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PRINCIPALITY OF CURVES ON SANDWICHED SINGULARITIES

Jesús Fernández-Sánchez

Abstract. Given a surface X obtained by blowing up a complete m-primary ideal in

the local ring of a point on a non-singular surface S, we determine the Picard group of

X and the divisor class groups of its singularities. Given a curve C on X, we obtain
various criteria for C to be locally principal at these singularities. Our criteria are

stated in terms of the projection of C onto S. A minimal system of local generators of

the defining ideal of C is produced, as well as a formula for their number.

1. Introduction

Sandwiched singularities are normal surface singularities which birationally domi-
nate a non-singular surface. They are rational surface singularities and among them
are included all cyclic quotients and minimal surface singularities. Any sandwiched
surface singularity can be obtained by blowing up a complete m-primary ideal in a
regular local ring (R,m). From an algebraic point of view, they are the normal bira-
tional extensions of some regular local ring of dimension two. The original interest
in sandwiched singularities comes from the problem of how to resolve singularities by
using normalized Nash transformations. In [17], Spivakovsky examines sandwiched
surface singularities and gives an affirmative answer to this question for the case of
surface singularities by studying sandwiched surface singularities. Since then, sand-
wiched singularities have been studied as a as a useful testing ground for the Nash
problem of arcs in [13, 16] and from the point of view of deformation theory in [6]
and [10].

A sandwiched surface X is a surface obtained by blowing up a complete ideal I in
a regular local ring OS,O of a non-singular surface S. In this paper we address the
question of the local principality of curves (effective Weil divisors) near the (sand-
wiched) singularities of X. Criteria for the principality of effective divisors on X are
given in terms of their projection onto S in relation to the infinitely near base points
of I. As a consequence, the Picard group of X and the divisor class group of any
singularity of X are determined. Our motivation comes from the study of the divisor
class group of rational surface singularities in general (see [14, 5]). A criterion for
the existence of a local equation defining a given curve near the singularities of X is
presented as well. Its interest lies in the fact that it makes it possible to check easily
the local principality of curves using the combinatorial properties of the associated
Enriques diagrams. We give a procedure for determining minimal sets of generators of
the ideals of curves at the singularities of X and provide an easy formula to compute
their number. Our approach is based on the point of view of [9, 1] and makes use of
the theory of infinitely near points as revised and developed in [4].
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The paper is organized as follows: concepts and facts about infinitely near points
and their connection with sandwiched singularities are reviewed in Section 2. Section
3 deals with the existence of global equations for curves on X. The main result is
Theorem 3.1, which describes the Picard group of X. Then, we provide different
criteria to check whether a given curve on X is a Cartier divisor or not. In addition,
the divisor class group of any sandwiched singularity is described in Corollary 3.8.
Section 4 is devoted to the technical preparation for Section 5: it introduces a variation
of Enriques’s unloading procedure. Then, in the last section of the paper and given
a curve C on X, this procedure gives rise to a weighted cluster RC from which we
are able to check the local principality of C (Theorem 5.3) and obtain a formula
for the minimal number of generators of the ideal of C near the singularities of X
(Proposition 5.6). Previously, in Proposition 5.2, the sheaf of ideals of any curve C
on X is described in terms of the base points of the ideal I blown up to obtain X
and the projection of C on S. A method to determine a minimal set of generators of
these ideals is also given in this section.

2. Preliminaries and Notation

Throughout this work the base field is the field C of complex numbers. A curve
will be an effective Weil divisor on a surface. A standard reference for some of the
material treated here is the book by Casas-Alvero [4] and the reader is referred to
it for definitions and basic facts concerning the theory of clusters of infinitely near
points. Let (R,m) be a regular local two-dimensional C-algebra. Write S = Spec(R)
and NO for the set of points infinitely near or equal to O. A cluster of points of
S with origin O is a finite subset K of NO such that for any p ∈ K, K contains
all points preceding p. By assigning integral multiplicities ν = {νp} to the points
of K, we get a weighted cluster K = (K, ν), with the multiplicities ν called the virtual
multiplicities of K. We write p→ q if p is proximate to q. Once an admissible order
has been fixed on K, we can take K as a set of indices (see §4.3 of [4]). The proximity
relations between the points of K are then codified by means of the proximity matrix
PK introduced in [7]. This matrix is a K ×K square matrix defined by taking the
entry in the p-th row and q-th column as 1 if p = q;

−1 if p is proximate to q;
0 otherwise.

(2.1)

The quantity
ρKp = νp −

∑
q→p

νq

is called the excess of K at p. The cluster K is consistent if it has no negative excesses.
Consistent clusters are characterized as those clusters whose virtual multiplicities are
realized effectively by some curve on S. If K is consistent, we say that p is a dicritical
point of K if ρKp > 0 and we write K+ and K0 for the set of dicritical and non-dicritical
points of K, respectively.

