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MAXIMAL FUNCTIONS OF MULTILINEAR MULTIPLIERS

Petr Honźık

Abstract. Let mj be Fourier multipliers on R2d that satisfy

|∂αmj(ξ1, ξ2)| ≤ Aα(|ξ1|+ |ξ2|)−|α|

for sufficiently large α uniformly in j, for j = 1, 2, . . . , N . We study the maximal operator
of two variables

M(f, g)(x) = sup
1≤j≤N

|Tmj (f, g)(x)|,

where Tmj are the associated bilinear operators

Tmj (f, g)(x) =

Z
R2d

m(ξ1, ξ2) bf(ξ1)bg(ξ2)e2πi(ξ1+ξ2)·xdξ1dξ2.

We prove that M maps Lp1 (Rd) × Lp2 (Rd) to Lp(Rd) with norm at most a constant

multiple
p

log(N + 2). We also provide an example to indicate the sharpness of this
result.

1. Introduction

A bilinear Fourier multiplier with symbol m is a bilinear operator Tm defined for
functions f , g in the Schwartz space S(Rd) as follows

Tm(f, g)(x) =
∫

R2d

m(ξ1, ξ2)f̂(ξ1)ĝ(ξ2)e2πi(ξ1+ξ2)·xdξ1dξ2.

Coifman and Meyer [5] proved that a bilinear multiplier operator Tm is bounded from
Lp1(Rd)× Lp2(Rd) 7→ Lp(Rd) whenever

(1.1) |∂αm(ξ1, ξ2)| ≤ Aα(|ξ1|+ |ξ2|)−|α|

for sufficiently large multiindices α and

(1.2)
1
p1

+
1
p2

=
1
p
,

for p1, p2, p ∈ (1,∞). The range of p was later extended to (1/2,∞) by Kenig and
Stein [12] and independently by Grafakos and Torres [10].

In this article, we are going to study maximal operators associated with such
bilinear multipliers. Suppose that we are given a family of bilinear symbols {mj},
j = 1, 2, . . . , N that satisfy condition (1.1) uniformly in j. We consider the maximal
operator

M(f, g)(x) = sup
j
|Tmj (f, g)(x)|

and we are interested in its boundedness from Lp1 ×Lp2 7→ Lp with norm as small as
possible in terms of N .

Received by the editors March 28, 2005.

995



996 PETR HONZÍK

The corresponding linear problem has been studied. Recall that a function b on Rd

is called a Mikhlin-Hörmander multiplier if it satisfies |∂αb(ξ)| ≤ Cα|ξ|−|α| for certain
mutliindices α. We refer to [13], [11], and [8] for properties of such multipliers.
An example in [4] shows that a family of N Mikhlin-Hörmander multipliers on Rd

that satisfy uniform estimates forms a maximal operator whose Lp norm is at least
C
√

log(N + 2), thus establishing the sharpness of this growth. In [9], it is proved
that this estimate is also an upper bound for the Lp norm. The purpose of this
article is to establish analogous results in the bilinear setting. These results can be
carried through for m-linear operators for m ≥ 3 by straightforward modification of
the arguments presented at the expense of some cumbersome notation.

We now state our main result.

Theorem 1.1. Let 1 < p1, p2 < ∞ and 1/2 < p < ∞ satisfy (1.2). Given a family
of bilinear symbols {mj}N

j=1 such that (1.1) holds for any multiindex α with constants
Aα independent of j, the associated maximal operator M satisfies an estimate

(1.3) ‖M(f, g)‖p ≤ C
√

log(N + 2)‖f‖p1‖g‖p2

for all functions f ∈ Lp1(Rd) and g ∈ Lp2(Rd). Conversely, for any N ≥ 1 there is a
family of symbols mj satisfying (1.1) uniformly and two Schwartz functions f and g
such that

‖M(f, g)‖p ≥ C
√

log(N + 2)‖f‖p1‖g‖p2 .

The assumption of the theorem can be relaxed by assuming (1.1) only for multi-
indices α with |α| < K, where K is a constant which can be obtained from the proof.
The constant depends on the dimension d and is significantly larger than d.

2. Notation and preliminaries

We begin by introducing notation and some auxiliary operators and we remind the
reader of some known results. We reserve the letter C for any constant whose value
may change. We are often going to stress the dependence of the constants on some
parameters by using subscripts.

