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ON THE DIMENSION OF THE HILBERT SCHEME OF CURVES

Dawei Chen

Abstract. Consider an irreducible component of the Hilbert scheme whose general
points parameterize degree d genus g smooth irreducible and non-degenerate curves in a

projective variety X. We give lower bounds for the dimension of such components when

X is P3, P4 or a smooth quadric threefold in P4, respectively. Those bounds make sense
from the asymptotic viewpoint if we fix d and let g vary. Some examples are constructed

using determinantal varieties to show the sharpness of the bounds for d and g in a certain

range. The results can be applied to study rigid curves.

1. Introduction

In this section, we briefly recall some facts about Hilbert schemes, and state the
main results of this paper. We always work over an algebraically closed field of
characteristic zero.

Let P be the Hilbert polynomial of a subscheme in Pr. We can ask if there exists
a moduli space parameterizing all subschemes of Pr that have P as their Hilbert
polynomial. Grothendieck [7] proved there exists a fine moduli space HilbP (Pr).
Moreover, it is a projective scheme. Few facts about the global properties of the
Hilbert scheme HilbP (Pr) have been obtained. Nevertheless, Hartshorne [11] proved
that HilbP (Pr) is connected if not empty.

Here curves are our main interests. By a curve, we mean a purely 1-dimensional
closed subscheme in Pr. The Hilbert polynomial P of a curve is a linear function
with leading coefficient d and constant term 1 − g, i.e. P (m) = dm + 1 − g, where
d and g are the degree and arithmetic genus of the curve. Hilbdm+1−g(Pr) may have
many irreducible components even for small r. For instance, it was shown [4] that
the number of irreducible components of Hilbdm+1−g(P3) cannot be bounded by a
polynomial of d and g.

In this paper we study the dimension of Hilbdm+1−g(Pr). A well-known result is
the following, cf. e.g. [10, 1.E].

Theorem 1.1. Let C be a curve in Pr such that [C] ∈ Hilbdm+1−g(Pr). The tangent
space of Hilbdm+1−g(Pr) at [C] can be identified as

T[C] = H0(C,NC/Pr ),

where NC/Pr is the normal sheaf of C in Pr. Moreover, if C is a locally complete
intersection, then

χ(NC/Pr ) ≤ dim[C]Hilbdm+1−g(Pr) ≤ h0(C,NC/Pr ),
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where χ(NC/Pr ) = h0(C,NC/Pr )− h1(C,NC/Pr ).

Definition 1.2. Let U be an irreducible component of Hilbdm+1−g(Pr) whose general
points parameterize smooth irreducible and non-degenerate curves in Pr. Define ld,g,r

as the lowest dimension of all such components U .

The goal of this paper is to bound ld,g,r from below. For a locally complete inter-
section [C] ∈ Hilbdm+1−g(Pr), we have χ(NC/Pr ) = (r + 1)d− (r − 3)(g − 1), cf. [10,
1.44]. Based on Theorem 1.1, we know that ld,g,r ≥ χ(NC/Pr ). However, this lower
bound χ(NC/Pr ) is not sharp in a number of cases.

For the beginning case r = 3, χ(NC/Pr ) = 4d is independent of g. If we fix d and
let g vary, the genus of a degree d reduced irreducible and non-degenerate curve in P3

can be as large as the Castelnuovo bound π(d, 3) = d2

4 + O(d). Fix d and let g vary.
When g approaches its maximum π(d, 3), we have ld,g,3 = g + O(d), which can be
much larger than 4d. One can refer to [9, Ch. 3] for these results on the Castelnuovo
theory. Our first result is the following improved lower bound for ld,g,3.

Theorem 1.3. When g2 ≥ d3, define µ(d, g) as the smallest integer that is greater
than

1 +
d2 − 4d− 4g

g +
√

g2 − d3 + 4dg + 4d2
.

Then for any d ≥ 3 and d
√

d ≤ g ≤ π(d, 3), we have

ld,g,3 ≥ 4d + g − 1− µ(d, g)d.

For fixed d, the bound 4d + g− 1−µ(d, g)d is increasing with g. In particular, it goes
to g + O(d) when g approaches the Castelnuovo bound π(d, 3).

The lower bound involved in Theorem 1.3 may look confusing. Nevertheless, let us
consider an example to show the power of this bound. Suppose d = 100 and g varies
from 0 to the Castelnuovo bound π(100, 3) = 2401. Pick g = 1100, which is large but
not close to the Castelnuovo bound. The bound 4d only says that l100,1100,3 ≥ 400.
However, by Theorem 1.3, we get l100,1100,3 ≥ 1099, which is much better.

Now consider the case r ≥ 4. The number χ(NC/Pr ) = (r+1)d−(r−3)(g−1) could
be negative if g is larger than d. So it makes sense to find at least a positive lower
bound for ld,g,r. Furthermore, such a lower bound may also help answer a question
regarding rigid curves.

Definition 1.4. A rigid curve in Pr is a smooth irreducible and non-degenerate curve
that does not have deformations except those induced from the automorphisms of Pr.

