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HOMOLOGICALLY THIN, NON-QUASI-ALTERNATING LINKS

JOSHUA GREENE

ABSTRACT. We exhibit the first examples of links which are homologically thin but not
quasi-alternating. To show that they are not quasi-alternating, we argue that none of
their branched double-covers bounds a negative definite 4-manifold with non-torsion Hj.
Using this method, we also complete the determination of the quasi-alternating pretzel
links.

1. Introduction.

Quasi-alternating links were defined by Ozsvdth and Szabé [31, Definition 3.9].
They are a natural generalization of the class of alternating links.

Definition 1.1. The set Q of quasi-alternating (QA) links is the smallest set of links
such that

e the unknot U belongs to Q, and

e if L is a link with a projection containing a crossing for which the two resolu-
tions Lo and Ly belong to Q, and det(L) = det(Lg) 4+ det(L1), then L belongs
to Q.

By this definition, non-split alternating links belong to Q. QA links arise naturally
in connection with various link homology theories. The relevant invariants here are
versions of the knot Floer and Khovanov homology groups, and take the form of a
bigraded, finitely-generated abelian group. A link is thin in one of these theories if
its homology is supported on a single diagonal with respect to the bigrading.

The following properties hold for a QA link L:

(1) the knot Floer homology group ITF?{(L; Z/27) is thin [21, Theorem 2J;

(2) the reduced ordinary Khovanov homology group K h(L;Z) is thin and torsion-
free [21, Theorem 1];

(3) the reduced odd Khovanov homology group ﬂ/(L; 7) is thin and torsion-free
[26, remark after Proposition 5.2]; and

(4) the branched double-cover (L) is a Heegaard Floer L-space, and it bounds
a negative definite 4-manifold W with H; (W) = 0 [31, Proposition 3.3 and
the proof of Lemma 3.6].

It is an interesting open problem to characterize those links that are thin with
respect to any one of the above link homology theories. For some time, it remained a
possibility that a link was HFK- or Kh-thin if and only if it was QA. This possibility
was recently refuted by Shumakovitch, who used his excellent program KhoHo [33]
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FIGURE 1. The knot 11n50.

to show that the pretzel knots 946 = P(3,—3,3) and 10149 = P(3,—3,4) have (off-
diagonal) torsion in their odd Khovanov homology groups, although they are both
thin and torsion-free with respect to HFEK and Kh. Thus, neither of these knots is
odd-thin, so neither is QA.!

Definition 1.2. A link L is homologically thin (without qualification) if it is simul-
taneously thin and torsion-free with respect to HFK, Kh, and Kn.

It has remained an open problem to exhibit a link that is homologically thin and
not QA. The purpose of this note is to describe such examples, and moreover to
exploit the second part of condition (4) as an obstruction to QA-ness.

Theorem 1.3. There exist homologically thin, non-QA links.

At the heart of our approach is Donaldson’s celebrated “Theorem A”, which asserts
that the intersection pairing of a smooth, closed, negative definite 4-manifold is diag-
onalizable [4]. Coupled with calculations by several researchers [1, 3, 11, 20, 33, 36],
we identify 11n50 as the only knot with up to 11 crossings which is neither QA nor
odd-thick. Furthermore, combined with work of Champanerkar-Kofman [3, Theorem
3.2], we complete the determination of the QA pretzel links. For a clear, concise
account of the relevant notation and facts concerning Montesinos links here and in
what follows, see [24, Section 3.2].

Theorem 1.4. The pretzel link P(—e;p1, ..., P, —q1,- -, —qm) = M(—e; (p1,1),...,
(Pn, 1), (g1, =1), -+, (gm, —1)), with e,n,m >0, all p; > 2, and all q; > 3, is QA iff
(1) e>m—1;
(2) e=m—1>0;
(3) e=0,n=1, and p; > min{qy,...,qn} orm <1; or
(4) e=0,m=1, and ¢1 > min{py,...,pp}t orn < 1.

The same is true on permuting the parameters p; and q;.