Given a locally integrable function f we denote by Mf its Hardy-Littlewood max-
imal function, and for r ≥ 1 we define Mrf = (M |f |r)1/r for functions in Lr

loc.
Jensen’s inequality yields Msf(x) ≤ Mrf(x) for any x and s ≤ r. Thus we have
MsMrf(x) ≤ (MM |f |t)1/t when t = max{r, s}.

Our arguments depend on the Littlewood-Paley decomposition. We take a smooth
function φ, supported in [1/2, 2] with the property that

∑
i∈Z φ(2−it) = 1 whenever

t 6= 0. Denoting by ĥ the Fourier transform of a function h and by F−1h its inverse
Fourier transform, we define the Littlewood-Paley operator

∆if = F−1(φ(2−i| · |)f̂), i ∈ Z.

We recall that the vector valued operator f 7→ {∆if}i∈Z is bounded from Lp to Lp(l2)
for any p > 1.

We shall use some elements of the martingale theory. We denote

Dk = {[n12−k, (n1 + 1)2−k]× · · · × [nd2−k, (nd + 1)2−k] : ni ∈ Z}
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the family of dyadic cubes of side length k. We define the conditional expectation
operator

Ekf(x) = 2−kd
∑

Q∈Dk

χQ(x)
∫

Q

f(y)dy

and the martingale difference operator

Dkf(x) = Ek+1f(x)− Ekf(x).

The maximal martingale supk |Ekf(x)| operator is pointwise bounded by Mf(x) and
thus it is Lp bounded. We also define the martingale square function

S(f) =

∑
k≥k0

|Dkf(x)|2
1/2

.

We use one sided martingales, so the constant k0 specifies the starting level.
The standard method of handling multilinear multipliers is based on the observa-

tion that if the symbol m si a tensor product m(ξ1, ξ2) = a(ξ1)b(ξ2), then the operator
Tm splits as

Tm(f, g) = Ta(f)Tb(g).

Therefore we will make use of the following tensor product lemma whose proof is
more of less known (a sketch is included here for the reader’s convenience.)

Lemma 2.1. Let m be a function defined on R2d and supported inside R = Q1×Q2,
the product of two cubes Q1, Q2 ⊂ Rd, where diam(Q1) ≈ diam(Q2) ≈ a, which
satisfies

|∂αm(ξ1, ξ2)| ≤ Aαa
−|α|

for any multiindex α. Then we can find sequences of functions ak1 and bk2 and a
positive sequence ck1,k2 such that∑

k1,k2∈Z
ck1,k2ak1(ξ1)bk2(ξ2) = m(ξ1, ξ2),

for |α| ≤ d we have

|∂αak1(ξ1)| ≤ Cα(1 + |k1|)|α|a−|α| and |∂αbk2(ξ2)| ≤ Cα(1 + |k2|)|α|a−|α|

and such that for any M > 0

ck1,k2 ≤ CM (1 + |k1|+ |k2|)−M .

The functions ak1(ξ1) and bk2(ξ2) are supported inside (1 + ε)Q1 and (1 + ε)Q2,
respectively, for some fixed ε > 0 independent of a.

Proof. By rescaling we can assume that R is product of two unit cubes and

|∂αm(ξ1, ξ2)| ≤ Aα.

The function m can be represented as a two-dimensional Fourier series on (1 + ε)R
with faster than power decay. Each term of this series can then be written as a tensor
product in ξ1 and ξ2. The functions ak1 and bk2 are then obtained as a smooth cutoffs
adapted to Q1 and Q2. �
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We note that if ak1 , bk2 and a are as above, one has

‖F−1(ak1(a·))‖L1 ≤ Cd(1 + |k1|)d+1

and likewise for F−1(bk2). Therefore the following estimates are valid

|F−1(ak1 f̂)|(x) ≤ C(1 + |k1|)d+1(Mf)(x)(2.1)

|F−1(bk2 f̂)|(x) ≤ C(1 + |k2|)d+1(Mf)(x),(2.2)

with a constant C depending only on the dimension and on the constants Aα.

3. Family with sharp growth

In this section, we provide an example of a countable family of bilinear symbols
mj , such that condition (1.1) is valid and such that the maximal operator MN as-
sociated to first N of them has norm bigger than C

√
logN , with C independent of

N . For simplicity we take d = 1 but we point out that a generalization for d > 1 is
straightforward. The method of the construction is similar to that in [4] but we need
to take the second function into consideration.