For instance, a rational normal curve is rigid. To the author’s best knowledge,
people have not found any other rigid curves. Harris and Morrison [10, 1.47] conjec-
tured that there does not exist a rigid curve except rational normal curves. One way
to attack this conjecture is to bound ld,g,r from below. If the inequality ld,g,r > dim
PGL(r) = r2 + 2r holds, then there cannot exist a degree d genus g rigid curve in Pr.
In fact, this is one of our motivations to study ld,g,r.

For the case r = 4, we have the following result.

Theorem 1.5. Let C be a degree d genus g smooth irreducible and non-degenerate
curve in P4. Fix d ≥ 5 and let g vary. If g > 3d

√
d + O(d), then C is not rigid.
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Here we could be more precise on the range of d and g as we have done in Theorem
1.3. However, we choose to only focus on the asymptotic behavior, since the order
d
√

d seems to be important. Currently we have not been able to extend the result to
r ≥ 5. But combining the results in [2], we expect the following conjecture to hold in
general.

Conjecture 1.6. For r ≥ 5, there exists a constant λr such that if g ≥ λrd
√

d+O(d),
a degree d genus g smooth irreducible and non-degenerate curve in Pr is not rigid.

In addition to projective spaces, we can also study the deformation of curves on a
hypersurface. The beginning case would be a smooth quadric threefold in P4. Since
all the smooth quadrics in P4 are isomorphic, we fix one and denote it by Q.

Definition 1.7. Let U be an irreducible component of Hilbdm+1−g(Q) whose general
points parameterize smooth irreducible and non-degenerate curves on Q. Define the
number qd,g as the smallest dimension of all such components U .

By the short exact sequence

0 → NC/Q → NC/P4 → NQ/P4 |C → 0,

it follows that χ(NC/Q) = 3d. So 3d provides a lower bound for qd,g. We can still
ask how good this lower bound could be. A similar result as Theorem 1.5 can be
established as follows.

Theorem 1.8. Fix d and let g vary.
(1) If g > 1√

2
d
√

d + O(d), then qd,g is strictly greater than 3d.

(2) If g < 2
15
√

5
d
√

d + O(d), the equality qd,g = 3d holds.

Again, we only focus on the asymptotic behavior. The coefficients of d
√

d might
be improved by refining our techniques, but the order d

√
d seems to be correct.

2. The Hilbert scheme of curves in P3

In this section, we will firstly prove Theorem 1.3. Fix d and let g vary in the range
g2 ≥ d3. The upshot is that for large g, a curve must be contained in a low degree
surface, cf. Theorem 2.1. We can estimate the dimension of the deformation of the
curve on that surface, which provides a better bound than 4d. Then we will discuss
whether the expected dimension 4d is sharp when g2 < d3.

Let us start from a result originally mentioned by Halphen and proved later by
Gruson and Peskine [8].

Theorem 2.1. Let C be a connected smooth curve of degree d and genus g in P3.
Let t denote a positive integer such that t(t− 1) < d. If g satisfies

(1) g >
d

2
(t +

d

t
− 4)− r(t− r)(t− 1)

2t
,

where 0 ≤ r < t, d + r ≡ 0 (mod t), then C must lie on a surface of degree ≤ t.

Note that if t ∼
√

d, then the right hand side of (1) ∼ d
√

d. Hence, Theorem 2.1
can help us deal with the case g2 > d3. For computational convenience, Theorem 2.1
can be slightly modified as follows.
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Proposition 2.2. Let C be a connected smooth curve of degree d and genus g in P3.
Let s denote a positive integer such that s(s + 1) < d. If g satisfies

(2) g >
d

2
(s +

d

s + 1
− 3),

then C must lie on a surface of degree k ≤ s.

Proof. In Theorem 2.1, let t = s + 1. �

For fixed d and g in the range g2 ≥ d3, consider the smallest positive integer
s satisfying s(s + 1) < d and the inequality (2). By Proposition 2.2, there ex-
ists a surface S of degree k ≤ s such that S contains C. Let Hilbdm+1−g(S) be
the Hilbert scheme parameterizing degree d and arithmetic genus g curves on S.
Hilbdm+1−g(S) can be viewed as a subscheme of Hilbdm+1−g(P3). We want to esti-
mate dim[C]Hilbdm+1−g(S).

If S is smooth, then χ(NC/S) provides a lower bound for dim[C]Hilbdm+1−g(S).
We have the short exact sequence

(3) 0 → NC/S → NC/P3 → NS/P3 ⊗OC → 0.

By the adjunction formula, NS/P3 ⊗OC = OC(k). Then we can compute χ(NC/S) by
the exact sequence (3) and Riemann-Roch,

χ(NC/S) = χ(NC/P3)− χ(NS/P3 ⊗OC)
= 4d− χ(OC(k))
= 4d + g − 1− kd

≥ 4d + g − 1− sd.

It follows that

dim[C]Hilbdm+1−g(P3) ≥ dim[C]Hilbdm+1−g(S) ≥ 4d + g − 1− sd.

Therefore, we get a lower bound for the dimension of Hilbdm+1−g(P3),

(4) ld,g,3 ≥ 4d + g − 1− sd.