Any pretzel link can be put in the above form after mirroring [13, Section 2.3],
which clearly preserves the QA property. For comparison, a pretzel link in the above
notation is alternating iff e >m -1, e=n=0,or m+n < 2. Forif m+n < 2,

Im fact, in all known examples, an odd-thin link is K h-thin, and a link is K h-thin iff it is HFEK-
thin. A conjecture of Rasmussen would imply that a Kh-thin link is necessarily HFK-thin [32,
Section 5].
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FIGURE 2. The pretzel link P(—4;3,2,—3).

then the link is 2-bridge, hence alternating. Otherwise, it has a reduced Montesinos
diagram and its crossing number is attained by this diagram [19, pp. 535-536 and
Theorem 10]. Therefore, the link is alternating iff its reduced Montesinos diagram is
[18, Corollary 5.10], which occurs iff e >m —1 or e =n = 0.

Section 2 contains the proofs of Theorems 1.3 and 1.4. Section 3 contains some
related examples, and sketches the construction of an infinite family of homologically
thin, non-QA hyperbolic knots [8]. It concludes with a discussion surrounding Conjec-
ture 3.1, which asserts that there are finitely many QA links of bounded determinant.

2. Proofs of the main results.

To prove the theorems, we rely on the following lemma. We use (co)homology
groups with integer coefficients throughout.

Lemma 2.1. Suppose that X and W are a pair of 4-manifolds, 0X = —0W =Y is a
rational homology sphere, and Hy (W) is torsion-free. Express the map Ho(X)/Tors —
Hy(X UW)/Tors with respect to a pair of bases by the matriz A. This map is an
inclusion, and if some k rows of A contain all the non-zero entries of some k of its
columns, then the induced k X k minor has determinant +1.

Proof. The stated assumption ensures that the restriction map H2(XUW) — H?(X)
surjects. Just to be sure, consider the long exact sequences in cohomology for the
pairs (X U W, X) and (W,Y), and the natural map between them. The relevant
portion reads

HY(XUW) —> H2(X) — H3(X UW, X)

i i

H2(Y) H3(W,Y).

The second vertical arrow is an isomorphism by excision, and Poincaré-Lefschetz
duality identifies this group with Hy (W), which is torsion-free. Since H?(Y) is torsion,
the bottom horizontal map is 0. It follows that the map H?(X) — H3(X UW, X) is
0, so the map H?(X UW) — H?(X) surjects as claimed.
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FIGURE 3. The graph I

Consequently, the map H?(X U W)/Tors — H?(X)/Tors surjects as well. On the
other hand, this map of groups is dual to the map H(X)/Tors — Ho(X UW)/Tors,
so is given with respect to the pair of dual bases by the matrix A”. Suppose that
some k rows of A contain all the non-zero entries of some k of its columns, and let B
denote the corresponding k x k minor. By permuting the basis elements if necessary,
we may assume that B is the top-left k x k minor, possibly changing its determinant

by a sign:
B C
(7S

Since the dual map AT surjects, the map BT must as well, hence det(B) = +1, as
claimed. The fact that the map A injects follows, for example, from the Mayer-Vietoris
sequence for the natural decomposition of X U W, noting that H(Y") vanishes.

O

Proof of Theorem 1.3. We establish the result by showing that K = 11n50 is homo-
logically thin but not QA. Additional examples appear in Subsection 3.2. The knot
Floer homology group HF K (K; Z/2Z) was calculated by Baldwin-Gillam [2], and the

Khovanov homology groups Kh(K) and m,(K ) by Shumakovitch [33]; their results
show that K is homologically thin.

Figure 1 exhibits the knot 11n50 as the Montesinos knot M (0; (5, 2), (3, 1), (5, —2)),
which is equivalent to M (1;(5,2),(3,1),(5,3)). As such, its branched double-cover
Y is the boundary of the plumbing X on the graph I'" shown in Figure 3 (cf. [24,
Section 3.2]). We label the vertices of I" from left to right and top to bottom by
v1,...,v7. The spheres corresponding to these vertices give rise to a basis for Ha(X),
with respect to which the intersection pairing on X is given by the weighted adjacency
matrix Ar, whose (4, %)-entry records the weight of v;, and whose (4, j)-entry for ¢ # j
is 1 or 0 according as v; and v; are adjacent or not. The space X is negative definite
and Hi(X) = 0.