Let I denote the semigroup of complete m-primary ideals in R. If K is a weighted
cluster, the equations of all the curves going through it define an ideal HK ∈ I (see [4]
8.3). Any ideal J ∈ I has a cluster of base points associated to it, denoted by BP (J),
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which consists of the points shared by, and the multiplicities of, the curves defined by
generic elements of J . The maps J 7→ BP (J) and K 7→ HK are reciprocal bijections
between I and the set of consistent clusters with no points of virtual multiplicity zero
(see [4] 8.4.11 for details). If p ∈ NO, we denote by Ip the (simple) ideal generated
by the equations of the branches going through p and by K(p) the weighted cluster
corresponding to it under the above bijection. If K = (K, ν) is consistent, the excess
of K at p equals the power of Ip in the Zariski factorization of I. Thus K can be
written in a unique way as

K =
∑
p

ρKp K(p) (see 8.4.5 of [4]).

Otherwise, if K is not consistent, we have a decomposition of K as

K = K+ −K−(2.2)

where K+ =
∑
p ρ

+
p K(p) and K− =

∑
p ρ

−
p K(p) are consistent clusters (α+ and α−

being the positive and negative parts of α: α = α+ − α−). We call (2.2) the excess
decomposition of K.

If ξ : f = 0 is a curve on S and eu(ξ) is the multiplicity of ξ at u, we have the
proximity equality :

ep(ξ) =
∑
q→p

eq(ξ) for every p ∈ NO.(2.3)

If πK : SK −→ S is the composition of the blowing-ups of all the points in some
cluster K with an admissible order, write {Ep}p∈K for the irreducible components of
the exceptional divisor of πK and

A = −P tKPK(2.4)

for the associated intersection matrix of {Ep}p∈K (4.5.5 of [4]). For any p ∈ K,
denote by vp(ξ) the value of f relative to the divisorial valuation associated with
Ep. If v = (vp)p∈K and e = (ep)p∈K are the vectors of values and multiplicities,
respectively, we have

v(ξ) = P−1
K e(ξ).(2.5)

We also write vp(I) = minf∈I{vp(f)} and Ep =
∑
q∈K vq(Ip)Eq. We denote by 1p

the K-vector having all its entries equal to 0 but the corresponding to p which is 1.
Use | · | for the intersection number on SK and [ , ]O for intersection multiplicity at
O. Write ξ̃K for the strict transform of ξ on SK . We have the projection formula for
πK : |(πK)∗(ξ) ·D|SK

= [ξ, (πK)∗(D)]O for any curve D on SK .

Sandwiched singularities. Take, once and for all, a complete m-primary ideal I in
(R,m) and write K = (K, ν) for the cluster of base points of I, K = BP (I). Write
π : X = BlI(S) −→ S for the blowing-up of I, that is, X = Proj(BIR) where

BIR = R⊕ I ⊕ I2 ⊕ . . .
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The singularities of X are sandwiched and we have a commutative diagram

SK
ϕ //

πK
!!B

BB
BB

BB
B X

π

��
S

where the morphism ϕ, given by the universal property of the blowing-up, is the
minimal resolution of the singularities of X (Remark 1.4 of [17]). Recall that there
is a bijection between the set of simple ideals {Ip}p∈K+ in the (Zariski) factorization
of I and the set of irreducible components of π−1(O) ([17] Corollary 1.5; see also [14]
Proposition 21.3). We write {Lp}p∈K+ for the set of these components. For p ∈ K+,
write

Lp =
∑
q∈K+

vq(Ip)Lq.(2.6)

For every singularity Q ∈ X, write TQ = {p ∈ K | ϕ∗(Ep) = Q} so that {Ep}p∈TQ
is

the set of the exceptional components of SK contracting to Q.
Every curve C on X can be written in a unique way as C = η̃ + L, where η is

a curve on S and L =
∑
p∈K+

npLp (with np ∈ Z≥0) is the exceptional part of C.
Notice that η is just the projection of C by π and that η is empty if and only if C has
exceptional support. It is possible to associate to C a Q-Cartier exceptional divisor
DC on SK , defined by the condition

|DC · Ep|SK
= −|C̃SK · Ep|SK

∀ p ∈ K(2.7)

where C̃SK is the strict transform of C on SK (see II (b) of [15]). On the other hand,
if D is a divisor on SK such that |D · Ep| = 0 for every p ∈ K0, then D is the total
transform of some Cartier divisor on X (see the proof of Theorem 4 of [2]). Because
of this, we have

Lemma 2.1. C is Cartier if and only if DC is a Weil divisor on SK .

Proof. Since SK is a non-singular surface, if DC is a Weil divisor on SK , then it
is also a Cartier divisor, so is C̃SK + DC . The discussion above together with (2.7)
shows that C̃SK + DC is the total transform of some Cartier divisor on X. This
Cartier divisor is necessarily C. The converse is immediate. �

If ξ is a curve on S, write ξ̃ and ξ∗ for the strict and total transforms of ξ on X,
so that ξ∗ = ξ̃ + Lξ where Lξ =

∑
p∈K+

vp(ξ)Lp. Analogously, if J ∈ I, we write
LJ =

∑
q∈K+

vq(J)Lq. If ζ is another curve on S sharing no branches with ξ, from
the projection formula for πK and (2.7), it is straightforward to show the projection
formula for π: [ξ, ζ]O = |ξ∗ · ζ̃|X and

|ξ∗ · Lp|X = 0 for every p ∈ K+.(2.8)

Throughout this paper, we adopt the following convention: curves on S are repre-
sented by greek letters, while curves on X or SK are represented by capital latin
letters.
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3. Principality of curves on sandwiched surfaces

First, we study the Picard group of X and provide a criterium to check whether the
strict transform on X of a curve on S is a Cartier divisor. Our first result states that
the Picard group of X is the free abelian group generated by the divisors {Lp}p∈K+

introduced in (2.6).