We construct the symbols mj , j ≥ 0. Fix a smooth function ψ, supported in
[−1/4, 1/4] such that for |ξ| ≤ 1/8 we have ψ(ξ) = 1. We denote by j(k) the k-th
digit of binary representation of j. Then, we put

mj(ξ1, ξ2) =
∞∑

k=1

j(k)ψ(2−kξ2)ψ(2−kξ1 − 1).

It is obvious that these symbols satisfy condition (1.1) uniformly in j.
To construct the test function, we are going to use a smooth non-zero function φ

with Fourier transform supported in [−1/8, 1/8]. Let us take l such that 2l ≤ N <
2l+1. We then put

f̂(ξ) =
l∑

k=1

φ̂(ξ − 2k).

With the aid of the Littlewood-Paley theory we see that C‖f‖p1 ≤ l1/2‖φ‖p1 .
We are going to examine the norm of MN (f, φ). Observe that

Tmj (f, φ)(x) =
l∑

k=1

j(k)e2πi2kxφ2(x).

Given x, we now find an index j, j ≤ N such that |
∑l

k=1 j(k)e
2πi2kx| ≥ l/8. This

can be done by defining four index sets: S0, S1, S2 and S3, where

Sn = {1 ≤ k ≤ N : Re e2πi(2kx+nπ/2) ≥ 1/
√

2}.

Then we have ∪iSi = {1, . . . , l} and so we can select n such that |Sn| ≥ N/4 and
put j(k) = χSn

(k). By this selection of the index j it follows that |Tmj
(f, φ)(x)| ≥

lφ2(x)/8 which gives
‖MN (f, φ)‖p ≥ Cl‖φ2‖p.

We of course have
‖φ2‖p ≥ C‖φ‖p1‖φ‖p2 ,
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since ‖φ‖p1 and ‖φ‖p2 are both finite numbers and we can choose C approprietly.
Thus we get

‖MN (f, φ)‖p ≥ Cl1/2‖f‖p1‖φ‖p2 ≥ C(logN)1/2‖f‖p1‖φ‖p2 .

4. Decomposition of the symbols

We shall now prove (1.3). The proof follows the same pattern as that of the classical
(non-maximal) result.

First we decompose the symbol of each multiplier to the “diagonal” part and the
“axial” part. We fix a large constant K > 0 and denote

Γ = {(ξ1, ξ2) : K−1|ξ1| ≤ |ξ2| ≤ K|ξ1|}

and

Γ′ = {(ξ1, ξ2) :
K−1

2
|ξ1| ≤ |ξ2| ≤ 2K|ξ1|}.

Consider smooth homogeneous partition of the unity ψ1(ξ)+ψ2(ξ) = 1 for ξ 6= 0 such
that ψ1 is supported in R2d \ Γ and ψ2 in Γ′.

Thus, we shall have a decomposition mj = m1
j +m2

j = mjψ1 +mjψ2. Naturally,
condition (1.1) is still valid for the new symbols with comparable constants (and thus
uniformly in j). For admisible functions f and g, we have a pointwise inequality
M(f, g) ≤ M1(f, g) + M2(f, g), where the operator Mr is associated with the family
mr

j . Furthermore, we denote

Ω =

{
ξ = (ξ1, . . . , ξd) ∈ Rd :

d∑
i=2

|ξi|2 ≤ |ξ1|2 ; ξ1 > 0

}
a cone in Rd. By a simple decomposition and symmetry argument we can assume
that symbols m1

j are supported in

{(ξ1, ξ2) : |ξ2| ≤ K−1|ξ1|} ∩ Ω2

and m2
j in Γ′ ∩ Ω2.

5. The part M2

First, we control the operator M2, which is in fact bounded uniformly in N . We set
m2

j,i(ξ1, ξ2) = φ(2−i|(ξ1, ξ2)|)m2
j (ξ1, ξ2). We observe that

∑
im

2
j,i(ξ1, ξ2) = m2

j (ξ1, ξ2)
and that each of the pieces m2

j,i is supported in an ε2i-interior of some cube Q which
such that diam(Q) ≤ C12i, with C1 independent of i and for any (ξ1, ξ2) ∈ Q we have
|ξ1| ≥ C22i, |ξ2| ≥ C22i, with C2 > 0 independent of i.