If 11n50 were QA, then its mirror 11n50 would be as well, whose branched double-
cover is —Y. We proceed by way of fact (2) to derive a contradiction. According to it,
there must exist a negative definite 4-manifold W with OW = —Y and H;(W) = 0.
Consider the 4-manifold X UW. It is a closed, smooth, negative definite 4-manifold,
so by Donaldson’s theorem, its intersection pairing is diagonalizable. That is, there
exists an isomorphism (Hy(X UW)/Tors, Qxuw) = —Z", where n = by(X UW) and
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—Z" = (FE,..., E,) denotes the space Z™ equipped with minus its standard positive
definite inner product.

Therefore, (Hy(X)/Tors,Qx) embeds into —Z", for some n. Let z; denote the
image of the class in Hy(X)/Tors under the inclusion into —Z"™ which corresponds
to the vertex v;. No pair of vertices of weight -2 has the same set of neighbors, so
the corresponding vectors in —Z"™ have distinct reductions (mod 2). This observation
helps us to deduce that, by applying an automorphism to —Z", we have x7 = F1 —
EQ,{EG = EQ - E3,LL'3 = E3 — E47.7J4 = E4 — E5, and xr1 = E6 — E7. NOW, Swapping
FEg and —FE~; if need be, we obtain z9 = F4 + E5 — Eg, and then x5 = F5 + Eg + Er.
Thus, with respect to the chosen bases for Hy(X)/Tors and Hy(X U W) /Tors, the
inclusion map is given by a matrix A whose seven columns are supported in its first
seven rows. Let B denote the induced 7 x 7 minor. Then —BTB = —ATA = Ar,
and this is a presentation matrix for H?(Y) & Z/25Z. Hence |det(B)| =5 # 1, in
contradiction to Lemma 2.1.

It follows that —Y does not bound a negative definite 4-manifold with torsion-free,
let alone vanishing, H;, and so the knot 11n50 is not QA.

O

We remark that there does exist a negative definite 4-manifold W with boundary
—Y for which Hy (W) contains torsion. The knot 11150 is a slice knot?, so the double-
cover of D*, branched along a slice disk for the mirror 11150, is a rational homology
ball with boundary —Y, which we may blow up to make undeniably negative definite.
However, its first homology group contains a subgroup isomorphic to a quotient of
H,(Y) of square-root order, which is Z/5Z in this case.

Proposition 2.2. Forn > 2, p1,...,pn > 2, and ¢ > 1, the pretzel link P(0;p1, ...,
Pn,—q) is QA iff ¢ > min{py,...,ps}.

Proof. Let L denote the pretzel link P(0;p1,...,pn, —q) = M(0;(p1,1),..., (pn, 1),
(¢,—1)) = M(1;(p1,1),...,(pn,1),(q,g—1)). The space (L) is the boundary of the
plumbing X on a star-shaped planar graph I". The graph I" has n + 1 rays of lengths
p1—1,...,pp, — 1, and 1 emanating from the star vertex in cyclic order; by length
we mean the number of edges. The star vertex receives weight —n, the vertex on
the distinguished ray of length 1 receives weight —¢, and every other vertex receives
weight —2. As before, the intersection pairing on X is given in the natural spherical
basis by the weighted adjacency matrix Ar.

The space X is negative definite if and only if p1_1 + o pyt =gt > 0 (23,
Theorem 5.2]. If it is not — implying that ¢ < min{p1,...,p,} — then we claim that
L is not QA. Consider the space —Y = X(L). It is the boundary of plumbing on
a star-shaped graph I with n rays of length 1 and one of length ¢ — 1 emanating
from the star vertex. The vertices on rays of length 1 receive weights —p1,..., —pn
in cyclic order, the vertices on the ray of length ¢ — 1 receive weight —2, and the star
vertex receives weight —1. Under the assumption that I" is not negative definite, the
graph I is by another application of [23, Theorem 5.2].

2Michael Eisermann points out that this is direct from the presentation of 11n50 as a symmetric
ungon in Figure 1 (cf. [16, Theorem 5]).
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Now we appeal to some facts for which a detailed account would extend too far
beyond the scope of this note. Since the star vertex has degree > 3 and weight —1, an
application of Laufer’s algorithm terminates at the 0" iteration, and shows at once
that the space —Y = Y1 is not the link of a rational surface singularity [17, Section
4]. The invariant HEF't(Y) = HF " (—Yr) is identified with a particular Z[U]-module
H*(T), as detailed in [28, Section 2]. On the other hand, Némethi has proven that if
HF*(=Yr) @ H™(I') and Y- is an L-space, then Y- is the link of a rational surface
singularity [22, Proposition 4.1.2]. It follows that Y is not an L-space, so L is not QA
in this case.

