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INVARIANT SUBSPACES OF PARABOLIC SELF-MAPS IN THE
HARDY SPACE

Alfonso Montes-Rodŕıguez, Manuel Ponce-Escudero and Stanislav A.
Shkarin

Abstract. We provide a precise description of the lattice of invariant subspaces of compo-
sition operators acting on the classical Hardy space, whose inducing symbol is a parabolic

non-automorphism. This is achieved with an explicit isomorphism between the Hardy

space and the Sobolev Banach algebra W 1,2[0,∞) that induces a bijection between the
lattice of the composition operator and the closed ideals of W 1,2[0,∞). In particular, each

invariant subspace of parabolic non-automorphism composition operator always consists

of the closed span of a set of eigenfunctions. As a consequence, such composition operators
have no non-trivial reducing subspaces. For the sake of completeness, we also include a

characterization of the closed ideals of the Banach algebra W 1,2[0,∞). Although such a

characterization is known, the proof we provide here is somehow different.

1. Introduction

The problem of giving a precise description of the lattice of invariant subspaces of a
bounded linear operator on Hilbert space is one of the most interesting and difficult in
operator theory. Very few operators admit a useful description of the lattice of invariant
subspaces. In fact, understanding the lattice of a particular operator can solve the
invariant subspace problem. This was done by Nordgren, Rosenthal and Wintrobe,
[13] and [14]. They consider the composition operator Cϕ acting on the Hardy space,
where ϕ is an automorphism of the disk fixing ±1. They show that if every invariant
subspace of Cϕ of infinite dimension has a non-trivial invariant subspace, then the
general conjecture is true.

Another instance, Beurling’s Theorem provides a complete description for the in-
variant subspaces for the shift operator acting on H2. However, the lattice of invariant
subspaces of the shift operator acting on the Bergman space is not completely under-
stood, see [3], [4] or [9, Chapters 7 and 8].

In the present work, we will describe the invariant subspaces of the composition
operators Cϕ acting on the Hardy space H2, where ϕ is a parabolic non-automorphism
that takes D into itself, which has the formula

(1) ϕa(z) =
(2− a)z + a

−az + 2 + a
, where <a > 0.
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Since ϕa(D) is contained in D, Littlewood’s Subordination Principle implies the com-
position operator (Cϕaf)(z) = f(ϕa(z)) acts boundedly on H2, see the book by Cowen
and MacCluer [6] for more details.

If T is an operator on a Hilbert space H and x is a vector in H, then the smallest
invariant subspace of T that contains x is the closure of the linear span of the orbit of x
under T . If that minimal subspace is H, then x is called a cyclic vector. In the present
work we describe all cyclic vectors for Cϕa

. In particular, the family of all composition
operators induced by parabolic non-automorphism have common dynamics, since they
have common cyclic vectors, Corollary 1.2. Moreover, each orbit of any vector under all
composition operators induced by parabolic non-automorphisms has a common closure.
This is an immediate consequence of Theorem 1.1.

To prove our main result a theorem due to Cowen [5] is essential, see also [6, Theorem
6.1]. He found the spectrum of Cϕa

. If <a > 0, the spectrum σ(Cϕa
) is the spiral

σ(Cϕa) = {0} ∪ {e−at : t ∈ [0,∞)}.

Indeed, Cϕa has a well-known family of inner functions as its eigenfunctions,

(2) Cϕa
et = e−atet, where et(z) = exp

(
t
z + 1
z − 1

)
for each t ≥ 0.

All invariant subspaces we consider in this work will be closed. Let LatT denote the
lattice of invariant subspaces of the bounded linear operator T and let F[0,∞) denote
the set of closed subsets of [0,∞). As usual, the closed span of the empty set is the
trivial subspace consisting of just the zero vector. We will prove

Theorem 1.1. Let ϕ be a parabolic non-automorphism that takes the unit disk into
itself. Then

LatCϕ = {span {et : t ∈ F} : F ∈ F[0,∞)}.

In particular, any non-trivial invariant subspace of Cϕ contains a non-trivial eigen-
function of Cϕ. As an immediate corollary of the above theorem, we have

Corollary 1.2. Composition operators induced by parabolic non-automorphisms that
take the unit disk into itself have the same lattice of invariant subspaces and the same
cyclic vectors.

Recall that a subspace that is invariant for an operator as well as for its adjoint is
called a reducing subspace. Using Theorem 1.1, we will prove

Theorem 1.3. Let ϕ be a parabolic non-automorphism that takes the unit disk into
itself. Then Cϕ has no non-trivial reducing subspace.