Now we are in a position to apply Lemma 2.1, to decompose

m2
j,i(ξ1, ξ2) =

∑
k1,k2

ck1,k2
i,j ak1

i,j(ξ1)b
k2
i,j(ξ2)

such that

|∂αak1
i,j(ξ1)| ≤ C(1 + |k1|)|α||ξ1|−|α| and

|∂αbk2
i,j(ξ2)| ≤ C(1 + |k2|)|α||ξ2|−|α|,
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the factors ck1,k2
i,j have fast decay and the functions ak1

i,j and bk2
i,j are supported in the

cube [C−12−i, C2−i+1]d. Thus, we can write

M2(f, g)(x) = sup
j

∣∣∣∣∣∣
∑

i,k1,k2

ck1,k2
i,j F−1(ak1

i,j f̂)(x)F−1(bk2
i,j ĝ)(x)

∣∣∣∣∣∣ .
We denote ck1,k2 = supi,j c

k1,k2
i,j . The Cauchy-Schwarz inequality then yields the

estimate

M2(f, g)(x) ≤ sup
j

∑
k1,k2

ck1,k2

(∑
i

|F−1(ak1
i,j f̂)(x)|2

)1/2(∑
i

|F−1(bk2
i,j ĝ)(x)|

2

)1/2

.

Next we apply Hölder’s inequality to obtain

‖M2(f, g)‖p

≤
∑
k1,k2

ck1,k2

∥∥∥∥∥∥
(∑

i

sup
j
|F−1(ak1

i,j f̂)|2
)1/2

∥∥∥∥∥∥
p1

∥∥∥∥∥∥
(∑

i

sup
j
|F−1(bk2

i,j ĝ)|
2

)1/2
∥∥∥∥∥∥

p2

.

To finish this part of the proof, we observe that

sup
j
|F−1(ak1

i,j f̂)| ≤ C(1 + |k1|)d+1M

(
n∑

l=−n

∆i+lf

)
, and

sup
j
|F−1(bk2

i,j ĝ)| ≤ C(1 + |k2|)d+1M

(
n∑

l=−n

∆i+lg

)
,

where n is a fixed integer constant chosen so that
∑n

l=−n φ(2−i+l|ξ|) is equal to
one on the support of the functions ak1

i,j and bk2
i,j . To conclude the proof we first

apply the Fefferman-Stein vector valued maximal function theorem (see [7]), then the
Littlewood-Paley theorem, and we finally use the rapid decay of the ck1,k2 .

6. Square function lemma

To deal with M1, first in the case p > 1, we are going to combine the approaches
from [5] and [9]. We decompose the symbol m1

j into dyadic pieces; denote m1
j,i =

φ(2−i| · |)m1
j . Then the support of m1

j,i is contained in an ε-interior of the product of
some cubes Q1 and Q2 such that for any ξ1 ∈ Q1 we have C−1

1 2i ≤ |ξ1| ≤ C12i, while
for any ξ2 ∈ Q2 we have |ξ2| ≤ C22i and, in particular, for large enough constant K,
which we have used when decomposing the symbol, C−1

3 2i ≤ |ξ1 + ξ2| ≤ C32i. (Here
C2 << C−1

1 .)
We now decompose each of the pieces m1

j,i using Lemma 2.1

m1
j,i(ξ1, ξ2) =

∑
k1,k2

ck1,k2
i,j ak1

i,j(ξ1)b
k2
i,j(ξ2)

where the function ak1
i,j is supported in Q1 and bk2

i,j in Q2 and ck1,k2
i,j have fast decay

in k1, k2. It is obvious that the operator

Tm1
j,i

(f, g) =
∑
k1,k2

ck1,k2F−1
(
(ak1

i,j f̂) ∗ (bk2
i,j ĝ)

)
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gives a function whose Fourier transform is supported in Q1 +Q2.
We need to establish a connection between localization of the Fourier image of

a function and size of the dyadic martingale difference. Such estimates are fairly
standard. Here we use the same lemma as in [9]. Let us first define two convolution
operators.

We take a radial Schwartz function b supported in B(0, 1/4), with b̂(ξ) 6= 0 for
C−1

3 ≤ |ξ| ≤ C3 and
∫

Rd b(ξ)dξ = 0 and put b̂i(ξ) = b̂(2−iξ). Pick a Schwartz function
ι such that ι̂ is supported in {ξ : |ξ| ∈ [C−1

3 /3, 3C3]} such that for ξ ∈ [C−1
3 /2, C3/2]

we have ι̂(ξ)(̂b(ξ))2 = 1. We shall denote

Bif = f ∗ bi
Iif = f ∗ ιi.

