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INTEGRALLY CLOSED IDEALS ON LOG TERMINAL SURFACES
ARE MULTIPLIER IDEALS

Kevin Tucker

Abstract. We show that all integrally closed ideals on log terminal surfaces are multi-

plier ideals by extending an existing proof for smooth surfaces.

1. Introduction

Consider a scheme X = SpecOX , where OX is a two-dimensional local normal
domain essentially of finite type over C. Our purpose is to partially address the
following question, raised in [6]:

Question. If X has a rational singularity, is every integrally closed ideal which is
contained in J (X,OX) a multiplier ideal?

Here, J (X, aλ) denotes the multiplier ideal corresponding to an ideal a ⊆ OX with
coefficient λ ∈ Q>0. When X is regular, an affirmative answer was given concurrently
by [8] and [3]. Our main result is to generalize their methods to prove the following:

Theorem 1.1. Suppose X has log terminal singularities. Then every integrally closed
ideal is a multiplier ideal.

Log terminal singularities satisfy J (X,OX) = OX by definition, and are necessarily
rational (see Theorem 5.22 in [4]). Thus, Theorem 1.1 gives a complete answer to the
above question in this case.

There are several difficulties in trying to extend the techniques used in [8]. One
must show that successful choices can be made in the construction (specifically, the
choice of ε and N in Lemma 2.2 of [8]). Here, it is essential that X has log terminal
singularities. Further problems arise from the failure of unique factorization to hold
for integrally closed ideals. As X is not necessarily factorial, we may no longer
reduce to the finite colength case. In addition, the crucial contradiction argument
which concludes the proof in [8] does not apply. These nontrivial difficulties are
overcome by using a relative numerical decomposition for divisors on a resolution
over X. Further, appropriately interpreted, the proof of Theorem 1.1 applies over an
algebraically closed field of arbitrary characteristic.

Our presentation is self-contained and elementary. Section 2 contains background
material covering the relative numerical decomposition, antinef closures, and some
computations using generic sequences of blowups. Section 3 is dedicated to the con-
structions and arguments in the proof of Theorem 1.1.
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2. Background

2.1. Relative Numerical Decomposition. For the remainder, we will consider a
scheme X = SpecOX , where OX is a two-dimensional local normal domain essentially
of finite type over an algebraically closed field of arbitrary characteristic. Let x ∈ X be
the unique closed point, and suppose f : Y → X is a projective birational morphism
such that Y is regular and f−1(x) is a simple normal crossing divisor. Let E1, . . . , Eu

be the irreducible components of f−1(x), and Λ = ⊕iZEi ⊂ Div(Y ) the lattice they
generate.

The intersection pairing Div(Y ) × Λ → Z induces a negative definite Q-bilinear
form on ΛQ (see [1] for an elementary proof). Consequently, there is a dual basis
Ě1, . . . , Ěu for ΛQ defined by the property that

Ěi · Ej = −δij =
{
−1 i = j
0 i 6= j

.

Recall that a divisor D ∈ DivQ(Y ) is said to be f -antinef if D · Ei ≤ 0 for all
i = 1, . . . , u. In this case, D is effective if and only if f∗D is effective (see Lemma 3.39
in [4]). In particular, Ě1, . . . , Ěu are effective.

If C ∈ DivQ(X), we define the numerical pullback of C to be the unique Q-divisor
f∗C on Y such that f∗f

∗C = C and f∗C · Ei = 0 for all i = 1, . . . , u. Note that,
when C is Cartier or even Q-Cartier, this agrees with the standard pullback of C. If
D ∈ DivQ(Y ), we have

(1) D = f∗f∗D +
∑

i

(−D · Ei)Ěi.

We shall refer to this as a relative numerical decomposition for D. Note that, even
when D is integral, both f∗f∗D and Ě1, . . . , Ěu are likely non-integral. The fact that
f∗f∗D and Ě1, . . . , Ěu are always integral divisors when X is smooth and D is integral
is equivalent to the unique factorization of integrally closed ideals. See [7] for further
discussion.

2.2. Antinef Closures and Global Sections. Suppose now that D′ =
∑

E a′EE
and D′′ =

∑
E a′′EE are f -antinef divisors, where the sums range over the prime

divisors E on Y . It is easy to check that D′ ∧ D′′ =
∑

E min{a′E , a′′E}E is also f -
antinef. Further, any integral D ∈ Div(Y ) is dominated by some integral f -antinef
divisor (e.g. (f−1

∗)f∗D + M(Ě1 + · · · + Ěu) for sufficiently large and divisible M).
In particular, there is a unique smallest integral f -antinef divisor D∼, called the f -
antinef closure of D, such that D∼ ≥ D. One can verify that f∗D = f∗D

∼, and in
addition the following important lemma holds (see Lemma 1.2 of [8]). The proof also
gives an effective algorithm for computing f -antinef closures.

Lemma 2.1. For any D ∈ Div(Y ), we have f∗OY (−D) = f∗OY (−D∼).

