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A PROOF OF LENS RIGIDITY IN THE CATEGORY OF
ANALYTIC METRICS

James Vargo

Abstract. Consider a compact Riemannian manifold with boundary. If all maximally
extended geodesics intersect the boundary at both ends, then to each geodesic γ(t)

we can form the triple (γ̇(0), γ̇(T ), T ), consisting of the initial and final vectors of the
segment as well as the length between them. The collection of all such triples comprises

the lens data. In this paper, it is shown that in the category of analytic Riemannian

manifolds, the lens data uniquely determine the metric up to isometry. There are no
convexity assumptions on the boundary, and conjugate points are allowed, but with

some restriction.

1. An introduction including the result proved

Let (M, g) be a compact, Riemannian manifold with boundary ∂M , and let it be
non-trapping. That means all geodesics, when maximally extended, terminate at the
boundary at both their ends. Let SM denote its sphere bundle. Then for any vector
v ∈ ∂SM , the geodesic γv originating at v eventually leaves the manifold after some
distance T . Let `(v) denote the length of the geodesic, and let Σ(v) = γ̇v(T ) denote
its terminal vector.

Σ : ∂SM → ∂SM

is called the scattering map. Together, Σ and ` comprise the lens data of (M, g).
The lens rigidity conjecture states that one may recover a Riemannian manifold

up to isometry from its lens data (Σ, `). To be more precise, suppose we have two
non-trapping Riemannian manifolds (Mi, gi), i = 1, 2 which share the same boundary.
That is, ∂M1 = ∂M2 (henceforth both will be denoted ∂M). Then for any point
x ∈ ∂M , there is a natural correspondence

Λx : ∂SxM1 → ∂SxM2.

Indeed, a unit vector at the boundary of a Riemannian manifold is uniquely character-
ized by its inward normal component and the direction of its tangential projection. So
we shall say that v2 = Λ(v1) if these two quantities agree for v1 and v2, respectively.

Definition 1. Let (Σi, `i) denote the lens data for the manifold (Mi, gi) : i = 1, 2.
We shall say that the two manifolds have the same lens data if Λ ◦ Σ1 = Σ2 ◦ Λ and
`1 = `2 ◦ Λ.

Conjecture 1. If (M1, g1) and (M2, g2) are non-trapping with the same lens data,
then the two manifolds are related by an isometry that fixes the points of the boundary
∂M . That is, there exists a diffeomorphism ϕ : M1 → M2 satisfying ϕ|∂M = id and
ϕ∗g2 = g1.
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The lens rigidity problem is a generalization of the boundary rigidity problem. In
that problem, the initial data is taken to be the boundary distance function

ρg : ∂M × ∂M → R.

ρg(x, y) is equal to the length of the shortest curve joining x to y. Of course, metrics
related by an isometry fixing the boundary will also yield the same boundary distance
function. The boundary rigidity problem is whether this is the only obstruction to
unique recovery of g from ρg.

If a metric g has the property that the only other metrics with the same boundary
distance function are isometric to g, then g is called boundary rigid. There are many
examples of metrics that are not boundary rigid. Indeed, ρg only records the lengths
of the shortest paths, and it is not hard to construct metrics for which the shortest
paths do not enter certain open subsets of the manifold. To circumvent this problem,
the assumption of simplicity is usually made on the metric.

∂M

v

Σ(v)
"(v)

Figure 1. The Lens Data

Definition 2. The Riemannian manifold (M, g) is simple, if ∂M is strictly convex
with respect to g, and for any x ∈M , the exponential map expx : exp−1

x (M) →M is
a diffeomorphism.