Theorem 3.1. Pic(X) '
⊕

p∈K+
ZLp.

In order to prove Theorem 3.1, we need the following lemma.

Lemma 3.2. (a) The set {Ep}p∈K is a basis of the Q-vector space generated by
{Ep}p∈K . The matrix of the change of basis from {Ep}p∈K to {Ep}p∈K is
−A.

(b) The set {Lu}u∈K+ is a basis of the Q-vector space generated by {Lu}u∈K+ .

Proof. (a) Notice that the matrix A = −P tKPK is negative definite since PK is
unimodular. By applying (2.7) to a generic curve through K(p), we obtain that
A(vq(Ip))q∈K = −1p. Thus AEp = −Ep and the claim follows.

(b) It is enough to show that the {Lu}u∈K+ are linearly independent. Assume that
there exist rational numbers {au}u∈K+ such that

∑
u∈K+

auLu = 0. By multiplying
by an integer, we can assume that au ∈ Z for every u ∈ K+. Let γu be a generic curve
going through K(u) and missing all points after u in K, and write∑

u∈K+

auγu = ζ1 − ζ2

where ζ1 =
∑
u a

+
u γu and ζ2 =

∑
u a

−
u γu. Then, by assumption, we have Lζ1 =∑

u a
+
uLu and Lζ2 =

∑
u a

−
uLu are equal. By taking total transforms on SK , we

reach a contradiction with (a). �

Proof of Theorem 3.1. It is enough to show that any effective Cartier divisor C
is linearly equivalent to some divisor in

⊕
p∈K+

ZLp. Let C = η̃ + L be a curve on
X. Then, we have

η∗ = C − (Lη − L)(3.1)

so it is clear that C is linearly equivalent to Lη − L. According to Lemma 2.1, we
have that Lη − L is Cartier if and only if its total transform on SK

ϕ∗(Lη − L) =
∑
q∈K

bqEq for some bq ∈ Q(3.2)

is a Weil divisor, that is, bq ∈ Z for every q ∈ K. On the other hand, by (b) of Lemma
3.2, we can write Lη − L =

∑
u∈K+

auLu, for some rational numbers {au}. Now,
ϕ∗(Lu) = Eu and so,

ϕ∗(Lη − L) =
∑
u∈K+

auEu

is the expression of ϕ∗(Lη−L) in the basis {Ep}p∈K . By (a) of Lemma 3.2, (au)u∈K =
−A(bu)u∈K . Since the matrix A is unimodular, we infer that C is Cartier if and only
if all the au are integers. �
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The proof of Theorem 3.1 has given further information which is worth keeping for
future reference.

Corollary 3.3. The curve C = η̃ + L is a Cartier divisor on X if and only if
Lη − L ∈

⊕
u∈K+

ZLu. In this case, if Lη − L =
∑
p∈K+

apLp, then ap = |C · Lp|X
for every p ∈ K+.

Proof. The first claim follows trivially from (3.1). For the second, let γp be a generic
curve going through K(p). By using the projection formula (2.8) applied to γp, it is
immediate to see that

|Lp · Lq|X = −δp,q for p, q ∈ K+(3.3)

where δp,q is the Kronecker delta. Now, if C is Cartier and Lη − L =
∑
p apLp, the

projection formula (2.8) and (3.3) say that aq = |C · Lq|X . �

Corollary 3.4. Let η be a curve on S. Then, η̃ is a Cartier divisor on X if and
only if there exists some curve η′ on S such that Lη′ = Lη and η̃′ goes through no
singularity of X. Moreover, if η̃ goes through some singularity of X, say Q, then
vu(η) > vu(η′) for all u ∈ TQ.

To prove Corollary 3.4, we need the following lemma, which is stated separately
for future reference. For each p ∈ K, we write θηp =

∑
q→p,q/∈K eq(η).

Lemma 3.5. If ξ is a curve on S, then |ξ̃K · Ep|SK
= θξp. In particular, if ξ is

a generic curve going through some cluster T = (K, τ), then ξ̃ goes through some
singularity Q ∈ X if and only if there exists some p ∈ TQ such that ρTp > 0.

