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ON THE LINEARIZED LOCAL CALDERÓN PROBLEM

David Dos Santos Ferreira, Carlos E. Kenig, Johannes Sjöstrand, and
Gunther Uhlmann

Abstract. In this article, we investigate a density problem coming from the lineariza-
tion of Calderón’s problem with partial data. More precisely, we prove that the set of

products of harmonic functions on a bounded smooth domain Ω vanishing on any fixed

closed proper subset of the boundary are dense in L1(Ω) in all dimensions n ≥ 2. This
is proved using ideas coming from the proof of Kashiwara’s Watermelon theorem [15].
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1. Introduction

1.1. Main results. In the seminal article [7], A. P. Calderón asked the question of
whether it is possible to determine the electrical conductivity of a body by making
current and voltage measurements at the boundary. Put in mathematical terms,
the question amounts to whether the knowledge of the Dirichlet-to-Neumann map
associated to the conductivity equation

div(γ∇u) = 0(1.1)

on a bounded open set Ω with smooth boundary uniquely determines a bounded
from below conductivity γ ∈ L∞(Ω). Using Green’s formula, the problem can be
reformulated in the following way: does the cancellation∫

Ω

(γ1 − γ2)∇u1 · ∇u2 dx = 0

for all solutions u1, u2 in H1(Ω) of equation (1.1) with respective conductivities γ1, γ2

imply that γ1 and γ2 are equal? Since 1980, the problem has been extensively studied
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and answers have been given in many cases (see for instance [17, 25, 20, 2]). In his ar-
ticle [7], Calderón studied the linearization of this problem at constant conductivities
γ = γ0: does the cancellation ∫

Ω

γ∇u · ∇v dx = 0

for all pairs of harmonic functions (u, v) imply that γ ∈ L∞(Ω) vanishes identically?
The answer can easily be seen to be true by using harmonic exponentials. A similar
and related inverse problem for the Schrödinger equation

−∆u+ qu = 0(1.2)

on a bounded open set with smooth boundary Ω is whether the Dirichlet-to-Neumann
map associated to this equation uniquely determines the bounded potential q (see for
instance [25, 20, 5]). In [25], Calderón’s problem is reduced to this problem for γ ∈ C2.
The linearization of this inverse problem at q = 0 leads to the question of density of
products of harmonic functions in L1(Ω). Again the use of harmonic exponentials is
enough to conclude this.

We are interested in local versions of these inverse problems, in particular to prove
that if Λqj denotes the Dirichlet-to-Neumann map associated with the Schrödinger
equation (1.2) with potential qj and if

Λq1f |Σ = Λq2f |Σ, ∀f ∈ H 1
2 (∂Ω), supp f ⊂ Σ,(1.3)

where Σ is an open neigbourhood of some point in the boundary, then q1 = q2. An
equivalent formulation is that the cancellation∫

Ω

qu1u2 dx = 0

for all solutions u1, u2 in H1(Ω) of the Schrödinger equations (1.2) with respective
bounded potentials q1, q2, and with Dirichlet data u1|∂Ω, u2|∂Ω supported in Σ, implies
that q vanishes identically. This result has recently been proved in dimension n = 2
by Imanuvilov, Uhlmann, and Yamamoto in [13]. The case of partial data where one
drops the support constraint on the test functions f ∈ H 1

2 (∂Ω) was treated in various
situations by Bukhgeim and Uhlmann [5], Kenig, Sjöstrand and Uhlmann [16], Isakov
[14] in dimension n ≥ 3 and Imanuvilov, Uhlmann, and Yamamoto [12] in dimension
2. However the question of global identifiability from (1.3) is still open in dimension
n ≥ 3.

As a first step in this study, we consider here the linearized version of the local
problem: we add the constraint that the restriction of the harmonic functions to the
boundary vanishes on any fixed closed proper subset of the boundary.

Theorem 1.1. Let Ω be a connected bounded open set in Rn, n ≥ 2, with smooth
boundary. The set of products of harmonic functions in C∞(Ω) which vanish on a
closed proper subset Γ ( ∂Ω of the boundary is dense in L1(Ω).

Another motivation for considering this linearized problem is the following possible
application of Theorem 1.1 to travel time tomography in dimension 2. We conjecture
that one can use Theorem 1.1 and a method developed by Pestov and Uhlmann in
[22] to solve the corresponding global problem to show that in a simple 2-dimensional
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Riemannian manifold with boundary, the conformal factor of the metric is uniquely
determined from partial knowledge of the boundary distance function. A Riemannian
manifold with boundary (X, g) is said to be simple if its boundary is strictly convex
and if no geodesic has conjugate points.