A simple manifold has the property of being geodesically convex. That is, every
pair of points is connected by a unique geodesic and that geodesic is length minimizing.
Topologically, a simple manifold is a ball. Michel [9] was the first to conjecture that
simple Riemannian manifolds are boundary rigid. This has been proved recently in
two dimensions [10]. It has also been proved for subdomains of Euclidean space [7],
for metrics close to the Euclidean [2], and symmetric spaces of negative curvature [1].
In [13], Stefanov and Uhlmann proved a local boundary rigidity result. If g belongs
to a certain generic set which includes real-analytic metrics, and g′ is sufficiently close
to g, then ρg = ρg′ implies that g and g′ be isometric. For other local results see [4],
[6], [8], [12]. It is shown in [11] that the lens rigidity problem is equivalent to the
boundary rigidity problem if the manifold is simple.
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If the manifold is not simple, the lens data carries more information than the
boundary distance function. Indeed, it includes the lengths of all geodesics, so in
the case that g be non-trapping, these geodesics pass through every point of the
manifold in every direction. However, if the manifold is trapping, there are examples
in which the lens data is not sufficient to determine the metric, (see [5]). There are
not many results on the lens rigidity problem, but the following are notable. If a
manifold is lens rigid a finite quotient of it is also lens rigid [3]. In [11], Stefanov
and Uhlmann generalized their local result for simple metrics to obtain a local lens
rigidity result. There are some assumptions on conjugate points and a topological
assumption. Assuming these, if g belongs to a certain generic set which includes real-
analytic metrics, and g′ is another metric with the same lens data that, a-priori, is
known to be sufficiently close to g, then g′ is isometric to g.

In this paper, the following statement is proved.

Theorem 1. Let (Mi, gi), i = 1, 2 be non-trapping analytic Riemannian manifolds
with a common, analytic boundary ∂M . Further, assume that in each connected
component of S(∂M1), there exists (x0, ξ0) such that x0 is not conjugate to any points
of ∂M that lie along the geodesic γx0,ξ0 . Then if the two manifolds have the same
lens data, there must exist an analytic diffeomorphism ϕ : M1 →M2 with ϕ|∂M = id
and ϕ∗g2 = g1.

Note the slightly asymmetric nature of the second hypothesis. This property is
used in the proof of Theorem 2 to guarantee the possibility of a certain construction
on the lens data. Since g2 has the same lens data, the same construction will work
automatically, even though, a priori, there is no reason why the condition of the
theorem should also be true for g2.

2. Constructing an isometry on a band about the boundary

Let (M, g) be a general compact Riemannian manifold with boundary. Let ν be
the field of inward unit normal vectors at the boundary ∂M , and let x0 ∈ ∂M be a
boundary point. Then there is a small neighborhood N ⊂ ∂M of x0 and a number
ε > 0 such that the mapping

expν : N × [0, ε) →M

given by (x′, xn) 7→ expx′(xnν) gives a local coordinate system. These are the bound-
ary normal coordinates. Through them, the metric has the form

ds2 = gαβdx
′αdx′β + (dxn)2,

where α, β are indices running over the tangential directions. Now let M̄ be an open
manifold slightly extending M and extend g smoothly to M̄ (extend by analytic
continuation in the case that (M, g) is analytic). By choosing a smaller ε if necessary,
we may now use our boundary normal coordinates as a coordinate system in M̄ by
allowing the coordinate xn to vary over the set (−ε, ε).

By compactness, we may choose ε uniformly over the whole boundary. We may
also select ε sufficiently small so that our boundary normal coordinates give a global
diffeomorphism

expν : ∂M × (−ε, ε) → V,

where V is a neighborhood of ∂M in M̄ .
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To show this, it is only necessary to prove the above mapping injective. Around
each point of ∂M , let N be a connected open neighborhood such that expν defined
on N × (−ε, ε) is injective. By compactness, ∂M is covered by a finite number of such
neighborhoods N1, . . . , Nm. There exists a number δ > 0 such that for any two points
x, y ∈ ∂M , x, y must belong to a common neighborhood Ni if d(x, y) < δ. Take ε to
be less than half of δ.

Suppose there are points x, y ∈ ∂M and numbers s, t ∈ (−ε, ε) such that

expν(x, s) = expν(y, t).

Then by the triangle inequality, d(x, y) < s+ t < δ which shows that x, y belong to a
common neighborhood Ni. But on Ni× (−ε, ε), expν is injective. Hence x = y, s = t.