Therefore, we may assume henceforth that X is negative definite. Now suppose
that L were QA, so that —3(L) = OW, where W is a negative definite 4-manifold
with Hy(W) = 0. Since det(L) > 0, it follows that —X(L) is a rational homology
sphere. We proceed as in the proof of Theorem 1.3 and analyze how (Hz(X), Qx)
can embed into the lattice —Z" = (Fy,..., E,). To every vertex of I' corresponds
a vector in —Z". If two distinct vertices of weight —2 gave rise to vectors with the
same reduction (mod 2), then a change of basis of —Z" puts these vectors in the form
FE1+ FEs and E; — Es. These in turn correspond to a pair of columns of the matrix
A representing the map Ha(X)/Tors — Ha(X U W)/Tors supported in the first two
rows. The induced 2 x 2 minor has determinant +2, in contradiction to Lemma 2.1.

Now consider a ray of length p;, — 1. Each vector corresponding to one of its
vertices has weight —2. Since no two have the same reduction (mod 2), it follows
that they can be put in the form E{ — Ej, ..., E;;i_l — Efw moving away from the
star vertex. Furthermore, vectors corresponding to distinct rays are orthogonal, and
again no two have the same reduction (mod 2). It follows that all the basis vectors
E;-, 1<i<n,1<j<p,, are distinct, and in turn that the star vertex corresponds
to the vector —E} — --- — E7. Consider the vector x corresponding to the vertex of
weight —¢q. Its inner product with —E{ — --- — ET" is non-zero, so in its expansion
with respect to the chosen basis of —Z", it has some term of the form a - E¢ with
a # 0. Since z is orthogonal to all those vectors corresponding to the i** ray of T,
its expansion takes the form a(E} + --- + E} ) 4 (additional terms). It follows that
q > la| - p; > min{py,...,p,}. Now suppose by way of contradiction that equality
held throughout. Then in fact z = E} + -+ + E;q Consider the rows of the matrix
A corresponding to the vectors Ef — ES, ..., E} | —E} ,and E{ +---+ E} . These
are p; columns supported in p; rows, whose induced p; X p; minor has determinant
+p; # £1, in contradiction to Lemma 2.1. Consequently, ¢ > min{pi,...,p,}, as
desired.

The converse statement in [3, Theorem 3.2(1)] completes the proof of the Proposi-
tion.

O

Proof of Theorem 1.4. Let L denote the pretzel link appearing in the statement of the
Theorem. As a Montesinos link, it is notated by M (e; (p1,1),- .., (pn, 1), (g1, —1),. ..,
(g, —1).

If e < m—1, then L has the equivalent description M (0; (p1,1),. .., (pn, 1), (1,91 —
Dyeos(@erge — 1)y (qet1, —1), .-, (Gm, —1)). If e4+n > 2, then the diagram resulting
from this description is adequate and non-alternating. It follows that L is K h-thick
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[14, Proposition 5.1] and hence not QA in this case. If e + n < 1, then either
e=1n=0,ore=0,n=1. In the first case, m > e+ 1 = 2, and L is non-QA
by applying Proposition 2.2 to L. In the second case, Proposition 2.2 applies once
again to L to determine when L is QA (Case 3). This establishes the Theorem in
case e < m — 1.

If e > m — 1, then L has the equivalent description M (e — m; (p1,1),..., (pn,1),
(1,91 = 1)y, (gm,qm — 1)). Its associated diagram is connected and alternating, so
L is QA in this case (Case 1). Also, if e = m — 1 = 0, then the Theorem follows by a
combination of Proposition 2.2 and [3, Theorem 3.2(2)] (Case 4).