Conjecture 1.2. Let (X, g1) and (X, g2) be two simple compact Riemannian mani-
folds of dimension 2 with boundary, and d1 and d2 denote their respective Riemannian
distances. Let Y be a non-empty open subset of the boundary ∂X and suppose that
g1 and g2 are conformal metrics. If

d1|Y×∂X = d2|Y×∂X
then g1 = g2.

We hope to come back to this possible application in future work.

1.2. The Watermelon approach. The Segal-Bargmann transform of an L∞ func-
tion f on Rn is given by the following formula

Tf(z) =
∫
Rn

e−
1
2h (z−y)2f(y) dy

with z = x+ iξ ∈ Cn. This transform is also known in the literature as the Fourier-
Bros-Iagolnitzer (FBI) transform. A variant of this transformation is the wave packet
transform (or Gabor transform) which differs by a factor e−ξ

2/2h. Other denomina-
tions or variants include decomposition into coherent states, Husimi functions, etc.

The extension of this definition to tempered distributions is straightforward. The
Segal-Bargmann transform is related to the microlocal analysis of analytic singulari-
ties of a distribution: the analytic wave front set WFa(f) of f is the complement of
the set of all covectors (x0, ξ0) ∈ T ∗Rn \ 0 such that there exists a neighbourhood
Vz0 of z0 = x0 − iξ0 in Cn, a cutoff function χ ∈ C∞0 (Rn) with χ(x0) = 1, and two
constants c > 0 and C > 0 for which one has the estimate

|T (χf)(z)| ≤ Ce−
c
h + 1

2h | Im z|2 , ∀z ∈ Vz0 , ∀h ∈ (0, 1].(1.4)

The analytic wave front set WFa(f) is a closed conic set and its image by the first
projection T ∗Rn → Rn is the analytic singular support of f , i.e. the set of points
x0 ∈ Rn for which there is no neighbourhood on which f is a real analytic function.

When a distribution f is supported on a half-space H and when x0 ∈ supp f ∩∂H,
f cannot be analytic at x0, so the analytic wave front set of f cannot be empty. The
following result (see [10] chapter 8, Theorems 8.5.6 and 8.5.6’, [23] chapter 8, Theorem
8.2) gives explicitly covectors which are in the wave front set.

Theorem 1.3. Let f be a distribution supported in a half-space H, if x0 ∈ ∂H belongs
to the support of f , then (x0,±ν) belongs to the analytic wave front set of f where ν
denotes a unit conormal to the hyperplane ∂H.

One sometimes refers to Theorem 1.3 as the microlocal version of Holmgren’s
uniqueness theorem. This is due to the fact that the combination of this result
together with microlocal ellipticity

WFa(u) ⊂ WFa(Pu) ∪ charP
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in the conormal direction (equivalent to the fact that the hypersurface is
non-characteristic) yields Holmgren’s uniqueness theorem (see [23] chapter 8, [10]
chapter 8 and [11]). Other applications involve the proof of Helgason’s support theo-
rem on the Radon transform and extensions (see [4] and [11]) of this result. Theorem
1.3 has also proved to be a useful tool in the resolution of inverse problems (see [16]
and [9]) with partial data. In fact the microlocal version of Holmgren’s uniqueness
theorem is a consequence1 of a more general result on the analytic wave front set due
to Kashiwara (see [15], [23] chapter 8, Theorem 8.3, [10] chapter 9, Theorem 9.6.6)

Watermelon Theorem. Let f be a distribution supported in a half-space H, if x0 ∈
∂H and if (x0, ξ0) belongs to the analytic wave front set of f , then so does (x0, ξ0+tν)
where ν denotes a unit conormal to the hyperplane ∂H provided ξ0 + tν 6= 0.

From Kashiwara’s Watermelon theorem, it is easy to deduce the microlocal version
of Holmgren’s uniqueness theorem: if f is supported in the half-space H and x0 ∈
∂H ∩ supp f then there exists (x0, ξ0) in the analytic wave front set of f since f
cannot be analytic at x0, then (x0, ξ0 + tν) ∈ WFa(f) by the Watermelon theorem,
which implies (x0, ν + ξ0/t) ∈ WFa(f) since the wave front set is conic and finally
(x0, ν) ∈ WFa(f) by passing to the limit since the wave front set is closed.

One possible proof of Kashiwara’s Watermelon theorem involves the
Segal-Bargmann transform. Note that there is an a priori exponential bound on
the Segal-Bargmann transform of an L∞ function

|Tf(z)| ≤ (2πh)
n
2 e

1
2h | Im z|2‖f‖L∞ .