Lemma 6.1. For i, k ∈ Z and s > 1 we have

(6.1) |(BiIif)(ξ)| ≤ CMf(ξ)

and

(6.2) |(DkBi+kf)(ξ)| ≤ C2−|i|/s′
Msf(ξ).

Proof. As inequality (6.1) is trivial, we sketch the proof of (6.2). In the case i > 0
the stronger estimate

|(DkBi+kf)(ξ)| ≤ C2iMf(ξ)

follows easily from the smoothness of b using cancelation.
In the case i < 0 we estimate the quantity |(EkBi+kf)(ξ)|. Pick the cube Q ∈ Dk

with ξ ∈ Q. Denote
Q1 = {x : dist(x, ∂Q) ≤ 2−k+i}.

Since b has mean value 0 we have

EkBi+kf(ξ) = (EkBi+kfχQ1)(ξ).

Denote
Q2 = {x : dist(x,Q1) ≤ 2−k+i},

clearly Bi+kfχQ1 is supported inside Q2. The measure of the set Q2 is comparable
to 2−kd+i and (6.2) then follows by an application of Hölder’s inequality to

EkBi+kf(ξ) = (Ek(χQ2Bi+kfχQ1))(ξ).

�

We now define the auxiliary operator

Fs(f, g)(x) =

(∑
k∈Z

(MM(M |(∆k−1 + ∆k + ∆k+1)f |)sMg)2/s

)1/2

and we prove the following lemma concerning it.

Lemma 6.2. For any 1 < s <∞ and for 1 ≤ j ≤ N we have a pointwise estimate

S(Tm1
j
(f, g))(x) ≤ CsFs(f, g)(x).
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Proof. Let us write

|DkTm1
j
(f, g)|(x) ≤

∑
n∈Z,l∈Z2

cl|(DkBk+n)(Bk+nIk+n)F−1
(
(al1

n+k,j f̂) ∗ (bl2n+k,j ĝ)
)
|.

Again, we have cl = sup cli,j is a sequence with decay faster that CK |l|−K for any
K ∈ N. Note that

|F−1
(
(al1

n+k,j f̂) ∗ (bl1n+k,j ĝ)
)
|

= |F−1(al1
n+k,j f̂)F−1(bl1n+k,j ĝ)|

≤ (1 + |l|)2dC(M |(∆n+k−1 + ∆n+k + ∆n+k+1)f |)(Mg).

Next we use estimates (6.2) and (6.1) to obtain

|DkTm1
j
(f, g)(x)|

≤ C
∑

n∈Z,l∈Z2

2−|n+k|/s′
|l|−K(1 + |l|)2dMsM((M |(∆n+k−1 + ∆n+k + ∆n+k+1)f |)(Mg)).

At this point we can choose K so large that we eliminate the variable l and after we
pass to the square function, we can drop the dependence on n. We have the estimate

S(Tm1
j
(f, g))(x) ≤ C

(∑
k

(MsM((M |(∆k−1 + ∆k + ∆k+1)f |)(Mg)))2
)1/2

,

and the result follows. �

Let us establish the boundedness of the operator Fs.

Lemma 6.3. Assume that 1 < s < min{p, 2}. Then we have

‖Fs(f, g)‖p ≤ C‖f‖p1‖g‖p2 .

Proof. We prove this by repeated application of the Fefferman-Stein vector valued
maximal function result [7]. The Littlewood-Paley theory gives that∥∥∥∥∥∥

(∑
k

|(∆k−1 + ∆k + ∆k+1)f |2
)1/2

∥∥∥∥∥∥
p1

≤ C‖f‖p1 .

Applying the vector valued maximal function and Hölder’s inequalities, we obtain∥∥∥∥∥∥
(∑

k

(M |(∆k−1 + ∆k + ∆k+1)f |(Mg))2
)1/2

∥∥∥∥∥∥
p

≤ C‖f‖p1‖g‖p2 .