Proof. By the projection formula applied to πK , we have

|ξ̃K · Ep|SK
= −1tpAv(ξ),(3.4)

where 1tp is the transpose of the vector 1p defined in page 3. By (2.4), we know that
A = −P tKPK . From (2.5), we infer that |ξ̃K ·Ep|SK

= ep(ξ)−
∑
q∈K,q→p eq(ξ) and we

apply (2.3). The second claim follows easily from the fact that under the assumption
above, we have θξp = ρTp for every p ∈ K. �

Proof of Corollary 3.4. From Corollary 3.3, we know that η̃ is Cartier if and
only if Lη =

∑
p∈K+

apLp, where every ap = |η̃ ·Lp|X is a non-negative integer. In this
case, let η′ be a generic curve going through the cluster

∑
p∈K+

apK(p). Then, we have

Lη′ = Lη and by Lemma 3.5, it is clear that η̃′ does not go through any singularity
of X. The converse follows easily from Corollary 3.3, too. Now, let η : g = 0 and
η′ : g′ = 0 be equations for η and η′, respectively. Since Lη = Lη′ , it follows that η̃ is
defined locally near Q by g/g′ = 0. Since η̃ goes through Q, we have vu(g/g′) > 0 for
every u ∈ TQ. The claim follows. �
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Divisor class group of sandwiched singularities. Our next goal is to determine
the divisor class group (Weil divisors modulo linear equivalence) of an open affine set
containing the singularities of X. From this, we will obtain the divisor class group of
any sandwiched singularity. To this aim, let a be a generic element of I. Then, we
can write

a =
∏
p∈K+

a1
p . . . a

ρKp
p

where each aip is a generic element of Ip. Write Va for the open affine set of X defined
by a 6= 0, that is, if I = (f0, . . . , fn), then

Va = SpecR[f0/a, . . . , fn/a].

Observe that from the genericity of a, it follows that Va contains all the singularities
of X. Write L′p for the restriction of Lp to Va and L′ =

⊕
p∈K+

ZL′p. Then we have

Proposition 3.6. Cl(Va) ' L′/
⊕

p∈K+
ZL′p.

Proof. Write L =
⊕

p∈K+
ZLp and U = X \π−1(O). Then, the restriction Cl(X) →

Cl(U) induces an exact sequence

0 → L → Cl(X) → Cl(U) → 0

the injection on the left as there are no principal exceptional divisors on X. By
restriction to Va, this induces another exact sequence

L′
ψ→ Cl(Va) → Cl(U ′) → 0,

where U ′ = Va \ π−1(O). On the other hand, the birational morphism π induces an
isomorphism U ' S \ {O} and from this, we have Cl(U) = 0 as it equals the Picard
group of the regular local ring R (in particular, Cl(X) ' L). Since U ′ ⊂ U , we infer
that Cl(U ′) = 0. Now, the kernel of ψ is just

⊕
p∈K+

ZL′p, where L′p is the restriction
of Lp to Va. Indeed, since Va contains the singularities of X, if

∑
p bpL

′
p is principal

on Va, then
∑
p bpLp must be locally principal on X and by virtue of Theorem 3.1,

we see that Kerψ ⊂
⊕

p∈K+
ZL′p. Of course, L′p is principal on Va, defined by the

equation ap = 0. The claim follows. �

Example 3.7. (cf. Example 6.5.2 of [11]) Take R = C{x, y} and I = (x, y2) ∈ I.
Let X = BlI(S) and take Vx the open affine subset of X defined by x 6= 0. Then,
Vx is just an affine quadric cone defined by the equation zx − y2 = 0. The cluster
K = BP (I) has two points: p1 = O and p2 in the direction of x = 0 over the first
neighbourhood of p1. The Enriques diagram of K is shown in Figure 1 (Enriques
diagrams are explained in [8] Book IV Chapter 1, and also in [4] §3.9). We have
Lp2 = 2Lp2 and by virtue of Proposition 3.6, Cl(Vx) ' Z/2Z and it is generated by
the germ of the exceptional divisor L′p2 . Finally notice that L′p2 is just a ruling on Vx.

From an algebraic point of view, a sandwiched singularity O dominating R is just
a normal birational extension of the regular ring R (see [12]). From the above results,
the divisor class group of any sandwiched singularity can be determined. Let I ∈ I
be an ideal such that O lies on the surface X obtained by blowing up I. By Corollary
1.14 of [17], the ideal I can be chosen so that O is the only singularity on X (i.e.
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p1 = O

p2

x = O

y = O

K = BP (I) π

x
x

x

y

y

z

L′
p2

Vx : zx− y2 = 0

S

Figure 1. Birational projection of the affine quadric cone on a
non-singular surface S in Example 3.7. In the square, the Enriques
diagram of K is shown.

Example 3.10. (Divisor class group of primitive singularities) Primitive singularities
are those singularities that can be obtained by blowing-up a simple complete ideal
(Definition I.3.1 of [17]). Let Ip be a simple ideal where p is a free point and let X =
BlIp

(S) be the surface obtained by blowing-up Ip. Write Q for the only singularity
in X . Then, Corollary 3.8 gives that

Cl(OX,Q) ≃ Z/K(p)2Z,

where K(p)2 is the intersection multiplicity at O of two curves defined by generic
elements of Ip.

4. Unloading relative to a curve

Given a curve η : f = 0 on S, this section is devoted to introducing a variation of the
unloading procedure for clusters which takes into account the points and multiplicities
of η (cf. 4.6 of [4]). This process will be used in the next section to check whether a
given curve on the sandwiched surface X is principal near the singularities.