Proof. Let sD ∈ N be the sum of the coefficients of D∼−D when written in terms of
E1, . . . , Eu. If sD = 0, then D = D∼ is f -antinef and the statement follows trivially.
Else, there is an index i such that D ·Ei > 0. As Ei ·Ej ≥ 0 for j 6= i, we must have

D ≤ D + Ei ≤ D∼ = (D + Ei)∼.
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Thus, sD+Ei = sD − 1. By induction, we may assume

f∗OY (−(D + Ei)) = f∗OY (−(D + Ei)∼) = f∗OY (−D∼)

and it is enough to show f∗OY (−D) = f∗OY (−(D+Ei)). Consider the exact sequence

0 // OY (−(D + Ei)) // OY (−D) // OEi
(−D) // 0.

Since deg(OEi(−D)) = −D ·Ei < 0, we have f∗OEi(−D) = 0; applying f∗ yields the
desired result. �

2.3. Generic Sequences of Blowups. In the proof of Theorem 1.1, we will make
use of the following auxiliary construction. Suppose x(i) is a closed point of Ei with
x(i) 6∈ Ej for j 6= i. A generic sequence of n-blowups over x(i) is:

Y = Y0 Y1
σ1oo · · ·σ2oo Yn−1

σn−1
oo Yn

σnoo

where σ1 : Y1 → Y0 is the blowup of Y0 = Y at x1 := x(i), and σk : Yk → Yk−1 is
the blowup of Yk−1 at a generic closed point xk of (σk−1)−1(xk−1) for k = 2, . . . , n.
Let σ : Yn → Y be the composition σn ◦ · · · ◦ σ1. We will denote by E(1), . . . , E(u)
the strict transforms of E1, . . . , Eu on Yn. Also, let E(i, x(i), k), k = 1, . . . , n, be
the strict transforms of the n new σ-exceptional divisors created by the blowups
σ1, . . . , σn, respectively.

Lemma 2.2. (a.) Let σ : Yn → Y be a generic sequence of blowups over x(i) ∈ Ei.
Then one has

Ě(i) ≤ Ě(i, x(i), 1) ≤ · · · ≤ Ě(i, x(i), n).

(b.) Suppose D ∈ Div(Yn) is an integral (f ◦ σ)-antinef divisor such that Ei is the
unique component of σ∗D containing x(i). If ordE(i) D = a0 and ordE(i,x(i),k) D =
ak for k = 1, . . . , n, then

a0 ≤ a1 ≤ · · · ≤ an.

Further, a0 < an if and only if(
n∑

k=1

(−D · E(i, x(i), k))Ě(i, x(i), k)

)
≥ Ě(i).

Proof. If n = 1, we have

Ě(i, x(i), 1) =
(
σ∗Ěi + E(i, x(i), 1)

)
≥ σ∗Ěi = Ě(i)

D = σ∗σ∗D + (−D · E(i, x(i), 1))Ě(i, x(i), 1).

The general case of both statments follows easily by induction. �
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3. Main Theorem

3.1. Log Terminal Singularities and Multiplier Ideals. Once more, suppose
x ∈ X is the unique closed point and f : Y → X is a projective birational morphism
such that Y is regular and f−1(x) is a simple normal crossing divisor. Let E1, . . . , Eu

be the irreducible components of f−1(x), and let KY be a canonical divisor on Y .
Then KX := f∗KY is a canonical divisor on X. If we write the relative canonical
divisor as

Kf := KY − f∗KX =
∑

i

biEi

then X has (numerically) log terminal singularities if and only if bi > −1 for all
i = 1, . . . , u. In this case, when working over C, X is automatically Q-factorial (see
Proposition 4.11 in [4], as well as [2] for recent developments).

If a ⊆ O is an ideal, recall that f : Y → X as above is said to be a log resolution
of a if aOY = OY (−G) for an effective divisor G such that Ex(f) ∪ Supp(G) has
simple normal crossings. In this case, we can define the multiplier ideal of (X, a) with
coefficient λ ∈ Q>0 as

J (X, aλ) = f∗OY (dKf − λGe).
See [9] for an introduction in a similar setting, or [5] for a more comprehensive
overview. Also recall that a is integrally closed if and only if

a = f∗OY (−G).

3.2. Choosing a and λ. We now begin the proof of Theorem 1.1. For the remainder,
assume X is log terminal, and let I ⊆ OX be an integrally closed ideal. In this
section, we construct another ideal a ⊆ OX along with a coefficient λ ∈ Q>0; and
in the following section it will be shown that J (X, aλ) = I. Let f : Y → X a log
resolution of I with exceptional divisors E1, . . . , Eu. Suppose IOY = OY (−F 0), and
write

Kf =
u∑

i=1

biEi

F 0 = (f−1
∗)f∗(F

0) +
u∑

i=1

aiEi.