The proof of Theorem 1.1 consists of two steps. First, it is shown that the adjoint
operator C?ϕ is similar to the operator of multiplication by a cyclic element in the Sobolev
SpaceW 1,2[0,∞), which is a commutative semisimple regular Banach algebra; the latter
idea parallels the one used by Sarason [17] to describe the invariant subspaces of the
Volterra operator. Second, the invariant subspaces of such a multiplication operator are
precisely the closed ideals of the algebra that can be described by using some elements
of the Gelfand Theory.
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2. An isomorphism from H2 onto the Sobolev space W 1,2[0,∞)

The Sobolev space W 1,2[0,∞) consists of those functions f in L2[0,∞) absolutely
continuous on each bounded subinterval of [0,∞) and whose derivative belongs to
L2[0,∞). It is well-known and easy to check that the space W 1,2[0,∞) becomes a
Hilbert space endowed with the inner product

〈f, g〉1,2 =
1
2

∫ ∞

0

(f(t)g(t) + f ′(t)g′(t)) dt.

The corresponding norm will be denoted by ‖ · ‖1,2. Similarly, we can define W 1,2(R).
We will show up an isomorphism, which is closely related to the eigenfunctions of

Cϕ, between the Hardy space H2 and the Sobolev space W 1,2[0,∞) that will be crucial
to prove Theorem 1.1. The inner functions et(z) = exp(t(z + 1)/(z − 1)), with t ≥ 0,
allow us to consider a complex valued function for each f in H2 defined by

(Φf)(t) = 〈f, et〉H2 , t ≥ 0.

The key point to prove that Φ is an isomorphism from H2 onto W 1,2[0,∞) is to consider
the operator Ψ that to each f in L2(T), here T denotes the unit circle, assigns the
function defined as

(Ψf)(t) = 〈f, et〉L2(T), t ∈ R.

Let W 1,2
0 [0,∞) denote the subspace of functions in W 1,2(R) that vanish on (−∞, 0].

The space W 1,2
0 (−∞, 0] is defined similarly. Finally, let Π denote the upper half-plane

of the complex plane. The Hardy space of the upper half-plane H2(Π) consists of those
functions f analytic on Π for which the norm

‖f‖2H2(Π) = sup
y>0

∫ ∞

−∞
|f(x+ iy)|2 dx

is finite, see [16, p. 372]. We will still maintain the symbol H2 for the Hardy space of
the unit disk. We have

Theorem 2.1. The map Ψ is an isometric isomorphism from L2(T) onto W 1,2(R). In
addition, Ψ(zH2) = W 1,2

0 [0,∞) and Ψ(z̄H2
) = W 1,2

0 (−∞, 0].

Proof. For each f in L2(T), we have

(Ψf)(t) =
1
2π

∫ 2π

0

f(eiθ) exp
(
t
1 + eiθ

1− eiθ

)
dθ, t ∈ R.

The change of variables x = i(1 + eiθ)/(1− eiθ) yields

(1) (Ψf)(t) =
1
π

∫ ∞

−∞
f

(
x− i

x+ i

)
e−itx

1 + x2
dx, t ∈ R.

Therefore, Ψ = FMT , where F denotes the Fourier transform,

(Mg)(y) =
1√
π

g(y)√
1 + y2

and (Tf)(x) =
1√
π

1√
1 + x2

f

(
x− i

x+ i

)
.

The obvious change of variables shows that T is an isometric isomorphism from L2(T)
onto L2(R). In addition, the properties of the Fourier transform along Plancherel’s
Theorem show that FM is an isometric isomorphism from L2(R) onto W 1,2(R), which
proves the first statement of the proposition.
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Now, let f be in zH2, that is, f(z) = zg(z) with g in H2. Using (1), we obtain

(Ψf)(t) =
1
π

∫ ∞

−∞
g

(
x− i

x+ i

)
e−itx

(x+ i)2
dx, for each t ∈ R.