It stands to consider the case that e = m — 1 > 0 (Case 2). We prove that L is
QA by induction on e + g1 + -+ + ¢,. Consider a crossing appearing in the tassle

with —g,, half-twists. The resolution Ly is the link P(e;p1,...,Pn, —q1,--«» —Gm—-1),
while the resolution L; is the link P(e;p1,...,Pn, —q1,-.., —(gm — 1)). Writing 7 =
Pl P Gmorand o = e+ prt A+ dpt —grt - — q;f_l, we calculate

det(Lo) = m-0,det(Ly) = 7+ (¢ —1)- (0 — (¢ —1)71), and det(L) = 7- g - (0 —q;;}).
Note in particular that the expression for each determinant is positive, since e = m—1
and there are at most m negative terms in each sum, with each term > —1/2. The
equality det(L) = det(Lg) +det(L;) is immediate. Now, Lo has the same value e and
one fewer negative term, so as in the case e > m — 1 treated above, this link has a
connected, alternating diagram, hence is QA. If ¢, > 3, then the link L; is QA by
induction. Otherwise, ¢,, = 3, and so L1 = P(e;p1,-.-, Py —q1y- ey —Gm-1,—2) =
Ple — 1501, s DPny—GQ1y -+ oy —Qm—1,2) = Ple — 1;2,p1, ..., Pny =1y -y —@m—1)- If
e—1=m—2>0, then L; is QA by induction, while if e — 1 =m — 2 =0, then L
is QA by Proposition 2.2. Thus, L; is QA regardless, and it follows that L is QA as
well. This completes the induction step.

The preceding argument carries over mutatis mutandis to the case of a pretzel link
which differs from L by a permutation of the parameters p; and ¢;. This completes
the proof of the Theorem.

O

3. Discussion.

3.1. Further obstructions. The main principle at work in this note is the fact
that for a QA link L, there is naturally associated to it a smooth, negative definite
4-manifold X, with vanishing H; and boundary ¥(L). It is therefore of interest to
have on hand obstructions to a 3-manifold bounding a negative definite 4-manifold
with torsion-free or vanishing H7, and to examine more closely the topology of X in
the hopes of developing finer obstructions to QA-ness.

In the first direction, Ozsvath-Szabé [27, Section 9.2] have developed an obstruction
which makes use of the correction terms in Heegaard Floer homology, and which was
subsequently sharpened by Owens-Strle [25, Theorem 2]. For the case of =Y =
¥(11n50), the Owens-Strle obstruction does not rule out the possibility that this
space bounds a negative definite 4-manifold with torsion-free H;. Indeed, using the
plumbing graph I', we can calculate the correction terms of —Y according to [28,
Corollary 1.5]. The largest correction term has the value 8/25, which passes their
obstruction since it is > 1/4. Therefore, the argument given in Theorem 1.3 provides
information where this obstruction does not.
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FIGURE 4. The knot K(p, ), split open at a point. The parameters
indicate the number of right- or left-handed half-twists in the twist
box, depending on whether they are positive or negative.

In the second direction, Ozsvath-Szabd have shown that X, is a sharp 4-manifold
when L is an alternating link ([30, Section 2.8], [31, Theorem 3.4]), and an early
arXiv version of the paper [31] suggested that the same is true for an arbitrary QA
link L (math.GT/0309170, after Proposition 3.3). However, this is not the case.
Indeed, ¥(L), where L = 83 = P(3,—2,—2), does not bound any sharp 4-manifold
[7, Proposition 7.3]. This negative result begs for an efficient means of calculating the
correction terms of (L) for a QA link L in general. Is it still possible to utilize X7,
in some way towards this end? What further information can we glean from X to
develop an obstruction to QA-ness?

3.2. Further examples. The connect-sum of 11150 with any QA link L will result
in a homologically thin link which is not QA. The fact that it is homologically thin
follows from the behavior of the relevant knot homology groups under the connect-sum
operation. The fact that it is not QA follows the proof of Theorem 1.3, noting that
Y(11n50#L) is the boundary of the boundary sum Xi1,508X, whose intersection
pairing decomposes as a direct sum.