The advantage of (4) is because in the range g2 ≥ d3, as g increases, s decreases,
and 4d + g − 1 − sd is more dominated by g. For instance, if we fix d and let g
approach the Castelnuovo bound π(d, 3), then ld,g,3 tends to g. But at this moment
s is very small. Therefore, the estimate (4) does not lose much information from the
asymptotic viewpoint.

In order to establish (4) when the surface S is singular and C passes through
singular points of S, we have to use Ext groups instead of cohomology. Before doing
that, let us prove a simple result, which shows that the situation is not very bad even
if S is singular.

Lemma 2.3. Let Ssing denote the singular locus of the surface S. Under the assump-
tion of Proposition 2.2, if C ∩ Ssing is not empty, then it is 0-dimensional.

Proof. If the dimension of Ssing is 0, then the statement is trivial. Otherwise the
dimension of Ssing is 1. By Bézout, the degree of Ssing is at most k(k−1) ≤ s(s−1) <
d, where k is the degree of S. Hence, C cannot be contained in Ssing. �

By Lemma 2.3, we can apply the following result from [14, Ch. 1, 2.13, 2.15].
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Proposition 2.4. Keep the above notation. If C ∩ Ssing is 0-dimensional, then
C ⊂ S is generically unobstructed and the dimension of every irreducible component
of Hilbdm+1−g(S) at [C] is at least

dim HomC(IC/S/I2
C/S ,OC)− dim Ext1C(IC/S/I2

C/S ,OC).(5)

Note that for smooth surface S, the value of (5) is just χ(NC/S). When S is
singular, we need to verify some exact sequences of Kähler differentials. We will do
it in a more general setting since the results can be applied to many other cases.

Proposition 2.5. Let C be a smooth connected curve and X be an (n−k)-dimensional
locally complete intersection such that C ⊂ X ⊂ Pn, n ≥ 3, 1 ≤ k ≤ n−2. If C∩Xsing

is 0-dimensional, we have the following exact sequences

0 → IC/X/I2
C/X

d−→ ΩX ⊗OC → ΩC → 0,(6)

0 → (IX/I2
X)⊗OC

d−→ ΩPn ⊗OC → ΩX ⊗OC → 0.(7)

Note that if X is smooth, these results are well-known. When X is singular, the
above sequences are still exact except the left hand sides may not be injective, cf. [12,
Ch. II 8].

Proof. It suffices to verify that the map to the middle term is injective for each
sequence. Since the question is local, we only need to work on a local affine chart U .
Suppose x1, . . . , xn are the local coordinates, and f1, . . . , fk locally cut out X in U .
We have ΩX(U) = ΩPn ⊗OX(U)/(df1, . . . , dfk).

Firstly, let us verify (6). Pick an element g ∈ IC/X(U). Suppose we have

dg =
n∑

j=1

∂g

∂xj
dxj = 0 ∈ ΩX ⊗OC(U).

There exist a1, . . . , ak ∈ OC(U) such that restricted to C,

∂g

∂xj
=

k∑
i=1

ai
∂fi

∂xj
, 1 ≤ j ≤ n.

It follows that d(g −
∑k

i=1 aifi) = 0 on C. Since C is smooth, the vanishing of
g −

∑k
i=1 aifi and its differential on C implies that g −

∑k
i=1 aifi ∈ I2

C(U). Then we
get g = g −

∑k
i=1 aifi = 0 as an element in IC/X/I2

C/X(U).

Next, let us verify the exactness of (7). Take an element h =
∑k

i=1 bifi ∈ IX(U).
If dh = 0 restricted to C, since f1, . . . , fk are vanishing on C, we have

k∑
i=1

bi
∂fi

∂xj
dxj = 0, 1 ≤ j ≤ n

on C. Note that Xsing ∩ U consists of those points where the matrix( ∂fi

∂xj

)
1≤i≤k,1≤j≤n
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drops rank. Since C∩Xsing consists of at most finitely many points, b1, . . . , bk must be
vanishing at a non-empty open subset of C ∩U , which forces that they are vanishing
completely on C ∩ U . Hence, h⊗ 1 =

∑k
i=1 fi ⊗ bi = 0 ∈ (IX/I2

X)⊗OC(U). �

Now consider the deformation of C on X. We have the following result.

Proposition 2.6. Keep the above assumption. If C ∩ Xsing is 0-dimensional, the
dimension of every component of Hilbdm+1−g(X) at [C] is at least

χ(NC/Pn)− χ(NX/Pn |C).

Moreover, suppose X is a complete intersection cut out by hypersurfaces F1, . . . , Fk,
deg Fi = di, i = 1, . . . , k. The above lower bound can be written as(

n + 1−
k∑

i=1

di

)
d + (k − n + 3)(g − 1).

Proof. By the assumption, C ⊂ X is generically unobstructed, so we can apply the
result [14, Ch. 1, 2.13, 2.15]. The local dimension of a component of Hilbdm+1−g(X)
at [C] is at least

dim HomC(IC/X/I2
C/X ,OC)− dim Ext1C(IC/X/I2

C/X ,OC).(8)

Note that if X is smooth, the value of (8) is χ(NC/X), which equals χ(NC/Pn) −
χ(NX/Pn |C) due to the exact sequence

0 → NC/X → NC/Pn → NX/Pn |C → 0.

