Gromov sense by Proposition 3.6. We then finish the
proof by showing that (M,J∞) is biholomorphic to (M,J). The proof follows from [11]
(Theorem 27) by using the toric condition carefully and the classification of complex
surfaces. Theorem 27 in [11] is only stated for M ∼ CP2]2CP2 but the proof holds
for all toric Fano surfaces. The key is that in the limiting process, the torus action
converges and (M, g∞, J∞) is still toric. Moreover, the 2-torus action for (M, g∞, J∞)
is holomorphic with respect to J∞. We shall sketch the argument for M ∼ CP2]3CP2.
Readers can refer to [11] for details. When M ∼ CP2]3CP2, each of holomorphic
curves H,E1, E2, E3 is the fixed point set of the isometric action of some circle action
of 2-torus, and so each is totally geodesic with respect to the metrics along the Calabi
flow. By looking at the corresponding fixed points set of the limit action of circle
subgroups, we can find corresponding totally geodesic 2-spheres in (M, g∞, J∞) which
are the limits of the images of these submanifolds. Moreover, these limit 2-spheres
are holomorphic with respect to J∞ and the homological intersection numbers of
these holomorphic spheres do not vary. Namely, we have still three holomorphic CP1s
with self-intersection −1 as the images of the original exceptional divisors E1, E2, E3.
Thus, by blowing down the images of E1, E2, E3 and applying classification of the
complex surfaces, we conclude that (M,J∞) is biholomorphic to CP2 blown up at
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three generic points. So there exists a diffeomorphism Ψ such that Ψ∗J = J∞. So
Ψ∗g∞ is an extremal metric in the class [ω] for (M,J). �

Remark 3.8. We may define a functional

A[ω] =
(c1 · [ω])2

[ω]2
+

1
32π2

‖F‖2.

This functional has the important property [8, 14] that any Kähler metric g in the
class [ω] satisifies the curvature inequality∫

M

R2dVg ≥ 32π2A([ω])

with equality if and only if g is an extremal metric. A necessary condition for (1.1)
to hold is that (M, [ω]) satisfies the generalized Tian condition in [12],

c2
1 >

2
3
A([ω]).
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