The result then follows by using Fefferman-Stein inequality twice in the space Lp/s(l2/s).
�
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7. The part M1

Now we are ready to apply the method of [9] to the operator M1. We shall first
prove the result in the case p > 1. We are going to pick 1 < s < min{p, 2}. The key
idea is to apply the good-λ inequality (Proposition 3.1) from [3], which states that

(7.1) |{sup
k
|Ekf − E0f | > 2λ} ∩ {S(f) < ελ}| ≤ CeCd/ε2 |{sup

k
|Ekf | > λ}|

for any λ > 0 and 1 > ε > 0. The inequality is stated for a martingale inside unit
cube, but it is clear that it can be extended to one-sided martingale on Rd starting
at level k0. We need to treat the initial expectation separately. We can assume that
the Fourier transform of f is supported away from origin. By previous considerations
F(Tm1

j
(f, g)) is then supported outside some ball B(0,2δ). Using 6.2 we can estimate

|E0Tm1
j
(f, g)(x)| = |

∞∑
i=δ−1

E0∆iTm1
j
(f, g)(x)| ≤ C2−k0+δ/s′

|MsTm1
j
(f, g)(x)|.

Now we can select the starting level k0, based on the value of δ, such that

(7.2) ‖E0Tm1
j
(f, g)‖p ≤ N−1‖Tm1

j
(f, g)‖p.

We have

‖M1(f, g)‖p
p = p4p

∫ ∞

0

λp−1|{M1(f, g) > 4λ}|dλ.

Of course

|{M1(f, g) > 4λ}|

≤
∑

j

|{|Tm1
j
(f, g)− E0Tm1

j
(f, g)| > 2λ} ∩ {Fs(f, g) < ελ}|

+ |{Fs(f, g) ≥ ελ}|+
∑

j

|{|E0Tm1
j
(f, g)| > 2λ}|

≤ |{(Fs(f, g) ≥ ελ}|+
∑

j

|{|Tm1
j
(f, g)| > 2λ} ∩ {S(Tm1

j
(f, g)) < Cελ}|

+
∑

j

|{|E0Tm1
j
(f, g)| > 2λ}|.

Now we can apply 7.1 to each term of the first sum with ε = (logN)−1/2/Cs. After
integration, this gives the norm estimate

‖M1(f, g)‖p ≤ C(logN)1/2‖Fs(f, g)‖p +
C

N

∑
j≤N

‖MTm1
j
(f, g)‖p

+ C
∑

j

‖E0Tm1
j
(f, g)‖p.

Now the norm of each of the terms ‖MTm1
j
(f, g)‖p is uniformly controlled, while

‖Fs(f, g)‖p is bounded according to Lemma 6.3. In view of (7.2) we can assume that
each of the terms ‖E0Tm1

j
(f, g)‖p is bounded by N−1‖Tm1

j
(f, g)‖p. This finishes the

proof for the part M1 provided p > 1.



1004 PETR HONZÍK

8. Weak type estimate

So far, we have proved Theorem 1.1 in the case p > 1. To extend the result to
p > 1/2 we are going to use an endpoint weak type estimate. The linear case of this
theorem was proved in [6], see also [4]. To prove the bilinear version we are going to
use an argument adapted from [10]. Similar aproach can be of course used to obtain
general multilinear version.

Theorem 8.1. Let us have a countable family of bilinear multipliers {mj} such that
the norm of the associated maximal operator M is bounded from Lp1(Rd) × Lp2(Rd)
into Lp(Rd) by a constant A for some pi and p as in (1.2). Let us assume that the
condition (1.1) is satisfied uniformly for all mj. Then the operator M is bounded
from L1 × L1 into L1/2,∞ with the norm at most Cd(A + B), where B is a constant
dependent only on the constants from the condition (1.1).

Once this theorem is proved, the use standard multilinear interpolation argument
finishes the proof of the Theorem 1.1.

Proof. We are going to fix Schwartz functions f1 and f2 such that ‖f1‖1 = ‖f2‖1 = 1.
To prove the theorem, we need to show that for any α > 0 we have

(8.1) |E|2 ≤ C(A+B)α−1,

where E = {M(f1, f2) > α}.
It is well known that if we define distributional kernels

Kj = F−1(mj),

we can write

Tmj (f1, f2)(x) =
∫
Kj(x− y, x− z)f1(y)f2(z) dy dz

in the sense of distributions. The distribution K is a function away from the origin.
Standard argument shows that the following estimate holds

|∂βKj(x1, x2)| ≤ C (|x1|+ |x2|)−(2d+|β|)

for any j and multiindex |β| ≤ 1.
Now we shall perform the Calderón-Zygmund decomposition at the level (αγ)1/2

where γ = A−1, let us put for both of the functions fi = bi + gi. Let us remind that
for the function gi we have