Towards the end of obtaining more examples of homologically thin, non-QA hy-
perbolic knots, consider the following construction, due to Liam Watson, of infinitely
many hyperbolic knots with the same homological invariants as the knot 11n50 (in
particular, determinant 25). The knot 11n50 occurs as K (3,0) in the two-parameter
family of knots K (p, ¢) depicted in Figure 4. When the values of these parameters are
even, we recover Kanenobu’s two-parameter family of knots whose HOMFLY polyno-
mial depends only on p + ¢ [12]. Allowing for arbtirary p, g, Watson showed that the
unreduced ordinary Khovanov homology of K(p,q) depends only on the value p + ¢
[35, esp. Lemma 3.1 and Section 7.4], and the same is true in the context of unre-
duced odd Khovanov homology by a similar argument. Since the unreduced groups
are thin for K (3,0), they are thin and equal for all K(n,3 — n), hence the reduced
versions are thin and equal as well. Furthermore, an application of the long exact
sequence in knot Floer homology implies that OFK (K (n,3—n)) is independent of n.
A slight adaptation of Kanenobu’s argument shows that these knots are hyperbolic,
and the graded Floer homology groups of their branched double-covers distinguish
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these knots. Therefore, the knots K(n,3 —n), n > 2 provide the desired source of
examples. Amongst them, the knot K(2,1) = 11n132 is QA. However, in joint work
with Watson, we show that K(n,3 —n) is not QA for |n| > 0 [8].

In a different direction, work of Champanerkar-Kofman [3] and Widmer [36] indi-
cates some progress in extending Theorem 1.4 to the more general case of Montesinos
links. We expect that the methodology used herein could establish a direct analogue
to Theorem 1.4 in this broader setting.

Lastly, extensive calculations by Jablan-Sazdanovié [10, 11] (including corrections
to some of the ones that originally appeared in [11]) indicate that amongst multi-
component links with up to 11 crossings, all except L11n77 and L11n90 are either
odd-thick or non-QA. The method described here can be used to show that L11n90
is not QA, although it is odd-thin. We were unable to conclude anything further
about L11n77. Therefore, it may require additional ideas to prove that it is non-QA,
if indeed this is the case.

3.3. A conjecture. We close with a conjecture.
Conjecture 3.1. There exist only finitely many QA links with a given determinant.

Note the contrast between Conjecture 3.1 and the existence of infinitely many ho-
mologically thin links with the same determinant (such as the family K (n,3—n)) cited
above. In support of Conjecture 3.1, recall that there exist finitely many alternat-
ing links with a given determinant. This follows essentially because the determinant
of an alternating link equals the number of spanning trees in the black graph of an
alternating projection of it. Moreover, we have the following result for very small
determinants.

Proposition 3.2. If L is a QA link with determinant < 3, then L is alternating.

Proof. Suppose that L is a QA link. If det(L) = 1, then the assertion is trivial.

Next, suppose that det(L) = 2. Let ¢ denote a QA crossing in a diagram of L, and
Ly and L, the two resolutions of L at c¢. Of course, both Ly and L, are unknots. Let
~ denote a small unknotted arc connecting the two strands nearby the resolution in
Lo, and let K denote its preimage in ¥(Lg) = S®. Then %(L;) = S? is a non-trivial
surgery on K; by the Dehn surgery characterization of the unknot ([15, Theorem 1.1],
or [6, Theorem 2] in this special case), it follows that K is the unknot. The space (L)
is an integer surgery on K as well, and since det(L) = 2 it follows that $(L) = RP3. A
result of Hodgson-Rubinstein [9, Corollary 4.12] characterizes 2-bridge links as those
links whose branched double-covers are lens spaces. It follows that L is the Hopf link.

Lastly, suppose that L is QA and det(L) = 3, and proceed as above. In this case,
Lo is the unknot, while L; is the Hopf link (or vice versa). Now ¥ (L1) = RP? is a
surgery on K C S2, and the Dehn surgery characterization of the unknot once again
shows that K is the unknot. Hence X(L) is the lens space £L(3,1), and citing [9,
Corollary 4.12] again shows that L is a trefoil knot.

John Baldwin gives an alternative argument for the case of a determinant 3 QA link.
Such a link is 7 FK-thin. Now using the facts that ijT((L) is the E; term in a spec-
tral sequence converging to ﬁ(Ss) = Z(o), and that ﬁ{d(L i) = fﬂ:‘?(d,gi(L, —1)
[29], it follows that L has the knot Floer homology of a trefoil knot. Since a trefoil is
uniquely determined by its knot Floer homology [5], the result follows.
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We remark that if there were infinitely many prime QA links of some fixed de-
terminant, then amongst their branched double-covers we would obtain an infinite
family of irreducible L-spaces with the same graded Heegaard Floer homology groups
[8]. No such family is known as of this writing. For that matter, it remains unknown
whether all the prime factors of a composite QA link are necessarily QA.
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