If X is singular, apply the functor Hom(·, OC) to (6). Then we get a long exact
sequence

0 → Hom(ΩC ,OC) → Hom(ΩX ⊗OC ,OC) → Hom(IC/X/I2
C/X ,OC)

↪→ Ext1(ΩC ,OC) → Ext1(ΩX ⊗OC ,OC) → Ext1(IC/X/I2
C/X ,OC)

↪→ 0.(9)

The last term is zero, because Ext2(ΩC ,OC) = H2(TC) = 0.
Moreover, apply the functor Hom(·, OC) to (7). We get another long exact sequence

0 → Hom(ΩX ⊗OC ,OC) → Hom(ΩPn ⊗OC ,OC) → Hom((IX/I2
X)⊗OC ,OC)

↪→ Ext1(ΩX ⊗OC ,OC) → Ext1(ΩPn ⊗OC ,OC) → Ext1((IX/I2
X)⊗OC ,OC)

↪→ Ext2(ΩX ⊗OC ,OC) → 0.(10)

The last term is zero, because Ext2(ΩPn ⊗OC ,OC) = H2(TPn |C) = 0.
Note that C is smooth, so Exti(ΩC ,OC) = Hi(TC) and Exti(ΩPn ⊗ OC ,OC) =

Hi(TPn |C) for any i. From (7), we know (IX/I2
X) ⊗ OC is locally free, so

Exti((IX/I2
X)⊗OC ,OC) = Hi(NX/Pn |C). Then by (9) and (10), we have

dim Hom(IC/X/I2
C/X ,OC)− dim Ext1(IC/X/I2

C/X ,OC)

= χ(TPn |C)− χ(NX/Pn |C)− χ(TC)− dim Ext2(ΩX ⊗OC ,OC)

= χ(NC/Pn)− χ(NX/Pn |C)− dim Ext2(ΩX ⊗OC ,OC).
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For smooth curve C, χ(NC/Pn) equals (n + 1)d − (n − 3)(g − 1). If X is a complete
intersection cut out by F1, . . . , Fk, the normal sheaf NX/Pn splits into

⊕k
i=1OX(di).

Therefore, in this case we can compute χ(NX/Pn |C) explicitly as

χ
( k⊕

i=1

OC(di)
)

=
k∑

i=1

(1− g + ddi).

Now the proposition follows if we can show that Ext2(ΩX ⊗OC ,OC) = 0. In case
X is smooth, there is a short exact sequence

0 → TX ⊗OC → TPn ⊗OC → NX/Pn ⊗OC → 0.

If X is singular, the last map may not be surjective. Instead, we have

0 → TX ⊗OC → TPn ⊗OC → NX/Pn ⊗OC → F → 0,

where F is a sheaf supported at some points of C ∩Xsing. Split the above sequence
into two short exact sequences

0 → TX ⊗OC → TPn ⊗OC → E → 0,(11)
0 → E → NX/Pn ⊗OC → F → 0.(12)

Since H2(TX ⊗ OC) = 0, then from (11), the map H1(TPn ⊗ OC) → H1(E) is
surjective. Moreover, F is only supported at finitely many points on C, so H1(F ) =
0. From (12), the map H1(E) → H1(NX/Pn ⊗ OC) is also surjective. Hence, we
get a surjective map H1(TPn ⊗ OC) → H1(NX/Pn ⊗ OC), i.e. a surjective map
Ext1(ΩPn ⊗ OC ,OC) → Ext1((IX/I2

X) ⊗ OC ,OC) because ΩPn and IX/I2
X are both

locally free. Then from (10), it follows that Ext2(ΩX ⊗OC ,OC) = 0. �

Now we can finish the proof of Theorem 1.3.

Proof of Theorem 1.3. For g2 ≥ d3, let us check that the smallest integer s satisfying
s(s + 1) < d and g > d

2 (s + d
s+1 − 3) is given by s = µ(d, g).

Rewrite the second inequality as

ds2 − 2(d + g)s + d2 − 3d− 2g < 0.

Solve for s and we get

s > 1 +
d2 − 4d− 4g

g +
√

g2 + 4d2 + 4dg − d3
.

So the smallest integer s satisfying this inequality is µ(d, g) by its definition.
In the range d

√
d ≤ g ≤ π(d, 3), we have

µ(d, g) < 2 +
d2 − 4g

g
≤ d2

d
√

d
− 2 =

√
d− 2.