If f is supported in the half-space x1 ≤ 0 then the former estimate can be improved
into

|Tf(z)| ≤ (2πh)
n
2 e

1
2h (| Im z|2−|Re z1|2)‖f‖L∞

when Re z1 ≥ 0. The exponent in the right-hand side is harmonic with respect to
z1. The idea of the proof of the Watermelon theorem is to propagate the exponential
decay by use of the maximum principle. If f is supported in the half-space x1 ≤ 0,
one works with the subharmonic function

ϕ(z1) +
1
2
(Re z1)2 −

1
2
(Im z1)2 + h log |Tf(z0 + z1e1)|

on a rectangle R. One of the edges of R is contained in the neighbourhood Vz0 where
there is the additional exponential decay (1.4) of the Segal-Bargmann transform and
one chooses ϕ to be a non-negative harmonic function vanishing on the boundary
of R except for the segment where there is the exponential decay. The fact that
ϕ is positive on the interior of the rectangle R allows to propagate the exponential
decay of the Segal-Bargmann transform and this translates into the propagation of
singularities described in the Watermelon theorem. For more details we refer the
reader to [23, 24]. In this note, we will use a variant of this argument adapted to our
problem.

1There are of course other ways to prove Theorem 1.3.



959

2. From local to global results

Let Ω be a connected bounded open set in Rn with smooth boundary. Consider a
proper closed subset Γ ( ∂Ω of the boundary and a function f ∈ L∞(Ω). Our aim is
to prove that the cancellation ∫

Ω

fuv dx = 0(2.1)

for any pair of harmonic functions u and v in C∞(Ω) satisfying

u|Γ = v|Γ = 0

implies that f vanishes identically. Note that the bigger the subset Γ is, the smaller
the set of harmonic functions vanishing on Γ is. Therefore we can assume that the
complement of Γ in the boundary, is a small open neighbourhood of some point of
the boundary. We will obtain Theorem 1.1 as a corollary of a local result.

Theorem 2.1. Let Ω be a bounded open set in Rn, n ≥ 2, with smooth boundary, let
x0 ∈ ∂Ω and Γ be the complement of an open boundary neighbourhood of x0. There
exists δ > 0 such that if we have the cancellation (2.1) for any pair of harmonic
functions u and v in C∞(Ω) vanishing on Γ, then f vanishes on B(x0, δ) ∩ Ω.

Let us see how this local result implies the global one. We have learned of this
technique from unpublished work of Alessandrini, Isozaki and Uhlmann [1]. We will
need the following approximation lemma in the spirit of the Runge approximation
theorem.

Lemma 2.2. Let Ω1 ⊂ Ω2 be two bounded open sets with smooth boundaries. Let
GΩ2 be the Green kernel associated to the open set Ω2

−∆yGΩ2(x, y) = δ(x− y), GΩ2(x, ·)|∂Ω2 = 0.

Then the set { ∫
Ω2

GΩ2(·, y)a(y) dy : a ∈ C∞(Ω2), supp a ⊂ Ω2 \ Ω1

}
(2.2)

is dense for the L2(Ω1) topology in the subspace of harmonic functions u ∈ C∞(Ω1)
such that u|∂Ω1∩∂Ω2 = 0.

Proof. Let v ∈ L2(Ω1) be a function which is orthogonal to the subspace (2.2), then
by Fubini we have ∫

Ω2

a(y)
( ∫

Ω1

GΩ2(x, y)v(x) dx
)
dy = 0

for all a ∈ C∞(Ω2) supported in Ω2 \ Ω1, therefore∫
Ω1

GΩ2(x, y)v(x) dx = 0, ∀y ∈ Ω2 \ Ω1.

We want to show that v is orthogonal to any harmonic function u ∈ C∞(Ω1) such
that u|∂Ω1∩∂Ω2 = 0.
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Figure 1. The open sets Ω1 and Ω2

Let u ∈ C∞(Ω1) be a such a harmonic function. If we consider

w(y) =
∫
Ω1

GΩ2(x, y)v(x) dx ∈ H2(Ω2) ∩H1
0 (Ω2)

then we have by Green’s formula∫
Ω1

uv dx =
∫

Ω1

u∆w dx−
∫

Ω1

w∆u dx

=
∫
∂Ω1

u∂νw dx−
∫
∂Ω1

w∂νu dx.