Since the map

h→ 1√
π(x+ i)

h

(
x− i

x+ i

)
is an isometric isomorphism from H2 onto H2(Π), see [10, p. 106], and multiplica-
tion by (w + i)−1 is bounded on H2(Π), we find that Ψf is the Fourier transform
of a function of H2(Π). Thus, the Paley-Wiener Theorem, see [16, p. 372], shows
that Ψf , which is continuous, must vanish on (−∞, 0] and, therefore, Ψ(zH2) ⊂
W 1,2

0 [0,∞). Similarly, Ψ(z̄H2
) ⊂ W 1,2

0 (−∞, 0]. The fact that Ψ(zH2) = W 1,2
0 [0,∞)

and Ψ(z̄H2
) = W 1,2

0 (−∞, 0] follows immediately from the orthogonal decomposition
W 1,2(R) = W 1,2

0 (−∞, 0]⊕ [e−|t|]⊕W 1,2
0 [0,∞), which in turns follows, being Ψ an iso-

metric isomorphism, from the orthogonal decomposition L2(T) = z̄H2 ⊕ [1]⊕ zH2 and
the fact that Ψ1 = e−|t|, where [f ] denotes the one-dimensional linear space spanned
by the vector f . The proof is complete. �

Corollary 2.2. The operator Φ defines an isomorphism from H2 onto W 1,2[0,∞).
Indeed, ‖Φf‖21,2 = ‖f‖2H2 − |f(0)|2/2.

Proof. Upon applying Theorem 2.1, Φ and Ψ coincide on zH2. Therefore, Φ de-
fines an isometric isomorphism from zH2 onto W 1,2

0 [0,∞). Since e−|t| is orthogo-
nal to W 1,2

0 [0,∞), so is e−tχ[0,∞). Thus W 1,2[0,∞) = [e−tχ[0,∞)] ⊕ W 1,2
0 [0,∞) =

Φ1 ⊕ Φ(zH2) = Φ(H2), which proves that Φ is an isomorphism. The formula for the
norm is trivial. The proof is complete. �

Remark. In [7, Chaps. IV and V], it is also considered the isomorphism Φ. However,
the norm on the space Φ(H2) is defined as ‖Φ(f)‖ = ‖f‖H2 , without identifying Φ(H2)
with W 1,2[0,∞), and, consequently, more difficult to handle.

Now, we shall see that the adjoint of composition operators induced by parabolic
non-automorphism can be regarded as a multiplication operator on W 1,2[0,∞).

Proposition 2.3. Let ϕa, with <a ≥ 0, be as in (1). Then the adjoint of Cϕa acting
on H2 is similar under Φ to the multiplication operator Mψ, where ψ(t) = e−āt, acting
on W 1,2[0,∞).

Proof. Using the eigenvalue equation (2), for each f ∈ H2, we have

(ΦC?ϕa
f)(t) = 〈C?ϕa

f, et〉H2 = 〈f, Cϕa
et〉H2 = e−āt〈f, et〉H2 = e−āt(Φf)(t),

for each t ≥ 0. Thus Mψ = ΦC?ϕa
Φ−1. The result is proved. �

The following proposition is another key point to find the description of the Lattice
of Cϕa

Proposition 2.4. The operator Mψ, where ψ(t) = e−āt and <a > 0, acting on
W 1,2[0,∞) is cyclic with cyclic vector ψ.
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Proof. Let kα(z) = (1 − ᾱz)−1, where α = (a − 1)/(a + 1), be the reproducing kernel
at α ∈ D in the Hardy space H2. Since Φkα = ψ, by Proposition 2.3, it is enough to
show kα is cyclic for C?ϕa

. Suppose that f in H2 is orthogonal to the orbit of kα under
C?ϕa

. Then, for each n ≥ 0, we have

0 = 〈C?nϕa
kα, f〉H2 = 〈kα, Cnϕa

f〉H2 = 〈kα, Cϕnaf〉H2 = 〈kα, f ◦ ϕna〉H2 = f(ϕna(ᾱ)).

Since {ϕna(ᾱ)} is not a Blaschke sequence, the function f is zero and the result follows.
�

An interesting consequence of Corollary 2.2 is a summability theorem for the Laguerre
polynomials. Set un(z) = zn. Then ũn(t) = (Φun)(t) = L

(−1)
n (2t)e−tχ[0,∞), where

L
(−1)
n (t) is the Laguerre polynomial of degree n and of index −1. Indeed, since ũn =

〈zn, et(z)〉H2 is the n-th coefficient of the Taylor series of et(z), by definition of the
Laguerre polynomials see [18, p. 97], we have

(2) et(z) = e−t exp
(
− 2tz

1− z

)
=

∞∑
n=0

e−tL(−1)
n (2t)zn.