We define the manifold M̃ to be M ∪ U , where U is a collar defined by:

U = {x : −ε ≤ xn ≤ 0}.
Next, note that the set V is a subset of M̃ , and can be described as the set of

points in M̃ whose distance from ∂M is less than ε:

V = {x ∈ M̃ : d(x, ∂M) < ε}.
See Figure 2.

∂M

V

U

Figure 2. M̃

Theorem 1 relies principally on the following theorem proved by Stefanov and
Uhlmann in [11].

Theorem 2. Let (M, g) be a compact Riemannian manifold with boundary. Let
(x0, ξ0) ∈ S(∂M) be such that the maximal geodesic γx0,ξ0 through it is of finite
length, and assume that x0 is not conjugate to any point in γx0,ξ0 ∩ ∂M . Then the
jet of g at x0 in boundary normal coordinates is uniquely determined by the lens data
(Σ, `).
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Corollary 1. Assume (M, g) is analytic with analytic boundary and that, in each
connected component of S(∂M), there is at least one vector (x0, ξ0) satisfying the
conditions of the theorem. Then the lens data uniquely determine the metric g in
boundary normal coordinates.

Proof. As above we let V denote the set of points {x ∈ M̃ : d(x, ∂M) ≤ ε}. Then by
hypothesis, in each component of V there is at least one point at which the jet of the
metric is determined. Since the metric is analytic, it must be uniquely determined on
all of V . �

Now we apply this to our two Riemannian manifolds (Mi, gi), taking an ε suffi-
ciently small to work for both. We obtain expνi

: ∂M × [−ε, ε] → Vi ⊂ M̃i. Using
these coordinates, both metrics have the form gαβdx

′αdx′β +(dxn)2. By the corollary,
the functions gαβ coincide for the two metrics throughout the domains ∂M × [−ε, ε],
which means that the mapping ϕ0 : V1 → V2 defined by ϕ0 = expν2

◦ exp−1
ν1

is an
isometry.

Note that ϕ0|∂M = id, and ϕ0∗(ν1) = ν2. In particular, ϕ0∗ must preserve
directions in T∂M and must preserve components in the normal direction. Thus
ϕ0∗|SM1 = Λ, the mapping that relates the lens data of our two manifolds.

3. Extension of the isometry to the entire manifold

The rest of this paper shall be concerned with extending ϕ0 to an isometry ϕ :
M̃1 → M̃2. If the extension exists, then it must be uniquely defined. Indeed, given a
point x0 ∈ U1 and a unit vector ξ at x0, we must require

ϕ(expg1
x0

(tξ)) = expg2
ϕ0(x0)

(tϕ0∗ξ).

See Figure 3.
By the non-trapping assumption, all points x ∈M1 lie on a geodesic originating in

U1. Therefore this equation uniquely determines the extended mapping ϕ. However,
it is not at all clear that the equation yields a well-defined mapping. To get around
this problem, we shall first define a mapping ϕ̃ : SM1 →M2 and then show that the
values of ϕ̃ only depend on the basepoint x ∈M1.

Choose (x, v) ∈ SM1, and consider the geodesic γx,−v (note the reversal of v). Let
T0 = T0(v) ≥ 0 be the first time at which this curve first leaves M1 and enters U1.
That is,

T0 = T0(v) = inf{t ≥ 0 : γx,−v(t) /∈M1}.
This value exists because of the nontrapping assumption. Similarly, we define T1 =
T1(v) to be the first time after T0(v) at which the curve leaves the interior of U1:

T1 = T1(v) = inf{t > T0(v) : γx,−v(t) ∈ ∂U1}.

(M1, g1) is assumed non-trapping, however, we make no assumptions on whether
M1 ∪ U1 is trapping, so if, somehow, the curve never leaves the interior of U1, we set
T1 = ∞.

We claim that T1 > T0. This follows from the assumption that ∂M and the metric
are both analytic. Consequently, a geodesic cannot have contact of infinite order
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Figure 3

with the boundary without being trapped in the boundary. Therefore, at t = T0, we
conclude that there exists m ≥ 1 for which

∂k
t (xn ◦ γx,−v)(T0) = 0, 0 ≤ k < m;

∂m
t (xn ◦ γx,−v)(T0) < 0.