Let P be a weighted cluster whose points are contained in K, so that by adding
points with virtual multiplicity zero (if necessary) we can write P = (K, ̺). Write
v(P) for the vector of virtual values of P , that is (see (2.5))

v(P) = P−1
K ̺.

Notice that P is consistent if and only if v(P) = v(HP). We associate to P a sheaf
of ideals on X by taking

HP = {g ∈ BIR | v(g) ≥ v(P)}.

Figure 1. Birational projection of the affine quadric cone on a
non-singular surface S in Example 3.7. In the square, the Enriques
diagram of K is shown.

there is only one singular point Q ∈ X and O ' OX,Q and the strict transforms
of the exceptional components {Lp}p∈K+ on the minimal resolution of (X,Q) have
self-intersection −1). As above, write K = BP (I) and K+ for the dicritical points of
K. With the notation already introduced, Proposition 3.6 implies that

Corollary 3.8. Cl(OX,Q) ' L′/
⊕

p∈K+
ZL′p.

Remark 3.9. Recall that the only normal birational extensions of R being factorial are
those which are already regular ([12]; Theorems 20.1 and 25.1 of [14]). In particular,
we have

L′ =
⊕
p∈K+

ZL′p ⇔ Cl(OX,Q) = 0 ⇔ OX,Q is regular.

Example 3.10. (Divisor class group of primitive singularities) Primitive singularities
are those singularities that can be obtained by blowing up a simple complete ideal
(Definition I.3.1 of [17]). Let Ip be a simple ideal where p is a free point and let X =
BlIp

(S) be the surface obtained by blowing-up Ip. Write Q for the only singularity
in X. Then, Corollary 3.8 gives that

Cl(OX,Q) ' Z/K(p)2Z,

where K(p)2 is the intersection multiplicity at O of two curves defined by generic
elements of Ip.
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4. Unloading relative to a curve

Given a curve η : f = 0 on S, this section is devoted to introducing a variation of the
unloading procedure for clusters which takes into account the points and multiplicities
of η (cf. 4.6 of [4]). This process will be used in the next section to check whether a
given curve on the sandwiched surface X is principal near the singularities.

Let P be a weighted cluster whose points are contained in K, so that by adding
points with virtual multiplicity zero (if necessary) we can write P = (K, %). Write
v(P) for the vector of virtual values of P, that is (see (2.5))

v(P) = P−1
K %.

Notice that P is consistent if and only if v(P) = v(HP). We associate to P a sheaf
of ideals on X by taking

HP = {g ∈ BIR | v(g) ≥ v(P)}.

It is worth noting that if the base points of some ideal J ∈ I are contained in K, then

JOX = {g ∈ BIR | v(g) ≥ v(J)} = HBP (J).(4.1)

Next, we introduce two variations of the notion of consistency of clusters:

1. A cluster P = (K, %) is K0-consistent if ρPq ≥ 0 for every point q ∈ K0. We
have

Lemma 4.1. If P is K0-consistent, then HP = HP+OX(LP−).

Proof. Take the excess decomposition of P as in (2.2): P = P+ − P−. Since both
P+ and P− are consistent, we have v(P) = v(HP+)− v(HP−). Then,

HPOX(−LP−) = {g ∈ BIR | v(g) ≥ v(P) + v(HP−)} =
= {g ∈ BIR | v(g) ≥ v(HP+)} = HP+OX

where the last equality follows from (4.1). From this, the claim follows. �

2. We say that T = (K, τ) is (K0, η)-consistent if ρTp ≥ θηp for every point p ∈ K0.

In what follows, we describe what we call an η-unloading step: it applies to any
(K0, η)-nonconsistent cluster T to give a (K0, η)-consistent cluster T̃ with (f)∩HT =
(f) ∩HeT .

η-unloading. Assume that there is some point p ∈ K0 such that ρTp < θηp . Define
n as the least integer greater than or equal to (θηp − ρTp )/(mp + 1), where mp is the
number of points in K proximate to p. In this case, η-unloading the multiplicity on
p consists of defining a new cluster T ′ = (K, τ ′) by the rules

τ ′p = τp + n

τ ′q = τq − n if q → p

τ ′q = τq otherwise.

Notice that usual unloading is recovered by taking η equal to the empty germ.
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Figure 2. Enriques diagrams illustrating the η-unloading proce-
dure. White dots represent points of the curve η which are not in
K. (a) The Enriques diagrams of T and T ′ in Example 4.2. (b)
The Enriques diagrams of K, T and the cluster obtained from T by
performing η-unloading on K0 in Example 4.5.

Example 4.2. Take η : y2 − x3 = 0 in Example 3.7. Write T = (K, τ) with
τp1 = τp2 = 1. Figure 2(a) shows the Enriques diagram of T . The cluster T fails to
be (K0, η)-consistent because the excess at p1 is −2. By applying η-unloading on p1

we obtain the cluster T ′, which is (K0, η)-consistent.

Observe that in general, HT ′ ( HT . However, we have

Lemma 4.3. (f) ∩HT = (f) ∩HT ′ .