Therefore, it follows immediately

Corollary 2.5. Let {an}n≥0 be a sequence of complex numbers. Then the series
f̃(t) =

∑∞
n=0 anL

(−1)
n (2t)e−tχ[0,∞) converges in W 1,2[0,∞) if and only if {an} is in

the sequence space `2. Indeed, ‖f̃‖21,2 = −|a0|2/2 + ‖{an}n≥1‖22.

As an application of Corollary 2.5, we show the imbedding theorem for W 1,2[0,∞).
This is a well known result, see for instance [2]. However, the proof we provide here is
very simple and provides the best constant for the imbedding.

Corollary 2.6. Each f in W 1,2[0,∞) satisfies ‖f‖∞ ≤
√

2‖f‖1,2 and
√

2 is the best
imbedding constant.

Proof. By Corollary 2.5, we can write f(t) =
∑∞
n=0 anL

(−1)
n (2t)e−t, where {an} is in

`2. The Cauchy-Schwarz inequality and Corollary 2.5, for each t ≥ 0, yields

|f(t)| =

∣∣∣∣∣
∞∑
n=0

anL
(−1)
n (2t)e−t

∣∣∣∣∣ ≤ ‖f‖1,2

(
2e−2t +

∞∑
n=1

(L(−1)
n (2t))2e−2t

)1/2

.

Since ‖et‖H2 = 1, using (2), one easily checks that the quantity into the brackets above
equals to 1 + e−2t ≤ 2 and, therefore, ‖f‖∞ ≤

√
2‖f‖1,2. The fact that

√
2 is the best

imbedding constant is straightforward. �

The following well known result follows immediately from Corollary 2.6.

Proposition 2.7. The space W 1,2[0,∞) with the pointwise multiplication is a Banach
algebra without identity.

An element a in a Banach algebra A is called cyclic, if it is cyclic for the bounded
multiplication operator Ma that assigns to each b in A the element ab. The following
result is folklore for specialists in Banach algebras, although usually it is stated for
commutative Banach algebras. We include a proof, since we have not been able to find
a precise reference.
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Proposition 2.8. Let A be a Banach algebra. Then the invariant subspaces of multi-
plication by a cyclic element are the closed ideals of A.

Proof. First, since A has a cyclic element, it is commutative. Let a be a cyclic element
of A and let L be an invariant subspace of Ma. Clearly,

ML = {b ∈ A : bx ∈ L for all x ∈ L}
is a closed subalgebra of A. Since L is an invariant subspace of Ma, we find that
a ∈ ML and, therefore, ML contains the subalgebra generated by a and, being ML
closed and a cyclic, it follows that ML = A. Hence, L is a left ideal and thus, being
A commutative, an ideal of A. On the other hand, each ideal of A is invariant with
respect to Ma, which finishes the proof. �

3. Proof of Theorem 1.1

In view of Proposition 2.8, we need to know a description of the closed ideals of
W 1,2[0,∞). Such a description is equivalent to the fact that W 1,2[0,∞) has spectral
synthesis, see [8] or [1]. From any of these references, we have,

Theorem 3.1. The closed ideals of W 1,2[0,∞) are

IF = {f ∈W 1,2[0,∞) : f vanishes on F}, where F ∈ F[0,∞).

Now, we have all the tools at hand to prove Theorem 1.1.

Proof of Theorem 1.1. By Proposition 2.4, the symbol ψ is a cyclic element of the
Banach algebra W 1,2[0,∞). Thus, from Proposition 2.8 and Theorem 3.1 it follows
that

LatMψ = {{f̂ ∈W 1,2[0,∞) : f̂ vanishes on F}, where F ∈ F[0,∞)}.
Since Mψ = ΦC?ϕΦ−1, we have

LatC?ψ = {{f ∈ H2 : 〈f, et〉H2 = 0 for each t ∈ F}, where F ∈ F[0,∞)}.
Since LatCϕ consists of the orthogonal complements of LatC?ϕ, the statement of The-
orem 1.1 follows immediately. �

Now, the proof of Theorem 1.3 follows easily.

Proof of Theorem 1.3. Let F be in F[0,∞) such that NF = span {et : t ∈ F} is non-
trivial. We must show that its orthogonal complement N⊥

F is not invariant under Cϕ.
We need the following formula, which is easily checked

(1) 〈et, es〉 = e−|t−s|, for each t, s ≥ 0.