‖gi‖s ≤ C(αγ)1/2s′

for every s ∈ [1,∞]. The function bi can be written as bi =
∑

l bi,l, where each of the
functions bi,l is supported in a cube Qi,l with center ci,li and the cubes with same
index i have disjoint interiors. Furthermore, we have∫

bi,l(x)dx = 0,∫
|bi,l(x)|dx ≤ C(αγ)1/2|Qi,l|,

| ∪l Qi,l| ≤ C(αγ)1/2

and
‖bi‖1 ≤ C.
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It is clear that any x ∈ E belongs to a set of the form {M(h1, h2) > α/4} where
each hi ∈ {gi, bi}. Thus, we need to prove (8.1) for all four combination of hi’s.

First, the (p1, p2, p) boundedness of M gives by the Chebychev’s inequality

|{M(g1, g2) > α/4}| ≤ C(A/α)p‖g1‖p
p1
‖g2‖p

p2

≤ CApα−1/2γp−1/2 = CA1/2α−1/2.

Next, we need to estimate the terms which contains o functions bi, o ∈ {1, 2}. To
simplify the notation, we shall only prove that

|{M(b1, g2) > α/4}| ≤ C(A+B)1/2 and

|{M(b1, b2) > α/4}| ≤ C(A+B)1/2.

Let us now take a point x outside ∪i,l2Qi,l. The sublinearity gives

M(b1, g2)(x) ≤
∑
l1

M(b1,l1 , g2)(x) and

M(b1, b2)(x) ≤
∑
l1,l2

M(b1,l1 , b2,l2)(x).

Let us fix indices l1, l2 and assume that the cube Q1,l1 is smaller than Q2,l2 . The
smoothess of Kj gives in the usual way∣∣∣∣∣

∫
Q1,l1

Kj(x− y1, x− y2)b1,l1(y1)dy1

∣∣∣∣∣ ≤ CB

∫
Q1,l1

|b1,l1(y1)|diam(Q1,l1)
(|x− y1|+ |x− y2|)2d+1

dy1.

Thus we have either∫
R2d

b1,l1(y1)b2,l2(y2)Kj(x− y1, x− y2)dy1dy2

≤ CB

∫
Q2,l2

b2,l2(y2)
∫

Q1,l1

|b1,l1(y1)|diam(Q1,l1)
(|x− y1|+ |x− y2|)2d+1

dy1dy2

≤ CB‖b1,l1‖1‖b2,l2‖1
diam(Q1,l1)

(diam(Q1,l1) + |x− c1,l1 |+ diam(Q2,l2) + |x− c2,l2 |)
2d+1

or ∫
R2d

b1,l1(y1)g2(y2)Kj(x− y1, x− y2)dy1dy2

≤ CB‖b1,l1‖1‖g2‖∞
diam(Q1,l1)

(diam(Q1,l1) + |x− c1,l1 |)
d+1

The cube Q1,l1 is the smaller one, so we can write

diam(Q1,l1)

(diam(Q1,l1) + |x− c1,l1 |+ diam(Q2,l2) + |x− c2,l2 |)
2d+1

≤ C
2∏

i=1

diam(Qi,li)
1/2

(diam(Qi,li) + |x− ci,li |))
d+1/2

Since these estimates do not depend on j we have

M(b1, g2)(x) ≤ CB(αγ)1/2
∑
l1

‖b1,l1‖1diam(Qi,li)
1/2

(diam(Qi,li) + |x− ci,li |))
d+1/2
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and

M(b1, b2)(x) ≤ CB
2∏

i=1

∑
l1,l2

‖bi,li‖1diam(Qi,li)
1/2

(diam(Qi,li) + |x− ci,li |))
d+1/2


The sum in the last product is called Marcinkiewicz fuction, and a well known estimate
(see [14]) says that∫

Rd

∑
ki

diam(Qi,ki
)d+1/2

(diam(Qi,li) + |x− ci,li |))
d+1/2

dx ≤ C| ∪ki
Qi,ki

| ≤ C(αγ)−1/2.

The estimate (8.1) then follows the usual way, the size of the set ∪i,l2Qi,l is controlled
by C(αγ)−1/2 and outside we use the just derived estimate and Hölder’s inequality.
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