Note that the trace of w vanishes on ∂Ω1 ∩ ∂Ω2 since w ∈ H1
0 (Ω2), therefore we have∫

Ω1

uv dx =
∫
∂Ω1\∂Ω2

u∂νw dx−
∫
∂Ω1\∂Ω2

w∂νu dx.(2.3)

At the beginning of this proof, we have shown that

w|Ω2\Ω1
= 0 hence also ∇w|Ω2\Ω1

= 0

and this implies that w|∂Ω1\∂Ω2 = 0 and ∂νw|∂Ω1\∂Ω2 = 0. Therefore the integral (2.3)
vanishes and this proves that v is orthogonal to any harmonic function in C∞(Ω1)
vanishing on ∂Ω1 ∩ ∂Ω2. �

Proof of Theorem 1.1. We want to prove that f vanishes inside Ω. We fix a point
x1 ∈ Ω and let θ : [0, 1] → Ω be a C1 curve joining x0 ∈ ∂Ω \ Γ to x1 such that
θ(0) = x0, θ′(0) is the interior normal to ∂Ω at x0 and θ(t) ∈ Ω for all t ∈ (0, 1]. We
consider the closed neighbourhood

Θε(t) =
{
x ∈ Ω : d

(
x, θ([0, t])

)
≤ ε

}
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of the curve ending at θ(t), t ∈ [0, 1] and the set

I =
{
t ∈ [0, 1] : f vanishes a.e. on Θε(t) ∩ Ω

}
which is obviously a closed subset of [0, 1]. By Theorem 2.1 it is non-empty if ε is
small enough. Let us prove that I is open. If t ∈ I and ε is small enough, then we
may suppose ∂Θε(t) ∩ ∂Ω ⊂ ∂Ω \ Γ and Ω \Θε(t) can be smoothed out into an open
subset Ω1 of Ω with smooth boundary such that

Ω1 ⊃ Ω \Θε(t) ∂Ω ∩ ∂Ω1 ⊃ Γ.

We also augment the set Ω by smoothing out the set Ω ∪ B(x0, ε
′) into an open set

Ω2 with smooth boundary; if ε′ is small enough then one can construct Ω2 in such a
way that

∂Ω2 ∩ ∂Ω ⊃ ∂Ω1 ∩ ∂Ω ⊃ Γ.
Let GΩ2 be the Green kernel associated to the open set Ω2

−∆yGΩ2(x, y) = δ(x− y), GΩ2(x, ·)|∂Ω2 = 0.

The function ∫
Ω1

f GΩ2(x, y)GΩ2(t, y) dy, t, x ∈ Ω2 \ Ω1

is harmonic (both as a function of the t and x variables) and satisfies∫
Ω1

f GΩ2(x, y)GΩ2(t, y) dy =
∫
Ω

f GΩ2(x, y)GΩ2(t, y) dy

since f vanishes on Θε(t) ∩ Ω. When t, x belong to Ω2 \ Ω, this integral is 0 since
the Green functions are C∞(Ω), harmonic on Ω and vanish on Γ ⊂ ∂Ω2. By unique
continuation and continuity, we have∫

Ω1

f GΩ2(x, y)GΩ2(t, y) dy = 0, t, x ∈ Ω2 \ Ω1.(2.4)

By Fubini, this means that we will have
∫
Ω1
fuv dx = 0 for all functions u, v on Ω1

belonging to the subspace (2.2). By continuity of the bilinear form

L2(Ω1)× L2(Ω1) → C

(u, v) 7→
∫

Ω1

fuv dx

and by Lemma 2.2, we have ∫
Ω1

fuv dx = 0(2.5)

for all functions u, v in C∞(Ω1) harmonic on Ω1 which vanish on ∂Ω1 ∩ ∂Ω2.
Thanks to Theorem 2.1, the cancellation (2.5) implies that f vanishes on a neigh-

bourhood of ∂Ω1 \ (∂Ω1 ∩ ∂Ω2). This shows that f vanishes on a slightly bigger
neighbourhood Θε(τ), τ > t of the curve, hence that I is an open set. By connectiv-
ity, we conclude that I = [0, 1] and therefore that x1 /∈ supp f . Since the choice of x1

is arbitrary, this completes the proof of Theorem 1.1. �
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3. Harmonic exponentials

This section and the next are devoted to the proof of Theorem 2.1. One can
suppose that Ω \ {x0} is on one side of the tangent hyperplane Tx0(Ω) at x0 by
making a conformal transformation. Pick a ∈ Rn \ Ω on the line segment in the
direction of the outward normal to ∂Ω at x0, then there is a ball B(a, r) such that
∂B(a, r) ∩ Ω = {x0}, and there is a conformal transformation