Choose 0 < ε < 1/2 such that bε(f−1
∗)f∗(F

0)c = 0 and

ε(ai + 1) < 1 + bi

for i = 1, . . . , u. Note that, since X is log terminal, 1 + bi > 0 and any sufficiently
small ε > 0 will do. Let ni := b 1+bi

ε − (ai + 1)c ≥ 0, and ei := (−F 0 · Ei). Choose
ei distinct closed points x

(i)
1 , . . . , x

(i)
ei on Ei such that x

(i)
j 6∈ Supp

(
(f−1

∗)f∗(F
0)
)

and

x
(i)
j 6∈ El for l 6= i. Denote by g : Z → Y the composition of ni generic blowups at

each of the points x
(i)
j for j = 1, . . . , ei and i = 1, . . . , u. As in Section 2.3, denote by

E(1), . . . , E(u) the strict transforms of E1, . . . , Eu, and E(i, x(i)
j , 1), . . . , E(i, x(i)

j , ni)

the strict transforms of the ni exceptional divisors over x
(i)
j .
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Let h := f ◦ g, F = g∗(F 0), and choose an effective h-exceptional integral divisor
A on Z such that −A is h-ample. It is easy to see that

Kg =
u∑

i=1

ei∑
j=1

ni∑
k=1

k E(i, x(i)
j , k)

and one checks

Kg · E(i) = ei Kg · E(i, x(i)
j , k) =

{
0 k 6= ni

−1 k = ni
.

It follows immediately that F + Kg is h-antinef. Choose µ > 0 sufficiently small that

(2) b(1 + ε)(F + Kg + µA)−Khc = b(1 + ε)(F + Kg)−Khc.
As −(F +Kg +µA) is h-ample, there exists N >> 0 such that G := N(F +Kg +µA)
is integral and −G is relatively globally generated.1 In other words, a := h∗OZ(−G)
is an integrally closed ideal such that aOZ = OZ(−G). Set λ = 1+ε

N .

3.3. Conclusion of Proof. Here, we will show J (X, aλ) = I = h∗OZ(−F ). Since

J (X, aλ) = h∗OZ(dKh − λGe) = h∗OZ(−bλG−Khc),
by Lemma 2.1, it suffices to show F ′ := bλG − Khc∼ = F . In particular, we have
reduced to showing a purely numerical statement.

Lemma 3.1. We have F ′ ≤ F and h∗F
′ = h∗F . In addition, for i = 1, . . . , u and

j = 1, . . . , ei,

ord
E(i,x

(i)
j ,ni)

(F ′) = ord
E(i,x

(i)
j ,ni)

(F ) = ordE(i)(F ).

Proof. Since F ′ = bλG − Khc∼ and F is h-antinef (−F is relatively globally gener-
ated), it suffices to show these statements with bλG−Khc in place of F ′. By (2), we
have

bλG−Khc = b(1 + ε)(F + Kg)−Khc
= F + bε(F + Kg)− g∗Kfc.

Since bε(f−1
∗)f∗F

0c = 0, it follows immediately that h∗bλG − Khc = h∗F . For
the remaining two statements, consider the coefficients of ε(F + Kg)− g∗Kf . Along
E(i), we have εai − bi, which is less than one by choice of ε. Along E(i, x(i)

j , k), we
have ε(ai + k) − bi. This expression is greatest when k = ni, where our choice of ni

guarantees
0 ≤ ε(ai + ni)− bi < 1.

It follows that bλG−Khc ≤ F , with equality along E(i, x(i)
j , ni). �

Lemma 3.2. For each i = 1, . . . , u,

(−F ′ · E(i))Ě(i) +
ei∑

j=1

ni∑
k=1

(−F ′ · E(i, x(i)
j , k))Ě(i, x(i)

j , k) ≥ (−F · E(i))Ě(i).

1Over C, as X is log terminal, it also has rational singularities and by Theorem 12.1 of [7] it
follows that −(F + Kg) is already globally generated without the addition of −A. However, the

above approach seems more elementary, and avoids unnecessary reference to these nontrivial results.
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Proof. If ordE(i) F ′ = ordE(i) F , as F ′ ≤ F we have F ′ · E(i) ≤ F · E(i) and the
conclusion follows as Ě(i) and Ě(i, x(i)

j , k) are effective and F ′ is h-antinef. Otherwise,
if ordE(i) F ′ < ordE(i) F = ord

E(i,x
(i)
j ,ni)

F ′, then for each j = 1, . . . , ei we saw in

Lemma 2.2(b) that
ni∑

k=1

(−F ′ · E(i, x(i)
j , k))Ě(i, x(i)

j , k) ≥ Ě(i).

Summing over all j gives the desired conclusion. �

We now finish the proof by showing that F ′ ≥ F . Using the relative numerical
decomposition (1) and the previous two Lemmas, we compute

F ′ = h∗h∗F
′ +

u∑
i=1

(−F ′ · E(i))Ě(i) +
u∑

i=1

ei∑
j=1

ni∑
k=1

(−F ′ · E(i, x(i)
j , k))Ě(i, x(i)

j , k)

= h∗(h∗F ) +
u∑

i=1

(−F ′ · E(i))Ě(i) +
ei∑

j=1

ni∑
k=1

(−F ′ · E(i, x(i)
j , k))Ě(i, x(i)

j , k)


≥ h∗h∗F +

u∑
i=1

(−F · E(i))Ě(i) = F.

This concludes the proof of Theorem 1.1.
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