First assume that 0 is not in F . Set t0 = minF . Since ft0 = 1−e−t0et0 is orthogonal
to et for each t ≥ t0, we find that ft0 is in N⊥

F . If N⊥
F is invariant under Cϕ, then

ft0 −Cϕft0 is in N⊥
F . But ft0 −Cϕft0 = e−t0(1− e−at0)et0 is also in NF , which means

that ft0 − Cϕft0 = 0. Hence, ft0 ≡ 1, a contradiction.
Assume now that 0 is in F . Let Me1 denote the multiplication by e1. We have

(2) Me1(NF ) = e1span {et : t ∈ F} = span {e1+t : t ∈ F} = N1+F .

Clearly, Me1 is a Hilbert space isometry preserving inner products. Therefore,

(3) Me1

(
N⊥
F

)
= Me1(NF )⊥.



INVARIANT SUBSPACES OF PARABOLIC SELF-MAPS IN THE HARDY SPACE 105

Proceeding by contradiction, assume that N⊥
F is also invariant under Cϕ. Then

Me1(Cϕ(N⊥
F )) ⊆Me1(N

⊥
F ).

Since, for f in H2, we have Cϕ(Me1f) = Cϕ(e1f) = e−ae1Cϕf = e−aMe1(Cϕf), from
the above display, it follows that Cϕ(Me1(N

⊥
F )) is included in Me1(N

⊥
F ). Therefore,

from (2) and (3), we immediately see that Cϕ(N⊥
1+F ) ⊆ N⊥

1+F , which is a contradiction
because 0 is not in 1 + F . The proof is complete. �

4. Appendix. The closed ideals of W 1,2[0,∞)

For the sake of completeness, we end by providing a proof of Theorem 3.1, which
describes the closed ideals of W 1,2[0,∞).

A character on a Banach algebra A is a linear functional κ : A → C such that
κ(ab) = κ(a)κ(b) for each a and b in A. We observe that any character on a Banach
algebra is continuous [11, p. 201], that is, it belongs to the dual space A?. The spectrum
of A is the set Ω(A) of non-zero characters of A equipped with the weak-star topology.
It is well-known that the spectrum of any Banach algebra is a Hausdorff locally compact
topological space and it is compact whenever A has identity [11, p. 205].

We start by determining Ω(W 1,2[0,∞)). For each t ≥ 0, let δt denote the reproducing
kernel at t, that is, f(t) = 〈f, δt〉1,2 = 〈Φ−1f, et〉H2 for each f ∈W 1,2[0,∞) and where Φ
is the transform defined in Section 2. Since W 1,2[0,∞) is a Hilbert space, the weak-star
topology coincides with the weak topology.

Proposition 4.1. The spectrum of the Banach algebra W 1,2[0,∞) is

Ω(W 1,2[0,∞)) = {δt : t ≥ 0}.

Furthermore, the mapping that to each t assigns δt is a homeomorphism from [0,∞)
onto Ω(W 1,2[0,∞)).

Proof. Clearly, for each t ≥ 0, the functional δt is a character on W 1,2[0,∞), that is, δt
is in Ω = Ω(W 1,2[0,∞)). To prove that each character on W 1,2[0,∞) is one of the δt’s,
we consider the Banach algebra C1[0, 1], with pointwise multiplication, endowed with
the norm ‖f‖ = max{‖f‖∞, ‖f ′‖∞}. Consider also its Banach subalgebra A0 = {f ∈
C1[0, 1] : f(1) = 0}. Then, it is easy to check that (Tf)(x) = f(x/(1 + x)) defines a
bounded operator from A0 into W 1,2[0,∞), which is also an algebra homomorphism.
Now, if κ is a character of W 1,2[0,∞), then it is easy to see that the functional κ̃
on C1[0, 1] defined by κ̃(f) = κ(T (f − f(1))) + f(1) is also a character. Since the
characters of C1[0, 1] are the point evaluations f → f(s), with 0 ≤ s ≤ 1, see [11, p.
204], there is 0 ≤ s ≤ 1 such that κ̃(f) = f(s) for each f in C1[0, 1]. If s = 1, it follows
immediately that κ(Tf) = 0 for each f in A0. Hence κ vanishes on the range of T ,
which is dense because it contains C∞c [0,∞). Therefore, κ is the zero functional. If
s 6= 1, then set t = s/(1 − s) ≥ 0 and observe that κ(Tf) = (Tf)(t) for each f ∈ A0.
Hence κ and δt coincide on a dense set, which implies that κ = δt. Thus we have shown
that Ω = {δt : t ≥ 0}.