ψ : Rn \B(a, r) → B(a, r)

x 7→ x− a

|x− a|2
r2 + a

which fixes x0 and exchanges the interior and the exterior of the ball B(a, r). The
hyperplane H : (x−x0) ·(a−x0) = 0 is tangent to ψ(Ω), and the image ψ(Ω)\{x0} by
the conformal transformation lies inside the ball B(a, r), therefore on one side of H.
The fact that functions are supported on the boundary close to x0 is left unchanged.
Since a function is harmonic on Ω if and only if its Kelvin transform

u∗ = rn−2|x− a|−n+2u ◦ ψ

is harmonic on ψ(Ω), (2.1) becomes

0 =
∫
Ω

fuv dx =
∫

ψ(Ω)

r4|x− a|−4f ◦ ψ u∗v∗ dx

for all harmonic functions u∗, v∗ on ψ(Ω). If |x− a|−4f ◦ ψ vanishes close to x0 then
so does f . Moreover, by scaling one can assume that Ω is contained in a ball of radius
1.

Our setting will therefore be as follows: x0 = 0, the tangent hyperplane at x0 is
given by x1 = 0 and

Ω ⊂
{
x ∈ Rn : |x+ e1| < 1}, Γ =

{
x ∈ ∂Ω : x1 ≤ −2c

}
.(3.1)

The prime will be used to denote the last n − 1 variables so that x = (x1, x
′) for

instance. The Laplacian on Rn has p(ξ) = ξ2 as a principal symbol, we denote by
p(ζ) = ζ2 the continuation of this principal symbol on Cn, we consider

p−1(0) =
{
ζ ∈ Cn : ζ2 = 0

}
.

In dimension n = 2, this set is the union of two complex lines

p−1(0) = Cγ ∪Cγ

where γ = ie1 + e2 = (i, 1) ∈ C2. Note that (γ, γ) is a basis of C2: the decomposition
of a complex vector in this basis reads

ζ = ζ1e1 + ζ2e2 =
ζ2 − iζ1

2
γ +

ζ2 + iζ1
2

γ.(3.2)

Similarly for n ≥ 2, the differential of the map

s : p−1(0)× p−1(0) → Cn

(ζ, η) 7→ ζ + η
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at (ζ0, η0) is surjective

Ds(ζ0, η0) : Tζ0p
−1(0)× Tη0p

−1(0) → Cn

(ζ, η) 7→ ζ + η

provided Cn = Tζ0p
−1(0)+Tη0p

−1(0), i.e. provided ζ0 and η0 are linearly independent.
In particular, this is the case if ζ0 = γ and η0 = −γ; as a consequence all z ∈ Cn,
|z − 2ie1| < 2ε may be decomposed as a sum of the form

z = ζ + η, with ζ, η ∈ p−1(0), |ζ − γ| < Cε, |η + γ| < Cε.(3.3)

provided ε > 0 is small enough.
The exponentials with linear weights

e−
i
hx·ζ , ζ ∈ p−1(0)

are harmonic functions. We need to add a correction term in order to obtain harmonic
functions u satisfying the boundary requirement u|Γ = 0. Let χ ∈ C∞0 (Rn) be a cutoff
function which equals 1 on Γ, we consider the solution w to the Dirichlet problem{

∆w = 0 in Ω

w|∂Ω = −(e−
i
hx·ζχ)|∂Ω.

(3.4)

The function

u(x, ζ) = e−
i
hx·ζ + w(x, ζ)

is in C∞(Ω), harmonic and satisfies u|Γ = 0. We have the following bound on w:

‖w‖H1(Ω) ≤ C1‖e−
i
hx·ζχ‖

H
1
2 (∂Ω)

(3.5)

≤ C2(1 + h−1|ζ|) 1
2 e

1
hHK(Im ζ)

where HK is the supporting function of the compact subset K = suppχ ∩ ∂Ω of the
boundary

HK(ξ) = sup
x∈K

x · ξ, ξ ∈ Rn.