Therefore, when s = µ(d, g), the inequality s(s + 1) < d also holds.
Apply Propositions 2.4 and 2.6 to the situation when X = S is a surface of degree

≤ s in P3. The lower bound 4d + g − 1− sd obtained in (4) holds.
Now let us analyze this lower bound. Fix d and view µ as a function of g in the

range g2 ≥ d3. In the expression of µ, note that the numerator is decreasing and
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the denominator is increasing with g. So µ is decreasing when g increases, hence the
bound 4d + g − 1− µ(d, g)d is increasing with g. Plugging in g = d

√
d, we get

µ ≤ 2 +
d2 − 4d− 4d

√
d

d
√

d
≤
√

d− 2,

which implies that g−1−µd > 0 when g = d
√

d. Therefore, for g2 ≥ d3 we always have
4d+ g− 1−µ(d, g)d > 4d, i.e. ld,g,3 is strictly larger than the expected dimension 4d.
Moreover, plugging in g = d2

4 which is close to the Castelnuovo bound, we get µ ≤ 2.
Correspondingly ld,g,3 > g + O(d) in this case, which has been already predicted by
the Castelnuovo theory. �

Below we will consider an example constructed in [3], which suggests that at least
the order d

√
d makes sense in Theorem 1.3.

Let C be a space curve whose ideal sheaf has resolution as follows,

(13) 0 → O⊕s
P3 (−s− 1) → O

⊕(s+1)
P3 (−s) → IC → 0.

It is easy to derive the determinantal model for such a curve from this resolution.
Pick an s × (s + 1) matrix A whose entries are general linear forms. Then the ideal
sheaf of the curve defined by the determinants of all the s×s minors of A has the above
resolution. Tensor the exact sequence (13) with OP3(k), and we get h1(IC(k)) = 0
for any k > 0. Hence, C is projectively normal. We can also compute the Hilbert
polynomial of C. When k is large enough, we have

h0(IC(k)) = (s + 1)·h0(OP3(k − s))− s·h0(OP3(k − s− 1))

=
1
6
(k − s + 2)(k − s + 1)(k + 2s + 3).

The Hilbert polynomial of C equals

h0(OP3(k))− h0(IC(k)) =
1
2
(s2 + s)k − 1

6
(2s3 − 3s2 − 5s).

So we obtain the degree and genus of C:

d =
1
2
s(s + 1),

g = 1 +
1
6
(2s3 − 3s2 − 5s).

In [5, Thm. 1], it was proved that the locus of such curves C is open inside the Hilbert
scheme. Let U be the corresponding Hilbert component that parameterizes such C.
By [5, Thm. 2], U has the expected dimension 4d. One can also count parameters to
get the dimension of U as

4s(s + 1)− 1− dim PGLs − dim PGLs+1 = 2s2 + 2s = 4d.

Note that as s increases, g2 ∼ 8
9d3.

The above construction does not cover all possible values of d and g in the range
g2 < d3. A more precise result was established in [15] as follows.

Theorem 2.7. For any d, g such that d ≥ 20 and 4
3d − 4 ≤ g ≤ f(d) where f(d) =

1
6
√

2
d
√

d+O(d), there exists a regular component of Hilbdm+1−g(P3) with the expected
dimension 4d.
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Note that asymptotically g2 ∼ 1
72d3.

It would be interesting to figure out the remaining two questions.

Question 2.8. Does the expected dimension 4d hold for some g in the range 8
9d3 <

g2 < d3?

Question 2.9. What is the sharp leading coefficient of f(d) such that a similar
statement as in Theorem 2.7 still holds?

3. The Hilbert scheme of curves in P4

In this section we will prove Theorem 1.5. The idea of the proof is as follows. We
will show that if g is large enough, a degree d genus g smooth irreducible and non-
degenerate curve C in P4 must be contained in a surface S such that S is a complete
intersection and C is not contained in its singular locus Ssing. By estimating the
dimension of the deformation of C on S, we derive the desired result.

For the first step, let us recall some basic results from the Castelnuovo theory, cf.
[9, Ch. 3].

Theorem 3.1. Let C be a degree d genus g reduced irreducible and non-degenerate
curve in Pr. Then g ≤ π(d, r) = d2

2(r−1) + O(d).

Now consider the case when C is in P4. By the above theorem, it is easy to find a
low degree threefold F that contains C if the genus g is large enough.

Lemma 3.2. Let k be a positive integer and N =
(
k+4
4

)
− 1. If g satisfies

(14) g > π(dk,N),

then C is contained in an irreducible threefold F of degree a ≤ k.

Proof. Embed P4 into PN by the Veronese map of degree k . Then the image C ′ of
C is a curve of degree dk and genus g. Since g is larger than the Castelnuovo bound
π(dk,N), C ′ must be contained in a hyperplane in PN . That is, C is contained in a
degree k threefold in P4. Then we take an irreducible component F of this threefold
that contains C. Note that F has degree a ≤ k. �

Fix F and its degree a. Our next goal is to find another threefold that contains C
as well.

Lemma 3.3. Let l ≥ a be an integer. Let M =
(
l+4
4

)
−

(
l−a+4

4

)
− 1. If g satisfies

(15) g > π(dl, M),

then there is another irreducible threefold G of degree b ≤ l that contains C.

Proof. Embed P4 into PK by the Veronese map of degree l, where K =
(
l+4
4

)
−

1. By a similar argument as before, we can show that C is contained in at least(
l−a+4

4

)
+1 independent degree l threefolds in P4. Note that there are at most

(
l−a+4

4

)
independent degree l threefolds containing F as a component, since F is irreducible.
Hence, we can find a degree l threefold containing C but not F . Take an irreducible
component G of this threefold that contains C. Then G has degree b ≤ l. �

Let S = F ∩ G be the complete intersection surface that contains C. In order to
apply deformation theory for C ⊂ S, we should avoid the situation C ⊂ Ssing.