Next, since each f in W 1,2[0,∞) is continuous, so is the mapping t→ δt from [0,∞)
onto Ω. Since ‖δt‖1,2 ≤ ‖Φ−1‖‖et‖H2 = ‖Φ−1‖, we find that Ω is norm bounded on
the dual space. Since the weak topology of a separable Hilbert space is metrizable
on bounded sets, it follows that Ω is metrizable. Thus, to prove that t → δt is a
homeomorphism, it suffices to show that tn → t0 whenever δtn → δt0 . Suppose that
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this is not the case, then there is ε > 0 such that |tn − t0| > ε for each positive integer
n. Consider the W 1,2[0,∞)-function defined for t ≥ 0 by

f(t) =

{
ε− |t0 − s|, if |t0 − s| ≤ ε;
0, otherwise.

Since δtn(f) = 0 and δt0(f) = ε, we find that δtn cannot converge to δt0 . Therefore, the
mapping t→ δt is a homeomorphism. The result is proved. �

Now we turn our attention to the structure of the regular ideals of Banach algebras.
An ideal I of a Banach algebra A is called regular when the quotient algebra A/I has
identity. In particular, the kernel of any character is a maximal regular ideal. Therefore,
the mapping κ 7→ ker κ defines a one-to-one correspondence between the spectrum of
A and the set of its maximal regular ideals, which is denoted by M, see [11, p. 202].
Recall also that a complex algebra is called semisimple if the intersection of all maximal
regular ideals, called Jacobson’s radical, is zero. Thus a commutative Banach algebra
A is semisimple if and only if the elements of Ω(A) separate points of A, that is, the
intersection of the kernels of the characters is zero.

Given x ∈ A and M ∈ M, we denote by x̂(M) = x modM the image of x under
the multiplicative linear functional corresponding to M. The mapping x 7→ x̂ is a
homomorphism from A into C0(M) called Gelfand’s transform. The Gelfand transform
is one-to-one if and only if A is semisimple [11, p. 207]. Recall also that a Banach
algebra A is said to be regular whenever for each closed set F ⊆ M and each point
M0 in M such that M0 /∈ F , there is an element x in A such that x̂ ≡ 0 in F and
x̂(M0) 6= 0.

The next proposition follows immediately from generals results in the book of Rickart,
see [15, p. 91],

Lemma 4.2. Let A be a semisimple regular commutative Banach algebra. Then the
closed ideals of A are

IF =

{ ⋂
κ∈F

ker κ : F is closed in Ω(A)

}
if and only if for each x ∈ A there exists a sequence {xn} tending to x in A and x̂n
vanishes on a neighborhood Un of h(x) with compact complement.

Thus Theorem 3.1 will be proved once we have shown that W 1,2[0,∞) is under the
hypothesis of Lemma 4.2.

Proposition 4.3. The Banach algebra W 1,2[0,∞) is semisimple and regular and the
mapping F →

⋂
t∈F ker δt is one-to-one from F[0,∞) onto the set of closed ideals of

W 1,2[0,∞).

Proof. Since the characters δt’s separate points, the Banach algebra W 1,2[0,∞) is
semisimple. To prove that W 1,2[0,∞) is also regular, we have to show that for each
closed F in Ω and each maximal regular ideal M /∈ F there exists f in W 1,2[0,∞) such
that f̂ = 0 on F and f̂(M) 6= 0. By Proposition 4.1 this is equivalent to show that for
every closed set F ⊆ [0,∞) and each point t0 ∈ [0,∞)\F there exists f in W 1,2[0,∞)
such that f vanishes on F and f(t0) 6= 0, which is obvious.

It remains to show that the last hypothesis of Lemma 4.2 is also fulfilled. Indeed, the
Gelfand transform of a function in W 1,2[0,∞) vanishes on a set in Ω if and only if the
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function vanishes on its preimage under the homeomorphism furnished by Proposition
4.1. Clearly, for each f in W 1,2[0,∞) there is a sequence {fn} in C∞c [0,∞) converging
to f and such that the zero set of each fn contains an open neighborhood Un of the zero
set of f . Then, by Lemma 4.2, each closed ideal of W 1,2[0,∞) is of the form

⋂
t∈F ker δt

for some F in F[0,∞), so the mapping F →
⋂
t∈F ker δt is onto and since

⋂
t∈F ker δt 6=⋂

t∈G ker δt whenever F 6= G, it is also one-to-one. The result is proved. �
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