This shows that for some small amount of time after T0, the geodesic must remain
entirely outside M1. Hence T1 > T0.

Now we let T = T (v) be an arbitrarily chosen number strictly between T0 and T1,
and we let ξv = −γ̇x,−v(T ). By construction, x = expg1(Tξv). We define ϕ̃(x, v) by:

ϕ̃(x, v) = expg2(Tϕ0∗ξv)
See Figure 4.

Proposition 1. ϕ̃(x, v) is a well defined function on SM1 with values in M2.

Proof. We must show two things: first, that expg2(Tϕ0∗ξv) is a point in M2; second,
that the value of ϕ̃ is independent of the choice of T .

The curve γξv (t) = expg1(tξv) : 0 ≤ t ≤ T is composed of two segments; the first
of which lies within U1, the second of which lies within M1. The break between the
two occurs at t = T − T0. We conclude that `(γ̇ξv

(T − T0)) ≥ T0.
The curve expg2(tϕ0∗ξv) : t ∈ [0, T ] is also composed of two segments of length

T − T0 and T0 lying in U2 and M2 respectively. Indeed, for t ∈ [0, T − T0], we have

(1) expg2(tϕ0∗ξv) = ϕ0(expg1(tξv))

from the fact that ϕ0 is an isometry on U1. Hence the left side belongs to U2.
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Figure 4. The Construction of ϕ̃

To show that the remainder of the curve expg2(tϕ0∗ξv) lies inM2, we look at the lens
data. If we differentiate at t = T −T0, we obtain from equation (1), ϕ0∗(γ̇ξv (T −T0))
which equals Λ(γ̇ξv

(T − T0)).
By the fact that M1 and M2 have the same lens data, we conclude that

`(ϕ0∗(γ̇ξv
(T − T0))) ≥ T0,

so the point exp(Tϕ0∗ξv) does indeed exist and lie in M2.
Now let T ′ be another time in between T0 and T1, and let ξ′v be the corresponding

vector. Without loss of generality we may assume that ∆T = T − T ′ > 0. Then we
have the following identity

expg1(tξv) = expg1((t−∆T )ξ′v).

By the definitions of T0 and T1, the curve expg1(tξv) : 0 ≤ t ≤ ∆T is a geodesic
segment lying entirely within the interior of U1. Since ϕ0 is an isometry on U1, the
vectors ϕ0∗ξv and ϕ0∗ξ

′
v must also be tangent to a common geodesic at a distance of

∆T . Hence

expg2(tϕ0∗ξv) = expg2((t−∆T )ϕ0∗ξ
′
v).

Setting t = T , we obtain the needed result. �

Proposition 2. For fixed x0, ϕ̃(x0, v) is constant.

Proof. The strategy here is to prove that ϕ̃(x0, v) is locally constant. Then the
statement follows from the connectedness of the sphere. First, we need a lemma.

For a pair of points in M̃ , let d(x, y) denote the distance between them. This
function is not necessarily smooth, even off the diagonal. However, the next lemma
shows that the squared distance function d(x, y)2 is as smooth as the metric for (x, y)
sufficiently close to each other.
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Lemma 1. Let M̃ be as above (with subscript omitted). For every x0 in the interior of
M̃ , there exists a positive number r such that the squared distance function is analytic
on the set

∆r(x0) = {(x, y) : d(x, x0) < r, d(x, y) < r}.
If K is a compact set contained within the interior of M̃ , then there is an open
O ⊂ M̃ containing K and a positive number r such that the squared distance function
is analytic on the set

∆O,r(K) = {(x, y) : x ∈ O, d(x, y) < r}.

Proof. We choose r > 0 so that the ball B2r(x0) is contained within M̃ and is geodesi-
cally convex (see [14], Theorem 6.2, noting that the restriction on the radius is only
that it be sufficiently small). By definition every pair of points in B2r(x0) is joined by
a unique geodesic segment contained entirely within B2r(x0). Moreover, that segment
is length-minimizing.