950 DAWEI CHEN

Lemma 3.4. Let D be a reduced and connected curve of arithmetic genus g. If D
has k irreducible components, then the number of singularities of D is at most equal
to k + g − 1.

Proof. Let π : D̄ → D be the normalization of D. We have the short exact sequence

0 → OD → π∗OD̄ → F → 0,

where F is a sheaf supported on the singularities of D. The number of singularities
of D is bounded from above by h0(F). Moreover, from the long exact sequence of
cohomology we have

h0(F) ≤ h0(π∗OD̄) + h1(OD)− h0(OD) = k + g − 1.

The lemma follows right away. �

Remark 3.5. Note that the above result is sharp. For instance, let D be the union
of k general lines on a plane. The arithmetic genus of D is g = (k− 1)(k− 2)/2. The
number of singularities of D equals

(
k
2

)
, which is exactly k + g − 1.

Proposition 3.6. Keep the above assumption. If the degree d of the curve C satisfies

(16) d >
1
2
ab(a + b− 2),

then C ∩ Ssing is either empty or 0-dimensional. In particular, the dimension of the
deformation of C on S is at least 5d + g − 1− (a + b)d.

Proof. Take a general hyperplane section X = H ∩ S in P4. Note that X is a curve
of degree ab and arithmetic genus 1

2ab(a + b− 4) + 1 in H ∼= P3. By Lemma 3.4, the
total number of its singularities is at most ab+ 1

2ab(a+ b−4)+1−1 = 1
2ab(a+ b−2).

Since H ∩ Ssing ⊂ Xsing, we have deg Ssing ≤ deg Xsing ≤ 1
2ab(a + b− 2). Since the

degree d of C is bigger than 1
2ab(a + b− 2), C cannot be contained in Ssing.

Since S is a complete intersection and C 6⊂ Ssing, we can apply Proposition 2.6 to
derive the desired estimate for the deformation of C on S. �

Now we can prove Theorem 1.5, which says that if C is a degree d genus g smooth
irreducible and non-degenerate curve in P4 such that g > 3d

√
d+O(d), then C is not

rigid.

Proof of Theorem 1.5. In the range g > 3d
√

d+O(d), we want to find integers k, a, l, b
successively in the above setting such that they satisfy the inequalities (14), (15) and
(16). For simplicity, we only analyze leading terms, since the asymptotic orders are
our main interests.

In Lemma 3.2, note that N ∼ k4

24 . To satisfy the inequality (14), one can take
k ∼ 2

√
3d√
g . For a fixed number a ≤ k, in Lemma 3.3 we have M ∼ l3a

6 . To make

the inequality (15) hold, we can choose l ∼ 3d2

ag . Now for a fixed number b ≤ l, it

suffices to verify the inequality (16). Note that b can be at most equal to l ∼ 3d2

ag and

g ≥∼ d
√

d. These values maximize the right hand side of (16) as 1
2

√
d(a+

√
d

a ), which
is still less than d.

Therefore, by Lemmas 3.2, 3.3 and 3.4, we know that C lies on a complete in-
tersection surface S of type (a, b) and C 6⊂ Ssing. Moreover, one can check that
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(a + b)d < g. Then by Proposition 3.6, the dimension of the deformation of C on S
≥ 5d + g − 1− (a + b)d ≥ 5d > 24 = dim PGL(5). �

It is possible to enlarge the range g > 3d
√

d + O(d) by refining the results in
Lemmas 3.2, 3.3 and 3.4. However, it seems that only the leading coefficient could
be improved rather than the exponent d3/2. So when g is slightly bigger than d, the
situation remains mysterious to us. On the other hand, by the result of [2], Conjecture
1.6 in the introduction sounds highly possible and might be handled by an analogous
argument. We state the conjecture again as the end of this section.

Conjecture 3.7. For r ≥ 5, there always exists a constant λr such that if g ≥
λrd

√
d + O(d), a degree d genus g smooth irreducible and non-degenerate curve in Pr

is not rigid.

4. The Hilbert scheme of curves on a quadric threefold

In this section we will prove Theorem 1.8. Recall that Q is a smooth quadric
threefold in P4. Let U be an irreducible component of Hilbdm+1−g(Q) whose general
points parameterize smooth irreducible and non-degenerate curves in Q. The number
qd,g is defined as the smallest dimension of all such components U . By the short exact
sequence

0 → NC/Q → NC/P4 → NQ/P4 |C → 0,

it follows that χ(NC/Q) = 3d. Hence, 3d is a lower bound for qd,g. Theorem 1.8
provides a further analysis for the sharpness of this bound. It consists of two parts.

Firstly, if g is large enough, C must lie on a threefold F of low degree, which does
not contain Q as a component. By considering the deformation of C on the surface
X = Q ∩ F , we derive the first part of Theorem 1.8. For the second part, we use a
similar method as in [15]. A component whose general elements parameterize a curve
as the intersection of Q and a determinantal surface has dimension 3d. Then we apply
the smoothing technique in [16] to enlarge the range of the pair (d, g) to cover the
case when g < 2

15
√

5
d
√

d + O(d).