In particular, if we take χ to be supported in x1 ≤ −c and equal to 1 on x1 ≤ −2c
then the bound (3.5) becomes

‖w‖H1(Ω) ≤ C2(1 + h−1|ζ|) 1
2 e−

c
h Im ζ1 e

1
h | Im ζ′| when Im ζ1 ≥ 0.(3.6)

Our starting point is the cancellation of the integral∫
Ω

f(x)u(x, ζ)u(x, η) dx = 0, ζ, η ∈ p−1(0)(3.7)

which may be rewritten under the form∫
Ω

f(x)e−
i
hx·(ζ+η) dx = −

∫
Ω

f(x)e−
i
hx·ζw(x, η) dx

−
∫
Ω

f(x)e−
i
hx·ηw(x, ζ) dx−

∫
Ω

f(x)w(x, ζ)w(x, η) dx.
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This allows us to give a bound on the left-hand side term∣∣∣∣ ∫
Ω

f(x)e−
i
hx·(ζ+η) dx

∣∣∣∣ ≤ ‖f‖L∞(Ω)

(
‖e− i

hx·ζ‖L2(Ω)‖w(x, η)‖L2(Ω)

+ ‖e− i
hx·η‖L2(Ω)‖w(x, ζ)‖L2(Ω) + ‖w(x, η)‖L2(Ω)‖w(x, ζ)‖L2(Ω)

)
.

Thus using (3.6)∣∣∣∣ ∫
Ω

f(x)e−
i
hx·(ζ+η) dx

∣∣∣∣ ≤ C3‖f‖L∞(Ω)(1 + h−1|η|) 1
2 (1 + h−1|ζ|) 1

2

× e−
c
h min(Im ζ1,Im η1) e

1
h (| Im ζ′|+| Im η′|)

when Im ζ1 ≥ 0, Im η1 ≥ 0 and ζ, η ∈ p−1(0). In particular if |ζ − aγ| < Cεa and
|η + aγ| < Cεa with ε ≤ 1/2C then∣∣∣∣ ∫

Ω

f(x)e−
i
hx·(ζ+η) dx

∣∣∣∣ ≤ C4h
−1‖f‖L∞(Ω)e

− ca
2h e

2Cεa
h .

Take z ∈ Cn with |z− 2iae1| < 2εa with ε small enough, once rescaled the decompo-
sition (3.3) gives

z = ζ + η, ζ, η ∈ p−1(0), |ζ − aγ| < Cεa, |η + aγ| < Cεa

we therefore get the estimate∣∣∣∣ ∫
Ω

f(x)e−
i
hx·z dx

∣∣∣∣ ≤ C4h
−1‖f‖L∞(Ω)e

− ca
2h e

2Cεa
h(3.8)

for all z ∈ Cn such that |z − 2iae1| < 2εa.
In order to conclude, one needs to extrapolate the exponential decay to more values

of the frequency variable z. This will be achieved using a variant of the proof of the
Watermelon theorem. We extend the function f to Rn by assigning to it the value 0
outside Ω.

4. A watermelon approach

Let us recall the definition of the Segal-Bargmann transform of an L∞ function f
on Rn

Tf(z) =
∫
Rn

e−
1
2h (z−y)2f(y) dy, z ∈ Cn

and the a priori exponential bound

|Tf(z)| ≤ (2πh)
n
2 e

1
2h | Im z|2‖f‖L∞ .(4.1)

If f is supported in the half-space x1 ≤ 0 then the former estimate can be improved
into

|Tf(z)| ≤ (2πh)
n
2 e

1
2h (| Im z|2−|Re z1|2)‖f‖L∞(4.2)

when Re z1 ≥ 0. Note that when we restrict the Segal-Bargmann transform to real
values x ∈ Rn, and when we multiply by the factor (2πh)−n/2 we obtain the heat
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operator whose kernel (2πh)−n/2e−(x−y)2/2h is a Gaussian mollifier, therefore if f ∈
L∞comp(Rn)

lim
h→0

(2πh)−
n
2 Tf(x) = f(x) in Lp(Rn)(4.3)

for all 1 ≤ p < ∞. If one gets exponential decay of the Segal-Bargmann transform
when x ∈ Rn is close to 0, then by the former limit, f vanishes close to 0 and this
proves Theorem 2.1. Getting such an exponential decay will be the aim of this section.

The kernel of the Segal-Bargmann transform of a function f ∈ L∞ can be written
as a linear superposition of exponentials with linear weights

e−
1
2h (z−y)2 = e−

z2
2h (2πh)−

n
2

∫
e−

t2
2h e−

i
hy·(t+iz) dt

therefore we get

Tf(z) = (2πh)−
n
2

∫∫
e−

1
2h (z2+t2)e−

i
hy·(t+iz)f(y) dt dy.(4.4)

Suppose now that the function f is supported in Ω and satisfies (3.7), formula (4.4)
allows us to improve the estimate (4.2):

|Tf(z)| ≤ (2πh)−
n
2

∫
e

1
2h (| Im z|2−|Re z|2−t2)