Now assume that (x, y) ∈ ∆r(x0). Then there is exactly one geodesic segment
connecting them whose length is less than r. Indeed, there is at least one, since the
two points lie within B2r(x0). If there were another geodesic segment connecting
them, it would have to leave B2r(x0) at some point. Since d(x0, x) < r, such a
segment would necessarily have length greater than r.

This shows that the mapping

{(x, v) : d(x, x0) < r, |v|g < r} → ∆r(x0)

given by (x, v) 7→ (x, expx(v)) is bijective. Naturally, the exponential map is analytic
as long as the metric is analytic. By the inverse function theorem, expg gives a
diffeomorphism between these two sets. Through this diffeomorphism, the squared
distance function is expressed d(x, y)2 = gijv

ivj , which is analytic as long as g is
analytic.

The second statement of the lemma follows from the first by a compactness ar-
gument. Indeed, for every x0 ∈ K we take the number r from the first statement
and form the ball Br(x0). All such balls form an open cover of K. We take a finite
subcover, let O be the union of its members, and let r be the smallest radius in that
subcover. �

Now fix a vector (x0, v) and choose T = T (v) and ξv. Let y0 ∈ U1 be the basepoint
of the vector ξv so that x0 = expg1

y0
(Tξv). Also, let γ1 = γx0y0 denote the geodesic seg-

ment connecting the two points. Let O1, r1 be the open set and radius corresponding
to the compact set γ1 as in the lemma.

In M̃2, we have a corresponding segment γ2 between the points ϕ0(y0) and ϕ̃(x0, v).
It is given by the curve

expg2(tϕ0∗ξv) :, 0 ≤ t ≤ T.

Let r2 be the radius corresponding to γ2 as in the lemma.
Let r denote the positive number

r = inf{d(γ1, ∂M̃1), d(y0, ∂U1), r1, r2}.
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By continuity, there exists a neighborhood N of v in Sx0M1 sufficiently small such
that for all w ∈ N ,

d(γx0,−v(t), γx0,−w(t)) < r

for all t in the interval [0, T ]. The restrictions on r guarantee that the curve γx0,−w(t)
remain within M̃1 and that its endpoint, γx0,−w(T ), be in the interior of U1. For each
w, let ηw = −γ̇x0,−w(T ). We prove ϕ̃(x0, v) = ϕ̃(x0, w) by breaking this into the two
equations:

(2) expg2(Tϕ0∗ξv) = expg2(Tϕ0∗ηw);

(3) expg2(Tϕ0∗ηw) = expg2(T (w)ϕ0∗ξw).

See Figure 5.

∂M

M1U1

t1 t2

∂M̃1

x
v

y0
ξv

w

ηw
∆T ξw

Figure 5

Consider the function

ρ1(t) = d2
g1

(exp(tξv), exp(tηw)).

By our choices of r and N , and by the lemma, this is an analytic function for t ∈ [0, T ].
Now we consider M̃2, and define

ρ2(t) = d2
g2

(expg2(tϕ0∗ξv), expg2(tϕ0∗ηw)).

Since ϕ0|U1 : U1 → U2 is an isometry, the functions ρ1 and ρ2 must coincide for
small values of t. Also, we note that the function ρ2(t) is analytic as long as
dg2(expg2(tϕ0∗ξv), expg2(tϕ0∗ηw)) < r, since r was chosen to be smaller than r2.
Therefore, by analytic continuation, the functions ρ1 and ρ2 are equal up to the first
point t0 where ρ2 = r2. But by continuity, we would then have ρ1(t0) = r2, which does
not occur. Therefore, we see that ρ1(t) = ρ2(t) throughout the interval 0 ≤ t ≤ T . In
particular, we find that ρ2(T ) = 0, which verifies equation (2).

If T lies between T0(w) and T1(w), then equation (3) is nothing but a restatement
that ϕ̃(x0, w) is well defined. Clearly, T > T0(w), so assume that it is also greater than
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T1(w) (The possiblity that T = T1(w) is ruled out by the fact that γx,−w(T1(w)) ∈
∂M). Fix a number T ′ = T (w), and a corresponding ξw. If we let ∆T = T −T ′, then
we have the equation

expg1(tηw) = expg1((t−∆T )ξw).