Proof of Theorem 1.8 (1). Let k be the largest integer satisfying d > 2k(k−1). Since

k ∼
√

d
2 , the inequality g > d2

4k + 1
2kd holds in the range g > 1√

2
d
√

d + O(d). By [1,
Thm. 1.4], there exists an integral surface X ∈ |OQ(a)| containing C, where a ≤ k.
Since d > 2k(k − 1) and X is of degree 2a, by Proposition 3.6 we have C 6⊂ Xsing.
Then by Proposition 2.6, χ(NC/X) = 3d + g − ad− 1 provides a lower bound for the
dimension of the deformation of C on X. Note that 3d+g−ad−1 ≥ 3d+g−kd−1 > 3d

since k ∼
√

d
2 and g > 1√

2
d
√

d + O(d). �

The second part is more complicated. We want to construct a component of the
Hilbert scheme that parameterizes certain determinantal curves. But those curves
have to be contained in the quadric threefold Q. A natural idea is to take the inter-
section of a determinantal surface with Q.

Let
(
Hij

)
be a t× (t + 1) general matrix, whose entry Hij is a general linear form

in P4. Its t× t minors define a determinantal surface S. The ideal sheaf of S has the
following resolution

0 → O⊕t
P4 (−t− 1) → O⊕(t+1)

P4 (−t) → IS → 0.
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By Bertini, if we take a general quadric threefold Q, then C = Q∩S is smooth. From
the above exact sequence, it is not hard to obtain the degree and genus of C:

d = t(t + 1),

g =
2
3
t3 − 1

2
t2 − 7

6
t + 1.

Note that asymptotically g ∼ 2
3d
√

d.
Moreover, for general S and Q, the ideal sheaf IC/Q has the resolution

0 → O⊕t
Q (−t− 1) → O⊕(t+1)

Q (−t) → IC/Q → 0.

By [13, Rmk. 2.2.6], we know that H1(NC/Q) = Ext2Q(IC/Q, IC/Q). Apply the functor
HomQ(−, IC/Q) to the above exact sequence. One can derive that H1(NC/Q) = 0,
which implies that there is no obstruction for the deformation of C on Q. Hence,
h0(NC/Q) = χ(NC/Q) = 3d is the exact dimension for the component of
Hilbdm+1−g(Q) that contains C.

The above construction is nice. But it has strong restriction on the values of d and
g. We would like to extend the result to more general values of d and g. Here we
will follow the methods in [15] and [16]. The idea works as follows. Take a smooth
determinantal curve Γ constructed as above and a smooth rational curve γ on Q such
that they meet transversely. Further assume that H1(NΓ/Q) = H1(Nγ/Q) = 0. Then
the nodal curve Γ ∪ γ can be smoothed out on Q. Moreover, the vanishing property
of H1(N) is locally preserved under this smoothing process. Then after smoothing
the nodal curve, we can obtain the degree and genus in a more general range.

Firstly, let us adapt to our situation a smoothing technique from [16].

Lemma 4.1. Let Γ′ = Γ∪γ be a nodal union of two smooth and irreducible curves on
the quadric threefold Q. Assume that Γ∩γ = P1, . . . , Pδ. If H1(NΓ/Q) = H1(Nγ/Q) =
H1(Nγ/Q(−P1 − . . .− Pδ)) = 0, then H1(NΓ′/Q) = 0 and Γ′ is smoothable on Q.

Proof. Let us first set up some notation. For a connected reduced curve C on Q,
denote N ′

C/Q as the cokernel of the map TC → TQ|C and let T 1
C/Q be the cotangent

sheaf of C on Q. Note that T 1
C/Q can be defined as the cokernel of the map N ′

C/Q →
NC/Q. Suppose the singularities of C are only nodes. Then T 1

C/Q is a torsion sheaf
supported on each node of C. Furthermore, if H1(N ′

C/Q) = 0, by the argument of
[16, Prop. 1.6], C is smoothable on Q.

Now in our case, the ideal sheaves IΓ/Γ′ ∼= Oγ(−P1−. . .−Pδ) and Iγ/Γ′ ∼= OΓ(−P1−
. . .−Pδ). As in [16, Lem. 5.1], we can establish two exact sequences of sheaves on Γ′,

0 → IΓ/Γ′ ⊗NΓ′/Q → N ′
Γ′/Q → NΓ/Q → 0,

0 → Nγ/Q(−P1 − . . .− Pδ) → IΓ/Γ′ ⊗NΓ′/Q → T 1
Γ′/Q → 0.

By the assumption and the fact that H1(T 1
Γ′/Q) = 0, we get H1(N ′

Γ′/Q) = 0 from the
above long exact sequences of cohomology. Hence, Γ′ is smoothable on Q. Moreover,
the map N ′

Γ′/Q → NΓ′/Q is injective and its cokernel T 1
Γ′/Q is supported at the nodes.