Proof. Write v and v′ = v + n1p for the vector of virtual values of T and T ′,
respectively. By definition, we have HT = {g ∈ BIR | v(g) ≥ v} and HT ′ = {g ∈
BIR | v(g) ≥ v′}. Clearly, HT ′ ⊂ HT and (f) ∩HT ′ ⊂ (f) ∩HT . To prove the other
inclusion, let g ∈ (f) ∩HT . Then, g = fh for some h ∈ BIR and we must show that
g ∈ HT ′ , i.e. that v(g) ≥ v′. Write A = (αp,q)p,q∈K for the intersection matrix of
{Ep}p∈K . Then, from (2.4) and (2.5) it is straightforward to show that∑

q∈K
vq(f)αp,q = −θηp for every p ∈ K.(4.2)

On the other hand, from the equality ϕ∗(h) = h̃K +
∑
q∈K vq(h)Eq and the fact that

|ϕ∗(h) · Ep|SK
= 0, we have∑

q∈K
vq(h)αp,q = |(ϕ∗(h)− h̃K) · Ep|SK

≤ 0.(4.3)

From (4.2) and (4.3), it follows that
∑
q∈K vq(g)αp,q ≤ −θηp . Since g ∈ HT , we have∑

q 6=p vq(g)αp,q ≥
∑
q 6=p vqαp,q. From these inequalities, we obtain

(vp(g)− vp)αp,p ≤ −θηp −
∑
q∈K

vqαp,q = −θηp + ρTp .

Since αp,p = −mp − 1, it follows that vp(g) − vp ≥ (θηp − ρTp )/(mp + 1). Now, the
definition of n gives that vp(g)− vp ≥ n and hence, vp(g) ≥ vp + n = v′p. �

The following proposition shows that after a finite sequence of η-unloading steps
as above a (K0, η)-consistent cluster is obtained. Notice that this happens no matter
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which point of K0 is chosen to unload at each step. Hence, the procedure does not
need a special strategy.

Proposition 4.4. Assume that T is not (K0, η)-consistent. Put T0 = T and as long
as Ti−1 is not (K0, η)-consistent, define Ti from Ti−1 by η-unloading on a suitable point
of K0. Then, there is some m such that Tm is (K0, η)-consistent and (f) ∩ HT =
(f) ∩HTm

.

Proof. Write vi for the system of virtual values of Ti. Then, we know that vi > vi−1.
On the other hand, take any g ∈ (f) ∩ HT . By using induction and Lemma 4.3, we
have g ∈ (f) ∩ HTi

for any i, so v(g) ≥ vi. Therefore, the increasing sequence of
values vi must be finite as they are bounded above by v(g). Since (K, η)-unloading
can be applied as long as there is some point q ∈ K0 with ρTq < θηq , this shows that
after a finite number of steps, we reach some cluster Tm such that ρTq ≥ θηq for all
q ∈ K0. �

Example 4.5. Take a cluster K with proximities and multiplicities as in the Enriques
diagram on the left of Figure 2(b). The dicritical points of K are p2, p4 and p8. Take a
curve η composed of three branches: two generic branches through p3 and one generic
branch p7. Define T = (K, τ) with τp = 0 for every p ∈ K. The cluster obtained by
performing η-unloading on T is shown on the right of Figure 2(b).

5. Local principality of curves on sandwiched singularities

Let C be an effective Weil divisor on X. Write as above C = η̃+L where η : f = 0
is a curve on S (which may be empty) and L =

∑
p∈K+

npLp, where {np}p∈K+ are
non-negative integers. From the procedure introduced in the preceding section, we
will obtain a K0-consistent cluster RC and a curve ξC on S. While the excesses of
RC will provide information about the local principality of C on X (Theorem 5.3),
the multiplicities of ξ̃C will give the minimal number of generators of the ideal of C
at the singular points of X (Proposition 5.6).

To this aim, we begin by defining an auxiliary cluster TC : write n = (np)p∈K with
np = 0 if p /∈ K+ and take

TC = (K, τ) with τ = PKn(5.1)

i.e., the multiplicities of TC are taken so that v(TC) = n. By virtue of Proposition
4.4, after finitely many η-unloading steps on TC , we reach a cluster T̃C = (K, τ̃) such
that:

1. ρfTC
p ≥ θηp for every p ∈ K0

2. (f) ∩HTC
= (f) ∩HfTC

.
Moreover, since no unloading is performed on K+, we also have

3. vp(T̃C) = np for each p ∈ K+.
Now, define the cluster RC by taking

RC = (K, r) with r = τ̃ − e(η).

Lemma 5.1. (a) RC is K0-consistent;
(b) (f) ∩HTC

= fHRC
.
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Proof. (a) If p ∈ K0, (2.3) and the definition of T̃C imply that ρRC
p = ρ

fTC
p − θηp ≥ 0.