∣∣∣∣ ∫
e−

i
hy·(t+iz)f(y) dy

∣∣∣∣ dt.
Suppose now that Re z1 ≥ 0: if we split the integral with respect to the variable t in
two integrals

|Tf(z)| ≤ e
1
2h (| Im z|2−|Re z|2)

(2πh)
n
2

( ∫
|t|≤εa

e−
t2
2h

∣∣∣∣ ∫
e−

i
hy·(t+iz)f(y) dy

∣∣∣∣ dt
+

∫
|t|≥εa

e−
t2
2h

∣∣∣∣ ∫
e−

i
hy·(t+iz)f(y) dy

∣∣∣∣ dt)
this implies

(4.5) |Tf(z)| ≤ e
1
2h (| Im z|2−|Re z|2)

(
sup
|t|≤εa

∣∣∣∣ ∫
e−

i
hy·(t+iz)f(y) dy

∣∣∣∣
+
√

2 e
1
h |Re z′| e−

ε2a2
4h

∫
Ω

|f(y)| dy
)

since f is supported in Ω ⊂ {y1 ≤ 0}. If we assume |z − 2ae1| < εa with ε small
enough2, the estimate (3.8) reads in our context3

2Note that in dimension n = 2 the decomposition (3.3) for t + iz is explicit

t + iz =
1

2

`
t2 − it1 + iz2 + z1

´
γ| {z }

=ζ

+
1

2

`
t2 + it1 + iz2 − z1

´
γ| {z }

=η

.

3Beware that z has been changed into t + iz and we have used that |(t + iz)− 2iae1| ≤ |t|+ |z −
2ae1| < 2εa.
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∣∣∣∣ ∫
Ω

f(y)e−
i
hy·(t+iz) dy

∣∣∣∣ ≤ C4h
−1‖f‖L∞(Ω)e

− ca
2h e

2Cεa
h(4.6)

when |t| ≤ εa and |z − 2ae1| < εa. Thus combining the two estimates (4.6) and (4.5)
we get

|Tf(z)| ≤ C5h
−1‖f‖L∞(Ω)e

1
2h (| Im z|2−|Re z|2) (

e−
ca
2h e

2Cεa
h + e−

ε2a2
4h e

εa
h

)
provided |z − 2ae1| < εa. Now choosing ε < c/8C and a > (c + 4ε)/ε2 we finally
obtain the bound

|Tf(z)| ≤ 2C5h
−1‖f‖L∞(Ω)e

1
2h (| Im z|2−|Re z|2− ca

2 ).(4.7)

To sum-up we have obtained the following bounds on the Segal-Bargmann transform
of f

(4.8) e−
Φ(z1)

2h |Tf(z1, x′)| ≤ Ch−1‖f‖L∞(Ω)

×

{
1 when z1 ∈ C,
e−

ca
4h when |z1 − 2a| ≤ εa

2 , |x
′| < εa

2

, x′ ∈ Rn−1

where the weight Φ is given by the following expression

Φ(z1) =

{
(Im z1)2 when Re z1 ≤ 0
(Im z1)2 − (Re z1)2 when Re z1 ≥ 0.

These estimates correspond to (4.1), (4.2) and (4.7).

Lemma 4.1. Let b and L be two positive numbers. Let F be an entire function
satisfying the following bounds

e−
Φ(s)
2h |F (s)| ≤

{
1 when s ∈ C
e−

c
2h when |s− L| ≤ b

then for all r ≥ 0 there exist c′, δ > 0 (which do not depend on the function F ) such
that F satisfies

|F (s)| ≤ e−
c′
2h +

(Im s)2

2h , when |Re s| ≤ δ and | Im s| ≤ r.

Proof. We consider the subharmonic function

f(s) = 2h log |F (s)| − (Im s)2 + (Re s)2

which satisfies the bounds

f(s) ≤


(Re s)2 when Re s ≤ 0
0 when Re s ≥ 0
−c when |s− L| ≤ b.

(4.9)

We will work on the following domain

Uδ =
(
D(−2δ,R) \D(L, b)

)
∩ {Re s > −2δ}
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Uδ

−2δ
L0

Figure 2. The domain Uδ

and consider the following harmonic function on Uδ

ϕ(s) = − c
d

(
log |s+ 2δ + L| − log |s+ 2δ − L|

)
+ 4δ2.

If we choose

d = log(b+ 2L+ 2δ)− log(b− 2δ) = log(1 + 2L/b) +O(δ)

then the harmonic function ϕ has the following properties

� lim|s|→∞ ϕ = 4δ2

� ϕ = 4δ2 on the line Re s = −2δ
� ϕ ≥ −c on the circle |s− L| = b.