So H1(N ′
Γ′/Q) = 0 implies that H1(NΓ′/Q) = 0. �

We still need another source curve γ. Here we will consider rational curves that lie
on the quadric Q.
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Lemma 4.2. Let R = Q∩H be a general hyperplane section of Q. Let P1, . . . , Pm ∈ R
denote m ≥ 6 points in general position. For any integer δ ≤ 4, there exists a
degree three rational curve γ ⊂ R such that γ passes through exactly δ points of
P1, . . . , Pm. Furthermore, suppose those points on γ are P1, . . . , Pδ. Then we have
H1(Nγ/Q(−P1 − . . .− Pδ)) = 0.

Proof. R is a smooth quadric surface in H ∼= P3. It is easy to find a degree 3 smooth
rational curve γ on R that passes through δ general points, say, P1, . . . , Pδ. There is
an exact sequence

0 → Nγ/R → Nγ/Q → NR/Q ⊗Oγ → 0.

Moreover, we know that NR/Q ⊗ Oγ and Nγ/R have degree 3 and 4 on γ ∼= P1,
respectively. Tensor the above exact sequence with Oγ(−P1 − . . .− Pδ) and we get

0 → OP1(4− δ) → Nγ/Q(−P1 − . . .− Pδ) → OP1(3− δ) → 0.

Since δ ≤ 4, it follows that H1(Nγ/Q(−P1 − . . .− Pδ)) = 0. �

Now we have all the ingredients to prove the second part of Theorem 1.8.

Proof of Theorem 1.8 (2). Take a determinantal curve Γ ⊂ Q of degree dΓ = t(t + 1)
and genus gΓ = 2

3 t3 − 1
2 t2 − 7

6 t + 1. Consider a general hyperplane section of Γ. We
get dΓ points in general position. By Lemma 4.1 and 4.2, we can take a suitable
degree 3 rational curve γ, such that Γ′ = Γ ∩ γ consists of δ reduced points for any
δ ≤ 4. In particular, Γ′ is smoothable and H1(NΓ′/Q) = 0. Then there is a Hilbert
component containing Γ′ and certain smooth curves as its general points arising from
the smoothing of Γ′. This component has dimension 3d, since its tangent space at [Γ′]
has dimension equal to h0(NΓ′/Q) = χ(NΓ′/Q) = 3d. Hence, starting from the pair
(dΓ, gΓ), we can get a new pair (d′ = dΓ +3, g′ = gΓ +δ−1) where the Hilbert scheme
Hilbd′m+1−g′

(Q) has a component of expected dimension 3d′. Do the same step again
and eventually it will cover every pair (d, g) of type (dΓ + 3k, gΓ + h), 0 ≤ h ≤ 3k.

Now we fix d. Note that dΓ = t(t + 1) ≡ 0 or 2 (mod 3). So if d ≡ 0 (mod 3), by
the above construction, the range of g for which Hilbdm+1−g(Q) has a component of
dimension 3d contains the following,

1
6
(4t3 − 3t2 − 7t + 6) ≤ g ≤ 1

6
(4t3 − 3t2 − 7t + 6) + 3 · d− t(t + 1)

3
,

for any t(t + 1) ≤ d and t ≡ 0 or 2 (mod 3). In order to cover the case d ≡ 1 or 2
(mod 3), we can use a suitable line l on Q instead of the rational curve γ in Lemma
4.2 such that l intersects the source curve only at one point P . One can easily check
that H1(Nl/Q) = H1(Nl/Q(−P )) = 0 holds. Then after smoothing the nodal union
of l and the source curve, this construction provides (d − 1, g) → (d, g). So if d 6≡ 0
(mod 3), we can always consider d− 1 or d− 2 instead. In sum, the desired range of
genus includes

L(t) =
1
6
(4t3 − 3t2 − 7t + 6) ≤ g ≤ 1

6
(4t3 − 3t2 − 7t + 6) + d− t(t + 1)− 2 = R(t),

where t(t + 1) ≡ 0 (mod 3). Since t ≡ 0 or 2 (mod 3), each time t increases by 1 or
2. In order to avoid that the value of g jumps for a fixed d, we have to require that
L(t + 2) ≤ R(t). Solving this inequality and plugging the upper bound of t into R(t),
we get the desired range of g up to 2

15
√

5
d
√

d + O(d). �
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Remark 4.3. We can obtain a similar result for the Hilbert scheme of curves on a
general cubic threefold Y. One can check that the curve C cut out by a determinantal
surface with Y satisfies H1(NC/Y ) = 0. However, when we resume the process to
quartic threefolds, the determinantal model does not work any more. Another long
standing problem is about quintic threefolds, since the expected dimension of the
Hilbert scheme is zero in that case. Even for rational curves, the famous Clemens’
conjecture has been only solved when the degree of the curve is small. If we consider
threefolds of higher degree, things become further unclear. To the author’s best
knowledge, we even do not know if a general threefold of degree k > 5 in P4 contains
an irreducible curve whose degree is not divisible by k. In sum, the Hilbert scheme
of curves on a threefold of higher degree remains mysterious to us.
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IV: Les schémas de Hilbert. In Seminaire Bourbaki, 1960-61, Exposés 205-222, Exposé 221,
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