(b) Assume that g = fu ∈ HTC
. We know that (f) ∩ HTC

= (f) ∩ HfTC
and so,

g ∈ HfTC
. Thus we have v(g) ≥ v(T̃C) = v(η) + v(RC). Since v(g) = v(η) + v(u), it

follows that v(u) ≥ v(RC) and u ∈ HRC
. For the converse, assume that g = fu with

u ∈ HRC
. Then, v(u) ≥ v(RC) and v(g) ≥ v(T̃C). Now, g ∈ (f) ∩HfTC

= (f) ∩HTC
.

�

Proposition 5.2. The sheaf fHRC
is the sheaf of ideals of C.

Proof. According to (b) of Lemma 5.1, we have fHRC
= (f)∩HfTC

. Now, the sheaf
of ideals of the strict transform of C on X is (f) ∩ BIR =

⊕
n≥0 (f) ∩ In. Hence,

the sheaf (f) ∩ HTC
is locally given by the sections g containing η̃ and such that

vu(g) ≥ nu for u ∈ K+. This is just the sheaf of ideals of C. �

Notice that although RC may not be consistent, by virtue of (a) in Lemma 5.1 the
negative excesses (if any) appear only at points of K+. Thus, we can write (see (2.2))

RC = R+
C −R

−
C

where both R+
C and R−C are consistent clusters and the only dicritical points of R−C

are in K+. We now show that from the excesses of RC it is possible to deduce whether
the curve C is locally principal near any singularity Q ∈ X.

Theorem 5.3. Let Q be a singularity of X. The following are equivalent:
1. C is principal near Q;
2. the excess of RC at any point of TQ is zero;
3. if ξC is a generic curve going through R+

C , then ξ̃C does not go through Q.

Proof. Let ξC and ζC be generic curves going through R+
C and R−C , respectively.

First of all, we claim that C + ξ̃C is a Cartier divisor on X. To show this, recall
that np = vp(T̃C) = vp(RC) + vp(η). Write LRC

=
∑
q∈K+

vq(RC)Lq, so that
L = Lη + LRC

. Now, we can write

C = η̃ + Lη + LRC
= (η∗ + ξ∗C − ζ∗C) + (ζ̃C − ξ̃C),

and locally near Q, we have the following equality of germs

C + ξ̃C = η∗ + ξ∗C − ζ∗C(5.2)

because ζ̃C goes through no singularity of X (see 3.5). This proves the claim. Now,
we prove the equivalence between 1. and 3. From (5.2), we know that C is principal
near Q if and only if ξ̃C is. This shows that if ξ̃C goes not through Q, then C is
principal near Q. For the converse, assume that C is locally principal near Q and
that the germ of ξ̃C at Q is not empty. The idea is to construct a new curve ξ′C going
through R+

C such that its strict transform on X does not go through Q. From this, we
will obtain a contradiction. Let wh = 0 be an equation for ξC on S, where γ : h = 0
is composed of the branches of ξC whose strict transforms on X go through Q and
w = 0 is composed of the remaining branches (if any). By construction, the germ of
the strict transform of γ at Q equals the germ of ξ̃C , and so, γ̃ is a Cartier divisor.
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By Corollary 3.4, there is a curve γ′ : h′ = 0 on S whose strict transform on X goes
through no singularity of X and vu(h′) = vu(h) if u ∈ K+ while

vu(h′) < vu(h) if u ∈ TQ.(5.3)

Take the curve
ξ′C : wh′ = 0.

Then Lξ′C = LξC
and η∗ + (ξ′C)∗ − LζC

is a Cartier divisor on X containing C.
According to Proposition 5.2, it follows that if g = 0 is an equation for ζC , then
f(wh′/g) ∈ fHRC

, so wh′/g ∈ HRC
. From this, wh′ ∈ HR+

C
and vu(wh′) ≥ vu(HR+

C
).

On the other hand, if u ∈ TQ, an easy computation shows that vu(wh′) = vu(HR+
C
)−

vu(h) + vu(h′) and so, vu(h) ≤ vu(h′) which contradicts (5.3).
Now, to prove the equivalence between 2. and 3., notice that by virtue of Lemma

3.5, we have that ξ̃C goes through Q if and only if R+
C has positive excess at some

point of TQ. The claim follows from the fact that the excesses of RC and R+
C are the

same at the points of TQ. �

In practice, the easiest way of checking whether a curve C is principal near some
singularity Q of X is to use the Enriques diagrams to η-unload the multiplicities of the
cluster TC (see Figure 2). Then, substract the multiplicities of η from T̃C to obtain
RC . By virtue of Theorem 5.3, C is locally principal near Q if and only if the excess
of RC at every point of TQ is zero. We illustrate this with two examples.

Example 5.4. In Example 3.7, the strict transform of η : y2 − x3 = 0 on X goes
through the singularity and it is locally principal. Indeed, if we take C = η̃, then R+

C

is empty and R−C = K.