Let γ(t) = expg1(tηw), for 0 ≤ t ≤ ∆T . If it happens that it lies entirely within U1,
then the same proof that we used to show that ϕ̃ is well-defined will verify equation
(3). So assume that γ(t) does not lie entirely within U1. Then we can uniquely
partition it into subsegments which alternately lie in U1 and M1. Indeed, we define

t0 = 0,
t1 = inf{t > 0 : γ(t) /∈ U1},
t2 = inf{t > t1 : γ(t) /∈M1},

...
...

tm−1 = inf{t > tm−2 : γ(t) /∈M1},
tm = ∆T.

The fact that 0 = t0 < t1 < ... < tm = ∆T is true follows from the same reasoning
that was used above to prove that T1(v) > T0(v). The fact that this partition is finite
also follows from the analytic assumption. Indeed an analytic curve segment cannot
intersect the analytic ∂M more than a finite number of times without being entirely
contained within it. Note that the segment γ|[tk,tk+1] lies in U1 or M1 according to
whether k is even or odd, respectively. In particular, m is odd.

To prove equation (3), we will use induction to show that for all k = 1, 2, . . . ,m,
and all t ∈ [0, T ],

(4) expg2(tϕ0∗γ̇(0)) = expg2((t− tk)ϕ0∗γ̇(tk)).

Then setting k = m and t = T yields the result.
Step 1: ηw = γ̇(0) and γ̇(t1) lie on the geodesic γ at a distance of t1 from each

other. Since this segment lies within U1 and since ϕ0 is an isometry of U1 to U2, we
see that ϕ0∗γ̇(0) and ϕ0∗γ̇(t1) also lie on a common geodesic at the same distance
apart. Hence equation (4) is established for k = 1.

Step 2: The next segment of γ lies within M1. Indeed we have the following:

γ̇(t2) = Σg1(γ̇(t1)), `g1(γ̇(t1)) = t2 − t1.

Since M2 has the same lens data as M1, we see that ϕ0∗γ̇(t1) and ϕ0∗γ̇(t2) are
connected by a geodesic across M2 with the same length t2 − t1. Together with step
1, this shows that ϕ0∗γ̇(t2) lies tangent to the same geodesic as ϕ0∗γ̇(0) at a distance
of t2. Hence Equation 8 is established for k = 2.

Step 3: By induction, we may repeat these steps, establishing equation (4) for all
k up to k = m.

�

For x ∈ M1, set ϕ(x) = ϕ̃(x, v). If x ∈ V1, then we are in the domain of the
boundary normal coordinates. We choose v = ∂

∂xn . Then γx,−v is the geodesic
segment from x to U1 normal to ∂M . We choose T (v), ξv so that x = expg1(T (v)ξv)
and note that the segment expg1(tξv) : 0 ≤ t ≤ Tv lies entirely in V . We have

ϕ0(x) = exp(T (v)ϕ0∗ξv) = ϕ̃(x, v) = ϕ(x)
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The first equation is true by the fact that ϕ0 is an isometry on V1. Hence ϕ and ϕ0

agree on their common domains. Gluing them together, we form

ϕ : M̃1 → M̃2.

4. That ϕ is a diffeomorphism and an isometry

Let (x, v) lie in the interior of SxM1. We choose T = T (v) and ξv ∈ SU1 so
that γ(t) = expg1(tξv) is a geodesic in M̃1 that reaches x at time T . In the segment
[0, T − T0], γ lies entirely within U1; whereas on the segment [T − T0, T + δ], it lies
entirely within M1 for δ sufficiently small. For the first segment, we see that

ϕ(γ(t)) = ϕ0(γ(t)) = expg2(tϕ0∗ξv);

where the second equality holds by the fact that ϕ0 is an isometry on U1.
On the second segment, we see that for each pair (γ(t), γ̇(t)), we can choose the

same ξv for ξγ̇(t) with the corresponding T (γ̇(t)) = t. So, for all t ∈ [0, T + δ],

(5) ϕ(γ(t)) = expg2(tϕ0∗ξv).