If we choose R large enough, the properties of the function ϕ imply that

(f − ϕ)|∂Uδ
≤ 0

therefore by the maximum principle, the subharmonic function f − ϕ is non-positive
on Uδ. In particular, this gives

f ≤ − c

2d
log

(L+ δ)2 + r2

(L− δ)2 + r2
+ 4δ2 = −c′

when | Im s| ≤ r and |Re s| ≤ δ. If δ is small enough then

c′ =
2Lc

(L2 + r2) log(1 + 2L/b)
δ +O(δ2)

is positive, and we obtain the desired exponential decay

|F (s)| = e
f(s)
2h +

(Im s)2−(Re s)2

2h ≤ e−
c′
2h +

(Im s)2

2h

if |Re s| ≤ δ and | Im s| ≤ r. �
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Remark 4.2. In fact, one can turn the former proof of Lemma 4.1 into a more con-
ceptual proof where one does not need to have an explicit expression of the harmonic
majorant ϕ. This may turn handy in situations where it might be difficult to find an
expression for the function ϕ. Then one can reason along the following lines.

One considers the harmonic function ϕ on Uδ with the following boundary values:
� ϕ = 4δ2 on the boundary of the semi-disc,
� ϕ = −c on the circle of centre L and radius b.

The function ϕ̃ = 4δ2−ϕ is harmonic and non-negative on Uδ and attains its minimum
everywhere on the cut-diameter of the semi-disc. By the Hopf boundary lemma, if ν
stands for the interior normal, one has4

∂ϕ̃

∂ν
(−2δ + iy) ≥ C

δ
ϕ̃(iy) > 0, |y| ≤ r < R

where C is a universal constant. By Harnack’s inequality, ϕ̃(iy) and

ϕ̃(L− b− δ2) = c+O(δ2)

are comparable, and the constants are uniform with respect to δ. Thus if δ is small
enough, one gets

−∂ϕ
∂ν

(−2δ + iy) ≥ 2c′

δ
, |y| < r.

This inequality and elliptic regularity give

ϕ(s) ≤ −c′, |Re s| ≤ δ, | Im s| ≤ r(4.10)

if δ is small enough.
One has

(f − ϕ)|∂Uδ
≤ 0

therefore by the maximum principle, the subharmonic function f − ϕ is non-positive
on Uδ. But according to (4.10), when |Re s| ≤ δ and | Im s| ≤ r one has

f ≤ ϕ ≤ −c′(4.11)

This gives the desired exponential estimate

|F (s)| ≤ e−
c′
2h +

(Im s)2

2h

if |Re s| ≤ δ and | Im s| ≤ r. This shows that the arguments given in the proof of
Lemma 4.1 do not rely on the expression of the majorant ϕ and are thus somewhat
flexible.

Applying Lemma 4.1 to the function

F (s) =
h|Tf(s, x′)|
C‖f‖L∞(Ω)

we obtain in particular that

|Tf(x)| ≤ Ch−1‖f‖L∞(Ω)e
− c′

2h

4The radius R is chosen large enough so that the points of the boundary with | Im s| ≤ r stay far
enough from the corners where the Hopf lemma is no longer valid.
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for all x ∈ Ω, |x1| ≤ δ, provided δ has been chosen small enough. Multiplying the
former estimate by (2πh)−n/2 and letting h tend to 0, we deduce from (4.3)

f(x) = 0, ∀x ∈ Ω, 0 ≥ x1 ≥ −δ.

This completes the proof of Theorem 2.1.
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[2] K. Astala, L. Päivärinta, Calderón’s inverse conductivity problem in the plane, Ann. of
Math., 163 (2006), 265–299.

[3] R. M. Brown, G. Uhlmann, Uniqueness in the inverse conductivity problem for nonsmooth

conductivities in two dimensions, Comm. Partial Differential Equations, 22 (1997), 1009–
1027.

[4] J. Boman, T. Quinto, Support theorems for real-analytic Radon transforms, Duke Math.

J., 55 (1987), 943–948.
[5] A. Bukhgeim, Recovering the potential from Cauchy data in two dimensions, J. Inverse

Ill-Posed Probl., 16 (2008), 19–34.
[6] A. Bukhgeim, G.Uhlmann, Recovering a potential from partial Cauchy data, Comm.

Partial Differential Equations, 27 (2002), 653668.

[7] A. P. Calderón, On an inverse boundary value problem, Seminar on Numerical Analy-

sis and its Applications to Continuum Physics, Rio de Janeiro, Sociedade Brasileira de
Matematica, (1980), 65–73.
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