Example 5.5. Take I ∈ I with cluster of base points K as in Example 4.5. The
surface X = BlI(S) has three exceptional components: Lp2 , Lp4 and Lp8 , and two
singularities: Q1 with TQ1 = {p3} and Q2 with TQ2 = {p1, p5, p6, p7}. Define C1 = η̃.
The Enriques diagram on the center and the right of Figure 2(b) shows the multiplic-
ities of TC1 and T̃C2 , respectively. The Enriques diagrams of RC1 is shown on Figure
3. We see that the excess of RC1 at p3 is zero, while the excesses at p1, p5, p6, p4

are 2, 0, 0, 1, respectively. It follows that C1 is locally principal at Q1, but not at
Q2 (see Theorem 5.3). Now, take the curve C2 = η̃ + 2Lp2 + Lp8 . In this case, the
multiplicities for TC2 are taken as τp2 = 2, τp4 = −2, τp8 = 1 and τp = 0 if p ∈ K0.
After performing η-unloading on the points of K0 and substracting the multiplicities
of η, we obtain RC2 as on the right of Figure 3. Since there are no dicritical points
of RC2 on TQ1 nor TQ2 , the curve C2 is a Cartier divisor.

Local systems of generators for the ideals of curves. As a consequence of the
results proved above, we determine the minimal number of generators of the ideal of
a curve C in the local ring of any singularity of X. Keeping the notations as above,
we have seen in Lemma 4.1 that

HRC
= HR+

C
OX(LR−

C
).
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results proved above, we determine the minimal number of generators of the ideal of
a curve C in the local ring of any singularity of X . Keeping the notations as above,
we have seen in Lemma 4.1 that

HRC
= HR+

C
OX(LR−

C
).

Proposition 5.6. The germ of C at Q can be defined by 1+multQ(ξ̃C) local equations.

Moreover, this is the minimal number of generators of the ideal of C at Q.

Proof. First of all, write IQ = Γ(X,MQIOX) ∈ I, where MQ is the sheaf of ideals
of Q. By Theorem 3.5 of [9], we know IQ has codimension one in I. We have that
IOX = OX(−LI) and by Theorem 3.5 of [9], IQOX = MQOX(−LI). From this
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Proposition 5.6. The germ of C at Q can be defined by 1+multQ(ξ̃C) local equations.
Moreover, this is the minimal number of generators of the ideal of C at Q.

Proof. First of all, write IQ = Γ(X,MQIOX) ∈ I, where MQ is the sheaf of ideals
of Q. By Theorem 3.5 of [9], we know IQ has codimension one in I. We have that
IOX = OX(−LI) and by Theorem 3.5 of [9], IQOX = MQOX(−LI). From this
and Proposition 5.2, it follows that if JC denotes the sheaf of ideals of C on X, then
JC = (fI)HRC

(LI) and JCMQ = (fIQ)HRC
(LI). Now, it is straightforward to see

that the minimal number of generators of the stalk of JC at Q is given by

dimC

(
JC,Q

MQJC,Q

)
= dimC

(
I

IQ

)
+ [HR+

C
, IQ]O − [HR+

C
, I]O =

= 1 + [HR+
C
, IQ]O − [HR+

C
, I]O

where [J1, J2]O means the intersection multiplicity of curves defined by generic ele-
ments of J1 and J2. By applying the projection formula for π, we have [HR+

C
, IQ]O =

|ξ̃C · (ζ̃IQ
+ LI)|X and similarly, [HR+

C
, I]O = |ξ̃C · (ζ̃I + LI)|X , where ζIQ

and ζI are
curves defined by generic elements of IQ and I, respectively. By the genericity of ζI , we
have |ξ̃C · ζ̃I |X = 0. The claim follows from the fact that ζ̃IQ

is a generic hypersurface
section through (X,Q) so that [HR+

C
, IQ]O − [HR+

C
, I]O = |ξ̃C · ζ̃IQ

|X = multQ(ξ̃C).
�

Observe that from Proposition 5.6, we recover the fact, already proved earlier, that
C is locally principal near Q if and only if ξ̃C goes not through Q. A minimal system
of generators for the ideal of C near Q can now be easily determined by using the
procedure suggested in [3] in the following way. Take a sequence of adjacent ideals
(i.e. any two consecutive ideals have codimension one) as follows

J0 = IHR+
C

) J1 ) . . . ) Jm = IQHR+
C
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where
m = 1 + [IQ,HR+

C
]O − [I,HR+

C
]O.

Pick for i = 1, . . . ,m, an element gi in Ji and not in Ji+1. Then, the classes of
g0, g1, . . . , gm−1 are a minimal system of generators of IHR+

C
/IQHR+

C
. Now, in the

proof of Proposition 5.6, we have seen that JC = (fI)HRC
(LI). To obtain a minimal

system of generators of JC locally at Q it is enough to consider(
fg0
at

,
fg1
at

, . . . ,
fgm−1

at

)
where a and t are generic elements of I and HR+

C
, respectively.

Example 5.7. Take η : y = 0 in Example 3.7 and keep the notation used there. The
curve C = η̃ is not locally principal near Q as the cluster RC has positive excess at
p1. We have IQ = m2 and that the classes of {x2 − xy, xy} generate IHR+/IQHR+

C
.

Notice that HR−
C

= I. Thus, we can take a = t = x as a generic element of I and also
of HR−

C
. Applying the procedure explained above, we have that {y(x − y)/x, y2/x}

is a minimal system of generators of JC near Q.
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