This can be rewritten in the form:

(6) ϕ(γ(t)) = expg2(tϕ0∗γ̇(0)).

In fact, the latter equation is true for any geodesic segment γ|[0, T ] that can be
partitioned into γ|[0, a] and γ|[a, T ] with the two subsegments lying entirely in U1 and
M1 respectively.

Proposition 3. ϕ : M̃1 → M̃2 is bijective.

Proof. Reversing the roles of M̃1 and M̃2, we can define a mapping ψ : M̃2 → M̃1 by
the same process by which we defined ϕ. In particular it would extend ϕ−1

0 .
The analog to equation (6) is:

(7) ψ(β(t)) = expg1(tϕ−1
0∗ β̇(0)),

where β is any geodesic segment composed of two subsegments contained in U2 and
M2, respectively.

Using the notation from above, we would like to prove that ψ ◦ ϕ(γ(t)) = γ(t) for
t ∈ [0, T ]. To that end, we will first show that the geodesic segment β(t) = ϕ(γ(t)) is
of the type valid for equation (7).

We note that for t ∈ [0, T − T0], γ(t) ∈ U1 so ϕ(γ(t)) must lie in U2. For t ∈
[T − T0, T ], γ(t) ∈M1, so by Proposition 1, ϕ(γ(t)) ∈M2.

Therefore, we may apply equation (7), which yields:

ψ ◦ ϕ(γ(t)) = expg1(tϕ−1
0∗ β̇(0))

= expg1(tϕ−1
0∗ ϕ0∗γ̇(0))

= expg1(tγ̇(0))
= γ(t).

Since every point in M1 lies on some such curve γ(t), we conclude that ψ ◦ ϕ = id

on M1. But we know that the same identity is true on V1, so it is true on all of M̃1.
By the symmetry of the construction, we conclude ϕ ◦ ψ is also the identity. �

Proposition 4. ϕ : M̃1 → M̃2 is an analytic isometry.
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Proof. Since ϕ is bijective, it is sufficient to prove the statement locally. These prop-
erties are already known on V1 where ϕ = ϕ0, so we assume x lies in the interior M1.
First we show that all directional derivatives of ϕ exist. Indeed, by differentiating
equation (5) at t = T (v), we obtain:

Dvϕ(x) = ∂t(ϕ ◦ γ)(T (v)) = ∂t expg2(tϕ0∗ξv)|t=T (v).

Clearly, the quantity on the right side exists. What’s more, it is a vector of length
1. We conclude that ϕ∗ exists and preserves lengths of vectors. In particular it is
nonsingular.

From the fact that it preserves lengths, we derive smoothness. Indeed, g1 = ϕ∗g2,
which has the coordinate form:

g1(x)ij = ϕk
, i(x) g2(ϕ(x))kj .

This yields:
g1(x)ijg2(ϕ(x))jl = ϕk

, i(x).
The left side is once differentiable; hence ϕ is twice differentiable. But then that
implies the left side to be twice differentiable which shows ϕ to be three-times differ-
entiable. By an obvious application of induction, ϕ must be smooth.

It only remains to prove that ϕ is analytic. Of course this is already known in V1.
Since ϕ is a smooth isometry, we can state

ϕ(expg1 ξ) = expg2(ϕ∗ξ)

for any vector ξ ∈ TM̃1. Given x0 in the interior of M1, consider a ball of radius r,
centered at x0, which is strictly geodesically convex, and choose any point y0 within
this ball. Then there is a unique ξ0 ∈ TyM1 satisfying |ξ0|g1 < r and expy0

ξ0 = x.
Moreover, x0 and y0 are not conjugate along the corresponding geodesic, so

expg1
y0

: ξ 7→ x

is a local diffeomorphism about ξ0. It is analytic by the fact that g1 is analytic.
Consequently, it’s inverse function is analytic. Let ξ(x) denote the inverse, which is
defined for x in some neighborhood of x0. Then we see that

ϕ(x) = expg2
ϕ(y0)

(ϕ∗ξ(x)).

y0 is constant, so ϕ∗ is a constant linear mapping. From the fact that g2 is analytic,
we see that this mapping is also analytic. �
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